博碩士論文 109521071 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:52 、訪客IP:3.136.18.247
姓名 李孟洋(Meng-Yang Li)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 利用智慧型靜態同步補償器以改善下垂式控制微電網之電力品質
(Using Intelligent DSTATCOM to Improve Power Quality of Droop Controlled Microgrid)
相關論文
★ 機場地面燈光更新工程 -以桃園國際機場南邊跑滑道為例★ 多功能太陽能微型逆變器之研製
★ 應用於儲能系統之智慧型太陽光電功率平滑化控制★ 利用智慧型控制之三相主動式電力濾波器的研製
★ 應用於內藏式永磁同步馬達之智慧型速度控制及最佳伺服控制頻寬研製★ 新型每安培最大轉矩控制同步磁阻馬達驅動系統之開發
★ 同步磁阻馬達驅動系統之智慧型每安培最大轉矩追蹤控制★ 利用適應性互補式滑動模態控制於同步磁阻馬達之寬速度控制
★ 具智慧型太陽光電功率平滑化控制之微電網電能管理系統★ 高性能同步磁阻馬達驅動系統之 寬速度範圍控制器發展
★ 智慧型互補式滑動模態控制系統實現於X-Y-θ三軸線性超音波馬達運動平台★ 智慧型同動控制之龍門式定位平台及應用
★ 利用智慧型滑動模式控制之五軸主動式磁浮軸承控制系統★ 智慧型控制雙饋式感應風力發電系統之研製
★ 無感測器直流變頻壓縮機驅動系統之研製★ 應用於模組化輕型電動車之類神經網路控制六相永磁同步馬達驅動系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-8-1以後開放)
摘要(中) 本論文提出一種具有配電型靜態同步補償器(Distribution Static Compensator, DSTATCOM)的下垂控制微電網,以改善微電網之電力品質。由於虛功率/電壓Q-V下垂特性,以及不平衡、線性和非線性負載的存在,造成微電網於孤島模式下具有嚴重的電力品質問題,包括電壓降、不平衡電流、落後功率因數(Power Factor, PF)和電流諧波等。此外,由於負載變化時若DSTATCOM中的直流鏈電壓之變化控制不宜,將造成DSTATCOM改善電力品質的性能嚴重退化。因此,為了有效改善下垂控制微電網的電力品質和負載變化下DSTATCOM中直流鏈電壓的暫態響應,本文提出了一種線上訓練的多項式派翠模糊神經網路(Polynomial Petri Fuzzy Neural Network, PPFNN)控制器作為直流鏈電壓控制器,以用於取代DSTATCOM中的傳統比例積分(Proportional-Integral, PI)控制器,並且本文詳細推導所提出的PPFNN之網路架構和線上學習策略。最後,本文利用模擬及實驗以驗證DSTATCOM 使用所提出的PPFNN控制器於下垂控制微電網中改善不平衡電流、降低電流總諧波失真(Total Harmonic Distortion, THD)與虛功率補償的有效性。
摘要(英) A droop controlled microgrid with distribution static compensator (DSTATCOM) is developed to improve the power quality in this thesis. Due to the reactive power/voltage Q-V droop characteristic and the existence of the unbalanced, linear inductive and nonlinear loads, the power quality problems including the voltage drop, unbalanced currents, lagging power factor (PF) and current harmonics are very serious in islanded microgrid. Moreover, if the design of the control of the DC-link voltage in the DSTATCOM is not suitable under load variation, the performance of the DSTATCOM for power quality improvement is seriously degenerated. Hence, to effectively improve the power quality of the droop controlled microgrid and the transient response of the DC-link voltage in the DSTATCOM under load variation, an online trained polynomial Petri fuzzy neural network (PPFNN) controller is proposed as the DC-link voltage controller to supersede the conventional proportional-integral (PI) controller. Furthermore, the network structure and the online learning strategy of the proposed PPFNN are detailedly derived. Finally, the effectiveness of the DSTATCOM using the proposed PPFNN controller in droop controlled microgrid to improve the unbalanced current, the total harmonic distortion (THD) reduction of the current and to compensate the reactive power is verified by using simulation and experimentation.
關鍵字(中) ★ 微電網
★ 電力品質
★ 功率因數校正
★ 智慧型控制
★ 配電型靜態同步補償器
關鍵字(英) ★ Microgrid
★ power quality
★ power factor correction
★ intelligent control
★ DSTATCOM
論文目次 摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VIII
表目錄 XVI
第一章 緒論 1
1.1 研究背景與動機 1
1.2 文獻回顧 2
1.3 論文大綱 6
1.4 本文貢獻 7
第二章 規範與微電網控制策略介紹 8
2.1 微電網規範 8
2.1.1 電流諧波 8
2.1.2 電流諧波定義及管制標準 8
2.1.3 功率因數 12
2.1.4 功率因數定義及管制標準 13
2.1.5 電流不平衡 14
2.1.6 電流不平衡比定義 14
2.1.7 IEEE 929-2000規範 15
2.1.8 IEEE 1547-2003規範 15
2.2 微電網控制策略 17
2.2.1 配電型靜態同步補償器介紹 17
2.2.2 配電型靜態同步補償器之工作原理 17
2.2.3 下垂控制策略之下垂控制方程式與曲線 21
第三章 系統架構與控制策略 22
3.1 簡介 22
3.2 三相座標軸轉換 22
3.3 鎖相迴路 25
3.3.1 以同步旋轉座標軸實現的鎖相迴路 25
3.4 實功率與虛功率的計算 27
3.5 低通濾波器 35
3.5.1 一階低通濾波器 35
3.5.2 二階低通濾波器 36
3.6 下垂控制策略與配電型靜態同步補償器控制策略 37
3.6.1 下垂控制策略 37
3.6.2 配電型靜態同步補償器控制策略 40
第四章 多項式派翠模糊類神經網路 44
4.1 簡介 44
4.2 多項式派翠模糊類神經網路架構 44
4.3 多項式派翠模糊類神經網路線上學習法則 47
4.4 多項式派翠模糊類神經網路收斂性分析 50
第五章 模擬結果 53
5.1 下垂控制與配電型靜態同步補償器控制策略之模擬結果 53
5.1.1 情境一:補償非線性負載與三相線性負載之模擬結果 54
5.1.2 情境二:補償非線性負載、三相線性負載與三相不平衡負載之模擬結果 63
5.1.3 情境三:情境二變動負載之模擬結果 72
第六章 硬體與實驗結果 78
6.1 簡介 78
6.2 儲能系統硬體設備 79
6.2.1 儲能系統變流器 79
6.2.2 負載之規劃 80
6.3 儲能系統週邊電路 82
6.3.1 交流電流回授電路 83
6.3.2 交流電壓回授電路 84
6.3.3 直流電壓回授電路 85
6.3.4 過電壓與過電流保護電路 86
6.3.5 開關互鎖電路 88
6.3.6 數位訊號處理器 91
6.3.7 DAC轉換電路 91
6.4 配電型靜態同步補償器系統硬體設備 94
6.4.1 配電型靜態同步補償器系統變流器 95
6.4.2 資料擷取卡 97
6.5 下垂控制與配電型靜態同步補償器控制策略之實驗結果 98
6.5.1 情境一:補償非線性負載與三相線性負載之實驗結果 99
6.5.2 情境二:補償非線性負載、三相線性負載與三相不平衡負載之實驗結果 108
6.5.3 情境三:情境二變動負載之實驗結果 117
第七章 結論與未來展望 123
7.1 結論 123
7.2 未來展望 124
參考文獻 125
作者簡歷 133
參考文獻 [1] B. Liu, T. Wu, Z. Liu, and J. Liu, “A small-AC-signal injection-based decentralized secondary frequency control for droop-controlled islanded microgrids,” IEEE Trans. Power Electron., vol. 35, no. 11, pp. 11634-11651, Nov. 2020.
[2] K. H. Tan and T. Y. Tseng, “Seamless switching and grid reconnection of microgrid using petri recurrent wavelet fuzzy neural network,” IEEE Trans. Power Electron., vol. 36, no. 10, pp. 11847-11861, Oct. 2021.
[3] K. H. Tan, F. J. Lin, C. M. Shih, and C. N. Kuo, “Intelligent control of microgrid with virtual inertia using recurrent probabilistic wavelet Fuzzy neural network,” IEEE Trans. Power Electron., vol, 35, no. 7, pp. 7451- 7464, July 2020.
[4] W. Deng, N. Dai, K. W. Lao, and J. M. Guerrero, “A virtual-impedance droop control for accurate active power control and reactive power sharing using capacitive-coupling inverters,” IEEE Trans. Ind. Appl., vol, 56, no. 6, pp. 6722-6733, Nov. 2020.
[5] J. F. Patarroyo-Montenegro, F. Andrade, J. M. Guerrero, and J. C. Vasquez, “A linear quadratic regulator with optimal reference tracking for three-phase inverter-based islanded microgrids,” IEEE Trans. Power Electron., vol, 36, no. 6, pp. 7112-7122, Jun. 2021.
[6] Z. Qiang, Q. Lewei, Z. Chongwei, and D. Cartes, “Study on grid connected inverter used in high power wind generation system,” IEEE 41st Annu. Ind. Applicat. Conf. Rec., Oct. 2006, p. 6.
[7] M. Farhoodnea, A. Mohamed, and H. Shareef, “A comparative study on the performance of custom power devices for power quality improvement,” in Proc. IEEE Innov. Smart Grid Technol., Kuala Lumpur, Malaysia, May 20-23, 2014.
[8] J. Arrillaga, M. J. Bollen, and N. R. Watson, “Power quality following deregulation,” Proc. IEEE, vol. 88, pp. 246-260, Feb. 2000.
[9] P. Kanjiya, V. Khadkikar, and H. H. Zeineldin, “A noniterative optimized algorithm for shunt active power filter under distorted and unbalanced supply voltages,” IEEE Trans. Ind. Electron., vol. 60, no. 12, pp. 5376- 5390, December. 2013.
[10] R. L. Ribeiro, C. C. Azevedo, and R. M. Sousa, “A robust adaptive control strategy of active power filters for power-factor correction, harmonic compensation, and balancing of nonlinear Loads,” IEEE Trans. Power Electron., vol. 27, no. 2, pp. 718-730, February 2012.
[11] R. H. Lasseter, “MicroGrids,” in Proc. IEEE Conf. Power Engineering Society Winter Meeting, New York, NY, USA, 2002, pp. 305-308 vol.1.
[12] P. Piagi and R. H. Lasseter, “Autonomous control of microgrids,” in Proc. IEEE Power Engineering Society General Meeting, Montreal, Que., pp. 8, 2006.
[13] B. Zhao, X. Zhang and J. Chen, “Integrated microgrid laboratory system,” IEEE Trans. Power Electron., vol. 27, no. 4, pp. 2175-2185, Nov. 2012.
[14] M. Chamana and S. B. Bayne, “Modeling and control of directly connected and inverter interfaced sources in a microgrid,” 2011 North American Power Symposium, Boston, MA, 2011, pp. 1-7.
[15] Y. Han, K. Zhang, H. Li, E. A. A. Coelho and J. M. Guerrero, “MAS-Based distributed coordinated control and optimization in microgrid and microgrid clusters: a comprehensive overview,” IEEE Trans. Power Electron., vol. 33, no. 8, pp. 6488-6508, Aug. 2018.
[16] K. Yu, Q. Ai, S. Wang, J. Ni and T. Lv, “Analysis and optimization of droop controller for microgrid system based on small-signal dynamic model,” IEEE Trans. Smart Grid, vol. 7, no. 2, pp. 695-705, March 2016.
[17] D. E. Olivares et al., “Trends in microgrid control,” IEEE Trans. Smart Grid, vol. 5, no. 4, pp. 1905-1919, July 2014.
[18] J. Liu, Y. Miura, H. Bevrani, T. Ise, “Enhanced virtual synchronous generator control for parallel inverters in microgrids,” IEEE Trans. Smart Grid, vol. 8, no. 3, pp. 2268-2277, Sep. 2017.
[19] E. Song, A. F. Lynch, and V. Dinavahi, “Experimental validation of nonlinear control for a voltage source converter,” IEEE Trans. Control Syst. Technol., vol. 17, no. 5, pp. 1135-1144, Sep. 2009.
[20] Kuang-Hsiung Tan, Faa-Jeng Lin, Chao-Yang Tsai, and Yung-Ruei Chang, “A Distribution Static Compensator Using a CFNN-AMF Controller for Power Quality Improvement and DC-Link Voltage Regulation,” Energies, vol. 11, no. 8, pp. 1-17, Aug. 2018.
[21] B. Singh, and V. Verma, “Selective Compensation of Power-Quality Problems Through Active Power Filter by Current Decomposition,” IEEE Trans. Power Delivery, vol. 23, no. 2, pp. 792-799, April. 2008.
[22] R. Garde, S. Casado, M. Santamaria, and M. Aguado, “Power quality and stability analysis during islanded mode operation in a microgrid based on master-slave configuration,” in Proc. 2015 Saudi Arabia Smart Grid (SASG) IEEE Conf., pp. 1-8, 2015.
[23] M. A. M. Radzi, and N. A. Rahim, “Neural network and bandless hysteresis approach to control switched capacitor active power filter for reduction of harmonics,” IEEE Trans. Ind. Electron., vol. 56, no. 5, pp. 1477-1484, May. 2009.
[24] F Somsai, and K Kulworawanichpong, “Instantaneous power control of DSTATCOM with consideration of power factor correction,” ECTI-Conference, pp. 1186-1190, Jun. 2010.
[25] A. Ghosh, and A. Joshi, “A new approach to load balancing and power factor correction in power distribution system,” IEEE Trans. Power Del., vol. 15, no. 1, pp. 417-422, Jan. 2000.
[26] P. Lohia, M. K. Mishra, K. Karthikeyan, and K. Vasudevan, “A minimally switched control algorithm for three-phase four-leg VSI topology to compensate unbalanced and nonlinear load,” IEEE Trans. Power Electron., vol. 23, no. 4, pp. 1935-1944, Jul. 2008.
[27] S. R. Arya, R. Niwas, K. Kant Bhalla, B. Singh, A. Chandra, and K. Al-Haddad, “Power Quality Improvement in Isolated Distributed Power Generating System Using DSTATCOM,” IEEE Trans. Ind. Appl., vol. 51, no. 6, pp. 4766-4774, Nov.-Dec. 2015.
[28] M. T. Ahmad, N. Kumar, and B. Singh, “Generalised neural networkbased control algorithm for DSTATCOM in distribution systems,” IET Power Electronics, vol. 10, no. 12, pp. 1529-1538, Oct. 2017.
[29] P. Kasinathan, R. Vairamani, and S. Sundramoorthy, “Dynamic performance investigation of dq model with PID controller-based unified powerflow controller,” IET Power Electron., vol. 6, pp. 843-850, May. 2013.
[30] J. Crowe: PID Control: New Identification and Design Methods. London, U.K.: Springer-Verlag, 2005.
[31] Jang, J. S. R., Sun, C. T., and Mizutani, E., “Neuro-fuzzy and soft computing: A computational approach to learning and machine intelligence,” Prentice-Hall, New Jersey, pp. 1-614, 1997.
[32] F. J. Lin, W. J. Hwang and R. J. Wai, “A supervisory fuzzy neural network control system for tracking periodic inputs,” IEEE Trans. Fuzzy Systems, vol. 7, no. 1, pp. 41-52, Feb. 1999.
[33] Wang, L. X., A Course in Fuzzy Systems and Control, Prentice-Hall, New Jersey, pp. 1-424, 1997.
[34] A. Bhattacharya and C. Chakraborty, “A shunt active power filter with enhanced performance using ANN-based predictive and adaptive controllers,” IEEE Trans. Ind. Electron., vol. 58, no. 2, pp. 421-428, Feb. 2009.
[35] M. Mohaddes, A. M. Gole, and P. G. McLaren, “A neural network controlled optimal pulse-width modulated STATCOM”, IEEE Trans. Power Delivery, vol. 14, no. 2, pp. 481-488, Apr. 1999.
[36] S.C. Lin, C.C. Tsai, and W.L. Luo, “Adaptive Neural Network Control of a Self-balancing Two-wheeled Scooter,” in Proc. 2007 IEEE IECON 2007. 33rd Annual Conference, Taipei, Taiwan, pp. 868-873, 5-8 Nov. 2007.
[37] S. Cong, and Y. Liang, “PID-like neural network nonlinear adaptive control for uncertain multivariable motion control systems,” IEEE Trans. Ind. Electron., vol. 56, no. 10, pp. 3872-3879, Oct. 2009.
[38] Wang, L. X., Adaptive Fuzzy Systems and Control: Design and Stability Analysis, Prentice-Hall, Englewood Cliffs, New Jersey, pp. 1-352, 1994.
[39] W. Yu and X. Li, “Fuzzy identification using fuzzy neural networks with stable learning algorithms,” IEEE Trans. Fuzzy Systems, vol. 12, no. 3, pp. 411-420, Jun. 2004.
[40] F. J. Lin, H. J. Shieh, P. K. Huang and L. T. Teng, “Adaptive control with hysteresis estimation and compensation using RFNN for piezo-actuator,” IEEE Trans. Ultrasonics, Ferroelectrics, and Frequency Control, vol. 53, no. 9, pp. 1649-1661, Sept. 2006.
[41] Y. Gao and M. J. Er, “An intelligent adaptive control scheme for postsurgical blood pressure regulation,” IEEE Trans. Neural Networks, vol. 16, no. 2, pp. 475-483, Mar. 2005.
[42] F. J. Lin, P. Huang, C. Wang and L. Teng, “An induction generator system using fuzzy modeling and recurrent fuzzy neural network,” IEEE Trans. Power Electron., vol. 22, no. 1, pp. 260-271, Jan. 2007.
[43] F. J. Lin, I. Sun, K. Yang and J. Chang, “Recurrent fuzzy neural cerebellar model articulation network fault-tolerant control of six-phase permanent magnet synchronous motor position servo drive,” IEEE Trans. Fuzzy Systems, vol. 24, no. 1, pp. 153-167, Feb. 2016.
[44] W. Huang, S. Oh and W. Pedrycz, “Fuzzy Wavelet Polynomial Neural Networks: Analysis and Design,” IEEE Trans Fuzzy Systems, vol. 25, no. 5, pp. 1329-1341, Oct. 2017.
[45] S.-K. Oh, W. Pedrycz, and B. J. Park, “Polynomial neural networks architecture: Analysis and design,” Comput. Elect. Eng., vol. 29, no. 6, pp. 703-725, 2003.
[46] Byungwhan Kim, Dong Won Kim and Gwi Tae Park, “Prediction of plasma etching using a polynomial neural network,” IEEE Transs Plasma Science, vol. 31, no. 6, pp. 1330-1336, Dec. 2003.
[47] A. G. Ivakhnenko, “Polynomial Theory of Complex Systems,” IEEE Trans Systems, Man, and Cybernetics, vol. SMC-1, no. 4, pp. 364-378, Oct 1971.
[48] R. Zurawski and M. Zhou, "Petri nets and industrial applications: a tutorial," IEEE Tran. Ind. Electron., vol. 41, no. 6, pp. 567 -583, December 1994.
[49] K. H. Tan, "Squirrel-cage induction generator system using wavelet Petri fuzzy neural network control for wind power applications, " IEEE Trans. Power Electron., vol. 31, no. 7, pp. 5242-5254, July 2016.
[50] H. Huang and H. Kirchner, "Formal specification and verification of modular security policy based on colored Petri nets, " IEEE Trans. Dependable and Secure Computing, vol. 8, no. 6, pp. 852-865, Nov. – Dec. 2011.
[51] Y. Y. Du, L. Qi, and M. C. Zhou, "Analysis and application of logical Petri nets to e-commerce systems," IEEE Trans. Systems, Man, and Cybernetics: System, vol. 44, no. 4, pp. 468-481, Apr. 2014.
[52] T. Nishi and Y. Tanaka, "Petri net decomposition approach for dispatching and conflict-free routing of bidirectional automated guided vehicle systems," IEEE Trans. Systems, Man, and Cybernetics - Part A: Systems and Humans, vol. 42, no. 2, pp. 1230-1243, Sep. 2012.
[53] Y. Y. Du, C. J. Jiang, and M. C. Zhou, "A petri-net-based correctness analysis of internet stock trading systems, " IEEE Trans. Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 38, no.1, pp. 93-99, Jan. 2008.
[54] Y. S. Huang, Y. S. Weng, and M. C. Zhou, "Modular design of urban traffic-light control systems based on synchronized timed Petri nets," IEEE Trans. Intelligent Transportation Systems, vol. 15, no. 2, pp. 93-99, Apr. 2014.
[55] IEEE Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems, IEEE Std 519-2014, 2014.
[56] IEEE Standard Definitions for the Measurement of Electric Power Quantities Under Sinusoidal, Nonsinusoidal, Balanced, or Unbalanced Conditions, IEEE Standards Association, IEEE Std.1459-2010, 2010.
[57] IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems, IEEE Standards Association, 2014.
[58] N. Mohan, T. M. Undeland, and W. P. Robbins, Power electronics:converter, application, and design, 3rd ed, New York:John Wiley & Sons, 2003
[59] 陳俊豪,「利用智慧型控制之三相主動式電力濾波器的研製」,中央大學,碩士論文,民國100年。
[60] IEEE Standard 929-2000, "IEEE Recommended Practice for Utility Interface of Photovoltaic(PV) Systems," IEEE Standard, New York, USA, pp. 1-26, 2000.
[61] IEEE Standard 1547-2003, "IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems," IEEE Standard, New York, USA, pp. 1-16, 2003
[62] 陳威宇,配電型靜態同步補償器軟體迴路之即時模擬Software-in-the-loop simulation for a D-STATCOM,臺灣科技大學,碩士論文,民國100年。
[63] G. Escobar, A. M. Stankovic, and P. Mattavelli, “An adaptive controller in stationary reference frame for D-statcom in unbalanced operation,” IEEE Trans. Ind. Electron., vol. 51, no. 2, pp. 401-409, Apr. 2004.
[64] 石承民,「結合虛擬慣量併網型微電網之智慧型控制」,中央大學,碩士論文,民國108年。
[65] 官啟玄,「以TSK機率模糊類神經網路控制之磷酸鋰鐵電池儲能系統之研製」,中央大學,碩士論文,民國100年。
[66] Current Transducers, HY50-P
[67] Voltage Transducer LV 25-P
[68] TMS320F28335, TMS320F28334, TMS320F28332, TMS320F28235, TMS320F28234, TMS320F28232 Digital Signal Controllers (DSCs) Data Manual, Texas Instruments, Jun. 2007.
[69] TMS320x2833x, 2823x System Control and Interrupts Reference Guide
[70] TMS320x2833x, 2823x Enhanced Pulse Width Modulator (ePWM) Module Reference Guide
[71] TMS320x2833x Analog-to-Digital Converter (ADC) Module Reference Guide
[72] TMS320x2833x, 2823x Serial Peripheral Interface (SPI) Reference Guide
[73] 8/10/12-Bit Dual Voltage Output Digital-to-Analog Converter with SPI Interface
[74] M. Badoni, A, Singh, and B. Singh, “Adaptive neurofuzzy inference system least-mean-square-based control algorithm for DSTATCOM,” IEEE Trans. Ind. Informat., vol. 12, no. 2, pp. 483-492, Apr. 2016.
指導教授 林法正(Faa-Jeng Lin) 審核日期 2022-8-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明