參考文獻 |
[1] B. Liu, T. Wu, Z. Liu, and J. Liu, “A small-AC-signal injection-based decentralized secondary frequency control for droop-controlled islanded microgrids,” IEEE Trans. Power Electron., vol. 35, no. 11, pp. 11634-11651, Nov. 2020.
[2] K. H. Tan and T. Y. Tseng, “Seamless switching and grid reconnection of microgrid using petri recurrent wavelet fuzzy neural network,” IEEE Trans. Power Electron., vol. 36, no. 10, pp. 11847-11861, Oct. 2021.
[3] K. H. Tan, F. J. Lin, C. M. Shih, and C. N. Kuo, “Intelligent control of microgrid with virtual inertia using recurrent probabilistic wavelet Fuzzy neural network,” IEEE Trans. Power Electron., vol, 35, no. 7, pp. 7451- 7464, July 2020.
[4] W. Deng, N. Dai, K. W. Lao, and J. M. Guerrero, “A virtual-impedance droop control for accurate active power control and reactive power sharing using capacitive-coupling inverters,” IEEE Trans. Ind. Appl., vol, 56, no. 6, pp. 6722-6733, Nov. 2020.
[5] J. F. Patarroyo-Montenegro, F. Andrade, J. M. Guerrero, and J. C. Vasquez, “A linear quadratic regulator with optimal reference tracking for three-phase inverter-based islanded microgrids,” IEEE Trans. Power Electron., vol, 36, no. 6, pp. 7112-7122, Jun. 2021.
[6] Z. Qiang, Q. Lewei, Z. Chongwei, and D. Cartes, “Study on grid connected inverter used in high power wind generation system,” IEEE 41st Annu. Ind. Applicat. Conf. Rec., Oct. 2006, p. 6.
[7] M. Farhoodnea, A. Mohamed, and H. Shareef, “A comparative study on the performance of custom power devices for power quality improvement,” in Proc. IEEE Innov. Smart Grid Technol., Kuala Lumpur, Malaysia, May 20-23, 2014.
[8] J. Arrillaga, M. J. Bollen, and N. R. Watson, “Power quality following deregulation,” Proc. IEEE, vol. 88, pp. 246-260, Feb. 2000.
[9] P. Kanjiya, V. Khadkikar, and H. H. Zeineldin, “A noniterative optimized algorithm for shunt active power filter under distorted and unbalanced supply voltages,” IEEE Trans. Ind. Electron., vol. 60, no. 12, pp. 5376- 5390, December. 2013.
[10] R. L. Ribeiro, C. C. Azevedo, and R. M. Sousa, “A robust adaptive control strategy of active power filters for power-factor correction, harmonic compensation, and balancing of nonlinear Loads,” IEEE Trans. Power Electron., vol. 27, no. 2, pp. 718-730, February 2012.
[11] R. H. Lasseter, “MicroGrids,” in Proc. IEEE Conf. Power Engineering Society Winter Meeting, New York, NY, USA, 2002, pp. 305-308 vol.1.
[12] P. Piagi and R. H. Lasseter, “Autonomous control of microgrids,” in Proc. IEEE Power Engineering Society General Meeting, Montreal, Que., pp. 8, 2006.
[13] B. Zhao, X. Zhang and J. Chen, “Integrated microgrid laboratory system,” IEEE Trans. Power Electron., vol. 27, no. 4, pp. 2175-2185, Nov. 2012.
[14] M. Chamana and S. B. Bayne, “Modeling and control of directly connected and inverter interfaced sources in a microgrid,” 2011 North American Power Symposium, Boston, MA, 2011, pp. 1-7.
[15] Y. Han, K. Zhang, H. Li, E. A. A. Coelho and J. M. Guerrero, “MAS-Based distributed coordinated control and optimization in microgrid and microgrid clusters: a comprehensive overview,” IEEE Trans. Power Electron., vol. 33, no. 8, pp. 6488-6508, Aug. 2018.
[16] K. Yu, Q. Ai, S. Wang, J. Ni and T. Lv, “Analysis and optimization of droop controller for microgrid system based on small-signal dynamic model,” IEEE Trans. Smart Grid, vol. 7, no. 2, pp. 695-705, March 2016.
[17] D. E. Olivares et al., “Trends in microgrid control,” IEEE Trans. Smart Grid, vol. 5, no. 4, pp. 1905-1919, July 2014.
[18] J. Liu, Y. Miura, H. Bevrani, T. Ise, “Enhanced virtual synchronous generator control for parallel inverters in microgrids,” IEEE Trans. Smart Grid, vol. 8, no. 3, pp. 2268-2277, Sep. 2017.
[19] E. Song, A. F. Lynch, and V. Dinavahi, “Experimental validation of nonlinear control for a voltage source converter,” IEEE Trans. Control Syst. Technol., vol. 17, no. 5, pp. 1135-1144, Sep. 2009.
[20] Kuang-Hsiung Tan, Faa-Jeng Lin, Chao-Yang Tsai, and Yung-Ruei Chang, “A Distribution Static Compensator Using a CFNN-AMF Controller for Power Quality Improvement and DC-Link Voltage Regulation,” Energies, vol. 11, no. 8, pp. 1-17, Aug. 2018.
[21] B. Singh, and V. Verma, “Selective Compensation of Power-Quality Problems Through Active Power Filter by Current Decomposition,” IEEE Trans. Power Delivery, vol. 23, no. 2, pp. 792-799, April. 2008.
[22] R. Garde, S. Casado, M. Santamaria, and M. Aguado, “Power quality and stability analysis during islanded mode operation in a microgrid based on master-slave configuration,” in Proc. 2015 Saudi Arabia Smart Grid (SASG) IEEE Conf., pp. 1-8, 2015.
[23] M. A. M. Radzi, and N. A. Rahim, “Neural network and bandless hysteresis approach to control switched capacitor active power filter for reduction of harmonics,” IEEE Trans. Ind. Electron., vol. 56, no. 5, pp. 1477-1484, May. 2009.
[24] F Somsai, and K Kulworawanichpong, “Instantaneous power control of DSTATCOM with consideration of power factor correction,” ECTI-Conference, pp. 1186-1190, Jun. 2010.
[25] A. Ghosh, and A. Joshi, “A new approach to load balancing and power factor correction in power distribution system,” IEEE Trans. Power Del., vol. 15, no. 1, pp. 417-422, Jan. 2000.
[26] P. Lohia, M. K. Mishra, K. Karthikeyan, and K. Vasudevan, “A minimally switched control algorithm for three-phase four-leg VSI topology to compensate unbalanced and nonlinear load,” IEEE Trans. Power Electron., vol. 23, no. 4, pp. 1935-1944, Jul. 2008.
[27] S. R. Arya, R. Niwas, K. Kant Bhalla, B. Singh, A. Chandra, and K. Al-Haddad, “Power Quality Improvement in Isolated Distributed Power Generating System Using DSTATCOM,” IEEE Trans. Ind. Appl., vol. 51, no. 6, pp. 4766-4774, Nov.-Dec. 2015.
[28] M. T. Ahmad, N. Kumar, and B. Singh, “Generalised neural networkbased control algorithm for DSTATCOM in distribution systems,” IET Power Electronics, vol. 10, no. 12, pp. 1529-1538, Oct. 2017.
[29] P. Kasinathan, R. Vairamani, and S. Sundramoorthy, “Dynamic performance investigation of dq model with PID controller-based unified powerflow controller,” IET Power Electron., vol. 6, pp. 843-850, May. 2013.
[30] J. Crowe: PID Control: New Identification and Design Methods. London, U.K.: Springer-Verlag, 2005.
[31] Jang, J. S. R., Sun, C. T., and Mizutani, E., “Neuro-fuzzy and soft computing: A computational approach to learning and machine intelligence,” Prentice-Hall, New Jersey, pp. 1-614, 1997.
[32] F. J. Lin, W. J. Hwang and R. J. Wai, “A supervisory fuzzy neural network control system for tracking periodic inputs,” IEEE Trans. Fuzzy Systems, vol. 7, no. 1, pp. 41-52, Feb. 1999.
[33] Wang, L. X., A Course in Fuzzy Systems and Control, Prentice-Hall, New Jersey, pp. 1-424, 1997.
[34] A. Bhattacharya and C. Chakraborty, “A shunt active power filter with enhanced performance using ANN-based predictive and adaptive controllers,” IEEE Trans. Ind. Electron., vol. 58, no. 2, pp. 421-428, Feb. 2009.
[35] M. Mohaddes, A. M. Gole, and P. G. McLaren, “A neural network controlled optimal pulse-width modulated STATCOM”, IEEE Trans. Power Delivery, vol. 14, no. 2, pp. 481-488, Apr. 1999.
[36] S.C. Lin, C.C. Tsai, and W.L. Luo, “Adaptive Neural Network Control of a Self-balancing Two-wheeled Scooter,” in Proc. 2007 IEEE IECON 2007. 33rd Annual Conference, Taipei, Taiwan, pp. 868-873, 5-8 Nov. 2007.
[37] S. Cong, and Y. Liang, “PID-like neural network nonlinear adaptive control for uncertain multivariable motion control systems,” IEEE Trans. Ind. Electron., vol. 56, no. 10, pp. 3872-3879, Oct. 2009.
[38] Wang, L. X., Adaptive Fuzzy Systems and Control: Design and Stability Analysis, Prentice-Hall, Englewood Cliffs, New Jersey, pp. 1-352, 1994.
[39] W. Yu and X. Li, “Fuzzy identification using fuzzy neural networks with stable learning algorithms,” IEEE Trans. Fuzzy Systems, vol. 12, no. 3, pp. 411-420, Jun. 2004.
[40] F. J. Lin, H. J. Shieh, P. K. Huang and L. T. Teng, “Adaptive control with hysteresis estimation and compensation using RFNN for piezo-actuator,” IEEE Trans. Ultrasonics, Ferroelectrics, and Frequency Control, vol. 53, no. 9, pp. 1649-1661, Sept. 2006.
[41] Y. Gao and M. J. Er, “An intelligent adaptive control scheme for postsurgical blood pressure regulation,” IEEE Trans. Neural Networks, vol. 16, no. 2, pp. 475-483, Mar. 2005.
[42] F. J. Lin, P. Huang, C. Wang and L. Teng, “An induction generator system using fuzzy modeling and recurrent fuzzy neural network,” IEEE Trans. Power Electron., vol. 22, no. 1, pp. 260-271, Jan. 2007.
[43] F. J. Lin, I. Sun, K. Yang and J. Chang, “Recurrent fuzzy neural cerebellar model articulation network fault-tolerant control of six-phase permanent magnet synchronous motor position servo drive,” IEEE Trans. Fuzzy Systems, vol. 24, no. 1, pp. 153-167, Feb. 2016.
[44] W. Huang, S. Oh and W. Pedrycz, “Fuzzy Wavelet Polynomial Neural Networks: Analysis and Design,” IEEE Trans Fuzzy Systems, vol. 25, no. 5, pp. 1329-1341, Oct. 2017.
[45] S.-K. Oh, W. Pedrycz, and B. J. Park, “Polynomial neural networks architecture: Analysis and design,” Comput. Elect. Eng., vol. 29, no. 6, pp. 703-725, 2003.
[46] Byungwhan Kim, Dong Won Kim and Gwi Tae Park, “Prediction of plasma etching using a polynomial neural network,” IEEE Transs Plasma Science, vol. 31, no. 6, pp. 1330-1336, Dec. 2003.
[47] A. G. Ivakhnenko, “Polynomial Theory of Complex Systems,” IEEE Trans Systems, Man, and Cybernetics, vol. SMC-1, no. 4, pp. 364-378, Oct 1971.
[48] R. Zurawski and M. Zhou, "Petri nets and industrial applications: a tutorial," IEEE Tran. Ind. Electron., vol. 41, no. 6, pp. 567 -583, December 1994.
[49] K. H. Tan, "Squirrel-cage induction generator system using wavelet Petri fuzzy neural network control for wind power applications, " IEEE Trans. Power Electron., vol. 31, no. 7, pp. 5242-5254, July 2016.
[50] H. Huang and H. Kirchner, "Formal specification and verification of modular security policy based on colored Petri nets, " IEEE Trans. Dependable and Secure Computing, vol. 8, no. 6, pp. 852-865, Nov. – Dec. 2011.
[51] Y. Y. Du, L. Qi, and M. C. Zhou, "Analysis and application of logical Petri nets to e-commerce systems," IEEE Trans. Systems, Man, and Cybernetics: System, vol. 44, no. 4, pp. 468-481, Apr. 2014.
[52] T. Nishi and Y. Tanaka, "Petri net decomposition approach for dispatching and conflict-free routing of bidirectional automated guided vehicle systems," IEEE Trans. Systems, Man, and Cybernetics - Part A: Systems and Humans, vol. 42, no. 2, pp. 1230-1243, Sep. 2012.
[53] Y. Y. Du, C. J. Jiang, and M. C. Zhou, "A petri-net-based correctness analysis of internet stock trading systems, " IEEE Trans. Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 38, no.1, pp. 93-99, Jan. 2008.
[54] Y. S. Huang, Y. S. Weng, and M. C. Zhou, "Modular design of urban traffic-light control systems based on synchronized timed Petri nets," IEEE Trans. Intelligent Transportation Systems, vol. 15, no. 2, pp. 93-99, Apr. 2014.
[55] IEEE Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems, IEEE Std 519-2014, 2014.
[56] IEEE Standard Definitions for the Measurement of Electric Power Quantities Under Sinusoidal, Nonsinusoidal, Balanced, or Unbalanced Conditions, IEEE Standards Association, IEEE Std.1459-2010, 2010.
[57] IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems, IEEE Standards Association, 2014.
[58] N. Mohan, T. M. Undeland, and W. P. Robbins, Power electronics:converter, application, and design, 3rd ed, New York:John Wiley & Sons, 2003
[59] 陳俊豪,「利用智慧型控制之三相主動式電力濾波器的研製」,中央大學,碩士論文,民國100年。
[60] IEEE Standard 929-2000, "IEEE Recommended Practice for Utility Interface of Photovoltaic(PV) Systems," IEEE Standard, New York, USA, pp. 1-26, 2000.
[61] IEEE Standard 1547-2003, "IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems," IEEE Standard, New York, USA, pp. 1-16, 2003
[62] 陳威宇,配電型靜態同步補償器軟體迴路之即時模擬Software-in-the-loop simulation for a D-STATCOM,臺灣科技大學,碩士論文,民國100年。
[63] G. Escobar, A. M. Stankovic, and P. Mattavelli, “An adaptive controller in stationary reference frame for D-statcom in unbalanced operation,” IEEE Trans. Ind. Electron., vol. 51, no. 2, pp. 401-409, Apr. 2004.
[64] 石承民,「結合虛擬慣量併網型微電網之智慧型控制」,中央大學,碩士論文,民國108年。
[65] 官啟玄,「以TSK機率模糊類神經網路控制之磷酸鋰鐵電池儲能系統之研製」,中央大學,碩士論文,民國100年。
[66] Current Transducers, HY50-P
[67] Voltage Transducer LV 25-P
[68] TMS320F28335, TMS320F28334, TMS320F28332, TMS320F28235, TMS320F28234, TMS320F28232 Digital Signal Controllers (DSCs) Data Manual, Texas Instruments, Jun. 2007.
[69] TMS320x2833x, 2823x System Control and Interrupts Reference Guide
[70] TMS320x2833x, 2823x Enhanced Pulse Width Modulator (ePWM) Module Reference Guide
[71] TMS320x2833x Analog-to-Digital Converter (ADC) Module Reference Guide
[72] TMS320x2833x, 2823x Serial Peripheral Interface (SPI) Reference Guide
[73] 8/10/12-Bit Dual Voltage Output Digital-to-Analog Converter with SPI Interface
[74] M. Badoni, A, Singh, and B. Singh, “Adaptive neurofuzzy inference system least-mean-square-based control algorithm for DSTATCOM,” IEEE Trans. Ind. Informat., vol. 12, no. 2, pp. 483-492, Apr. 2016. |