博碩士論文 109522116 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:3.134.110.4
姓名 王佳君(Chia-Chun Wang)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 基於深度學習之嬰兒危險監測系統
(A Deep-learning-based Danger Monitoring System for Infants)
相關論文
★ 以Q-學習法為基礎之群體智慧演算法及其應用★ 發展遲緩兒童之復健系統研製
★ 從認知風格角度比較教師評量與同儕互評之差異:從英語寫作到遊戲製作★ 基於檢驗數值的糖尿病腎病變預測模型
★ 模糊類神經網路為架構之遙測影像分類器設計★ 複合式群聚演算法
★ 身心障礙者輔具之研製★ 指紋分類器之研究
★ 背光影像補償及色彩減量之研究★ 類神經網路於營利事業所得稅選案之應用
★ 一個新的線上學習系統及其於稅務選案上之應用★ 人眼追蹤系統及其於人機介面之應用
★ 結合群體智慧與自我組織映射圖的資料視覺化研究★ 追瞳系統之研發於身障者之人機介面應用
★ 以類免疫系統為基礎之線上學習類神經模糊系統及其應用★ 基因演算法於語音聲紋解攪拌之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 照護者在照顧嬰兒時,可能發生無法隨時關注其狀態的情形,使嬰兒因溢奶、翻身、趴睡等情形,致使呼吸不順而發生憾事。又因現有產品多為感測器式嬰兒偵測系統,功能單一且易干擾孩童;而既有的視覺式嬰兒偵測研究中,又多僅關注於呼吸頻率、面部特徵及單一動作,尚有許多值得探討之處。
因此,本論文提出基於深度學習技術,專注於嬰兒影像畫面之危險監測系統,包含兩大功能之偵測:(1)臉部遮擋辨識:判斷嬰兒臉部是否遭非奶嘴之異物遮蔽,進而可能發生窒息危險、及(2)姿勢辨識:分析嬰兒正躺、爬躺、坐姿及站立四種基礎姿勢,若為趴躺或站立之姿,則有可能發生呼吸不順或跌落床面等危險。綜上功能,當本系統讀取一段嬰兒影片後,可藉模型判斷嬰兒是否處於警示狀態,以提醒照護者。
本研究中,嬰兒臉部偵測部分,使用速度較快的 SSD 演算法,以及準確率較高的 RetinaFace 演算法,使整體系統在執行速度及準確度間達到平衡。而由於目前未有公開之嬰兒資料集,故本文收集網路真實嬰兒之不同視角圖片及影片,自製嬰兒臉部與姿勢資料集各 3475 張及 15416張影像,再以 ResNet50 進行臉部遮擋辨識及姿勢辨識兩模型之訓練,其訓練及測試準確度皆達 99%。由此證明,本研究對於嬰兒危險監測系統具有良好的可用性及獨特性。
摘要(英) The babysitter may not focus on the status of the infant at any time. When unpredictable things happen to the baby, such as spitting up, rolling over, or sleeping on his stomach, the babysitter won’t notice immediately. Most of the existing products are sensor-based infant detection systems, which are single-function and may disturb the movement of the baby. However, the existing vision-based infant detection studies only focus on breathing rate, facial features, and individual movements.
Therefore, this paper proposes a danger monitoring system based on deep learning technology. The system focuses on baby images and includes two major functions: (1) Facial Occlusion Recognition: Determine whether the infant’s face is occluded by foreign objects, which may cause suffocation. (2) Posture Recognition: The four basic postures of infants are analyzed: lying on the back, lying on the stomach, sitting and standing. If the baby is lying on his stomach or standing, he may be at risk of breathing difficulties or falling off the bed. In summary, while monitoring the baby’s video, the system can alert the babysitter when the infant is in an alarm state.
In this study, infant face detection uses the faster execution time SSD algorithm and the higher performance RetinaFace algorithm. With these algorithms, the system strikes a balance between execution speed and accuracy. There is currently no open source infant dataset. Therefore, this paper collects real baby images and videos from different perspectives from the Internet to create an infant face dataset with 3475 images and an infant posture dataset with 15416 images. Then, two models of face occlusion recognition and posture recognition are trained using ResNet50, and the training and testing accuracy are 99%. This proves that this study has good utility and uniqueness for infant danger monitoring system.
關鍵字(中) ★ 嬰兒危險監測
★ 嬰兒臉部遮擋
★ 嬰兒姿勢
★ 深度學習
★ 嬰兒猝死症
關鍵字(英) ★ infant danger monitoring
★ infant face occlusion
★ infant posture
★ deep learning
★ sudden infant death syndrome
論文目次 摘要 iv
Abstract v
誌謝 vii
目錄 viii
一、 緒論 1
1.1 研究動機 ..... 1
1.2 研究目的 ..... 2
1.3 論文架構 ..... 3
二、 相關研究 4
2.1 嬰兒猝死症 ..... 4
2.2 嬰兒監測系統 ..... 5
2.2.1 感測器偵測 ..... 6
2.2.2 影像式偵測 ..... 8
2.3 殘差神經網路 ..... 11
2.4 人臉偵測 ..... 13
三、 研究方法 17
3.1 嬰兒危險監測系統 ..... 17
3.1.1 系統流程 ..... 17
3.1.2 使用場域 ..... 18
3.2 臉部遮擋辨識 ..... 18
3.2.1 臉部偵測 ..... 19
3.2.2 嬰兒臉部資料集 ..... 20
3.2.3 模型訓練 ..... 21
3.3 姿勢辨識 ..... 21
3.3.1 嬰兒姿勢資料集 ..... 23
3.3.2 模型訓練 ..... 25
3.4 危險情境判斷 ..... 25
四、 實驗設計與結果 27
4.1 臉部偵測準確度實驗 ..... 27
4.1.1 實驗目的與設計 ..... 28
4.1.2 實驗評估方式 ..... 28
4.1.3 實驗結果與分析 ..... 28
4.2 臉部偵測執行時間實驗 ..... 29
4.2.1 實驗目的與設計 ..... 29
4.2.2 實驗評估方式 ..... 30
4.2.3 實驗結果與分析 ..... 30
4.3 臉部遮擋辨識實驗 ..... 31
4.3.1 實驗目的與設計 ..... 31
4.3.2 實驗結果分析 ..... 31
4.4 姿勢辨識實驗 ..... 32
4.4.1 實驗目的與設計 ..... 32
4.4.2 實驗結果分析 ..... 33
4.5 影片危險偵測實驗 ..... 34
4.5.1 實驗目的與設計 ..... 34
4.5.2 實驗評估方式 ..... 34
4.5.3 實驗結果分析 ..... 34
五、 結論與未來展望 37
5.1 結論 ..... 37
5.2 未來展望 ..... 38
參考文獻 39
參考文獻 [1] 統計處. “歷年死因統計.” 中文. (Mar. 2021), [Online]. Available: https://dep.mohw. gov.tw/DOS/lp-5069-113.html.
[2] H. C. Kinney and B. T. Thach, “The sudden infant death syndrome,” New England Journal of Medicine, vol. 361, no. 8, pp. 795–805, 2009.
[3] “What causes SIDS?” en, [Online]. Available: https://www.nichd.nih.gov/health/topics/ sids/conditioninfo/causes.
[4] C. Linti, H. Horter, P. Osterreicher, and H. Planck, “Sensory baby vest for the monitoring of infants,” in International Workshop on Wearable and Implantable Body Sensor Networks (BSN’06), IEEE, 2006, 3–pp.
[5] A. G. Ferreira, D. Fernandes, S. Branco, et al., “A smart wearable system for sudden infant death syndrome monitoring,” in 2016 IEEE International Conference on Industrial Technology (ICIT), IEEE, 2016, pp. 1920–1925.
[6] W. Lin, R. Zhang, J. Brittelli, and C. Lehmann, “Wireless infant monitoring device for the prevention of sudden infant death syndrome,” in 2014 11th International Conference & Expo on Emerging Technologies for a Smarter World (CEWIT), IEEE, 2014, pp. 1–4.
[7] E. Ziganshin, M. Numerov, and S. Vygolov, “Uwb baby monitor,” in 2010 5th International Confernce on Ultrawideband and Ultrashort Impulse Signals, IEEE, 2010, pp. 159– 161.
[8] C.-Y. Fang, H.-H. Hsieh, and S.-W. Chen, “A vision-based infant respiratory frequency detection system,” in 2015 International Conference on Digital Image Computing: Techniques and Applications (DICTA), IEEE, 2015, pp. 1–8.
[9] X. Liu, K. Takeuchi, T. Ogunfunmi, and S. Mathapathi, “Video-based iot baby monitor for sids prevention,” in 2017 IEEE Global Humanitarian Technology Conference (GHTC), IEEE, 2017, pp. 1–7.
[10] X. L. Gallo, S. Lechón, S. Mora, and D. Vallejo-Huanga, “Marrsids: Monitoring assistant to reduce the risk of sudden infant death syndrome,” in 2019 XXII Symposium on Image, Signal Processing and Artificial Vision (STSIVA), IEEE, 2019, pp. 1–4.
[11] T.-J. Wang, J. Laaksonen, Y.-P. Liao, B.-Z. Wu, and S.-Y. Shen, “A multi-task bayesian deep neural net for detecting life-threatening infant incidents from head images,” in 2019 IEEE International Conference on Image Processing (ICIP), IEEE, 2019, pp. 3006– 3010.
[12] V. Bharati, “An efficient edge deep learning computer vision system to prevent sudden infant death syndrome,” in 2021 IEEE International Conference on Smart Computing (SMARTCOMP), IEEE, 2021, pp. 286–291.
[13] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.
[14] C. Szegedy, W. Liu, Y. Jia, et al., “Going deeper with convolutions,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 1–9.
[15] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing internal covariate shift,” in International conference on machine learning, PMLR, 2015, pp. 448–456.
[16] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.
[17] L. Cuimei, Q. Zhiliang, J. Nan, and W. Jianhua, “Human face detection algorithm via haar cascade classifier combined with three additional classifiers,” in 2017 13th IEEE International Conference on Electronic Measurement & Instruments (ICEMI), IEEE, 2017, pp. 483–487.
[18] B. Ye, Y. Shi, H. Li, L. Li, and S. Tong, “Face ssd: A real-time face detector based on ssd,” in 2021 40th Chinese Control Conference (CCC), IEEE, 2021, pp. 8445–8450.
[19] K. Zhang, Z. Zhang, Z. Li, and Y. Qiao, “Joint face detection and alignment using multitask cascaded convolutional networks,” IEEE signal processing letters, vol. 23, no. 10, pp. 1499–1503, 2016.
[20] J. Deng, J. Guo, E. Ververas, I. Kotsia, and S. Zafeiriou, “Retinaface: Single-shot multilevel face localisation in the wild,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020, pp. 5203–5212.
[21] H.-k. Tang and Z.-q. Feng, “Hand’s skin detection based on ellipse clustering,” in 2008 international symposium on computer science and computational technology, IEEE, vol. 2, 2008, pp. 758–761.
[22] W. Li, Q. Yang, and X. He, “Face detection algorithm based on double ellipse skin model,” in 2011 IEEE 2nd International Conference on Software Engineering and Ser vice Science, IEEE, 2011, pp. 335–339.
[23] “Python opencv 膚色檢測的實現示例 _ 程式設計 _ 程式人生,” [Online]. Available: https://www.796t.com/article.php?id=196625
[24] WalkonNet. “Python opencv 膚色檢測的實現示例–WalkonNet.” zh-TW, [Online]. Available: https://walkonnet.com/archives/7903.
[25] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh, “Realtime multi-person 2d pose estimation using part affinity fields,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 7291–7299.
[26] “Pose.” en-US, [Online]. Available: https://google.github.io/mediapipe/solutions/pose. html.
[27] K. Goyal, K. Agarwal, and R. Kumar, “Face detection and tracking: Using opencv,” in 2017 International conference of Electronics, Communication and Aerospace Technology (ICECA), IEEE, vol. 1, 2017, pp. 474–478.
指導教授 蘇木春 審核日期 2022-8-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明