參考文獻 |
1. L, J.; Szabo, Z.; A, P., Occurrence and Mobility of Mercury in Groundwater. In Current Perspectives in Contaminant Hydrology and Water Resources Sustainability, 2013.
2. Lee, S.; Kim, D. H.; Kim, K. W., The enhancement and inhibition of mercury reduction by natural organic matter in the presence of Shewanella oneidensis MR-1. Chemosphere 2018, 194, 515-522.
3. Wiatrowski, H. A.; Ward, P. M.; Barkay, T., Novel Reduction of Mercury(II) by Mercury-Sensitive Dissimilatory Metal Reducing Bacteria. Environmental Science & Technology 2006, 40, (21), 6690-6696.
4. Bernhoft, R. A., Mercury toxicity and treatment: a review of the literature. J Environ Public Health 2012, 2012, 460508.
5. Boening, D. W., Ecological effects, transport, and fate of mercury: a general review. Chemosphere 2000, 40, (12), 1335-1351.
6. Clarkson, T. W., The toxicology of mercury. Crit Rev Clin Lab Sci 1997, 34, (4), 369-403.
7. Clarkson, T. W., The three modern faces of mercury. Environmental Health Perspectives 2002, 110, (suppl 1), 11-23.
8. Grassi, S.; Netti, R., Sea water intrusion and mercury pollution of some coastal aquifers in the province of Grosseto (Southern Tuscany — Italy). Journal of Hydrology 2000, 237, (3-4), 198-211.
9. Barringer, J. L.; Szabo, Z., Overview of investigations into mercury in ground water, soils, and septage, new jersey coastal plain. Water, Air, and Soil Pollution 2006, 175, (1-4), 193-221.
10. Chapelle, F. H.; Bradley, P. M.; Thomas, M. A.; McMahon, P. B., Distinguishing iron-reducing from sulfate-reducing conditions. Ground Water 2009, 47, (2), 300-5.
11. Ling, Y. C.; Bush, R.; Grice, K.; Tulipani, S.; Berwick, L.; Moreau, J. W., Distribution of iron- and sulfate-reducing bacteria across a coastal acid sulfate soil (CASS) environment: implications for passive bioremediation by tidal inundation. Front Microbiol 2015, 6, 624.
12. Meier, J.; Babenzien, H.-D.; Wendt-Potthoff, K., Microbial cycling of iron and sulfur in sediments of acidic and pH-neutral mining lakes in Lusatia (Brandenburg, Germany). Biogeochemistry 2004, 67, (2), 135-156.
13. Ohba, H.; Owa, N., Vertical Distribution of Physico-Chemical Properties and Number of Sulfur-Oxidizing Bacteria in the Buried Layer of Soil Profiles with Marine-Reduced Sulfur Compounds. Soil Science and Plant Nutrition 2005, 51, (3), 379-388.
14. Lovley, D. R.; Ueki, T.; Zhang, T.; Malvankar, N. S.; Shrestha, P. M.; Flanagan, K. A.; Aklujkar, M.; Butler, J. E.; Giloteaux, L.; Rotaru, A. E.; Holmes, D. E.; Franks, A. E.; Orellana, R.; Risso, C.; Nevin, K. P., Geobacter: the microbe electric′s physiology, ecology, and practical applications. Adv Microb Physiol 2011, 59, 1-100.
15. Hau, H. H.; Gralnick, J. A., Ecology and biotechnology of the genus Shewanella. Annu Rev Microbiol 2007, 61, 237-58.
16. Bird, L. J.; Bonnefoy, V.; Newman, D. K., Bioenergetic challenges of microbial iron metabolisms. Trends Microbiol 2011, 19, (7), 330-40.
17. Neal, A. L.; Dublin, S. N.; Taylor, J.; Bates, D. J.; Burns, J. L.; Apkarian, R.; DiChristina, T. J., Terminal electron acceptors influence the quantity and chemical composition of capsular exopolymers produced by anaerobically growing Shewanella spp. Biomacromolecules 2007, 8, (1), 166-74.
18. Myers, C. R.; Nealson, K. H., Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science 1988, 240, (4857), 1319-21.
19. Coursolle, D.; Gralnick, J. A., Reconstruction of Extracellular Respiratory Pathways for Iron(III) Reduction in Shewanella Oneidensis Strain MR-1. Front Microbiol 2012, 3, 56.
20. Michelson, K.; Alcalde, R. E.; Sanford, R. A.; Valocchi, A. J.; Werth, C. J., Diffusion-Based Recycling of Flavins Allows Shewanella oneidensis MR-1 To Yield Energy from Metal Reduction Across Physical Separations. Environ Sci Technol 2019, 53, (7), 3480-3487.
21. Liu, T.; Luo, X.; Wu, Y.; Reinfelder, J. R.; Yuan, X.; Li, X.; Chen, D.; Li, F., Extracellular Electron Shuttling Mediated by Soluble c-Type Cytochromes Produced by Shewanella oneidensis MR-1. Environ Sci Technol 2020, 54, (17), 10577-10587.
22. Lopez-Adams, R.; Newsome, L.; Moore, K. L.; Lyon, I. C.; Lloyd, J. R., Dissimilatory Fe(III) Reduction Controls on Arsenic Mobilization: A Combined Biogeochemical and NanoSIMS Imaging Approach. Front Microbiol 2021, 12, 640734.
23. Lovley, D. R.; Holmes, D. E.; Nevin, K. P., Dissimilatory Fe(III) and Mn(IV) Reduction. In Advances in Microbial Physiology, Academic Press: 2004; Vol. 49, pp 219-286.
24. Liu, C.; Kota, S.; Zachara, J. M.; Fredrickson, J. K.; Brinkman, C. K., Kinetic Analysis of the Bacterial Reduction of Goethite. Environmental Science & Technology 2001, 35, (12), 2482-2490.
25. Xu, S.; Adhikari, D.; Huang, R.; Zhang, H.; Tang, Y.; Roden, E.; Yang, Y., Biochar-Facilitated Microbial Reduction of Hematite. Environmental Science & Technology 2016, 50, (5), 2389-2395.
26. Cooper, R. E.; DiChristina, T. J., Fe(III) Oxide Reduction by Anaerobic Biofilm Formation-DeficientS-Ribosylhomocysteine Lyase (LuxS) Mutant of Shewanella oneidensis. Geomicrobiology Journal 2019, 36, (7), 639-650.
27. Huang, J.-H.; Voegelin, A.; Pombo, S. A.; Lazzaro, A.; Zeyer, J.; Kretzschmar, R., Influence of Arsenate Adsorption to Ferrihydrite, Goethite, and Boehmite on the Kinetics of Arsenate Reduction by Shewanella putrefaciens strain CN-32. Environmental Science & Technology 2011, 45, (18), 7701-7709.
28. Zhang, L.; Chen, Y.; Xia, Q.; Kemner, K. M.; Shen, Y.; O′Loughlin, E. J.; Pan, Z.; Wang, Q.; Huang, Y.; Dong, H.; Boyanov, M. I., Combined Effects of Fe(III)-Bearing Clay Minerals and Organic Ligands on U(VI) Bioreduction and U(IV) Speciation. Environ Sci Technol 2021, 55, (9), 5929-5938.
29. Brutinel, E. D.; Gralnick, J. A., Shuttling happens: soluble flavin mediators of extracellular electron transfer in Shewanella. Appl Microbiol Biotechnol 2012, 93, (1), 41-8.
30. Kotloski, N. J.; Gralnick, J. A., Flavin electron shuttles dominate extracellular electron transfer by Shewanella oneidensis. mBio 2013, 4, (1).
31. Shi, L.; Richardson, D. J.; Wang, Z.; Kerisit, S. N.; Rosso, K. M.; Zachara, J. M.; Fredrickson, J. K., The roles of outer membrane cytochromes of Shewanella and Geobacter in extracellular electron transfer. Environ Microbiol Rep 2009, 1, (4), 220-7.
32. Shi, L.; Dong, H.; Reguera, G.; Beyenal, H.; Lu, A.; Liu, J.; Yu, H. Q.; Fredrickson, J. K., Extracellular electron transfer mechanisms between microorganisms and minerals. Nat Rev Microbiol 2016, 14, (10), 651-62.
33. Liu, X.; Shi, L.; Gu, J.-D., Microbial electrocatalysis: Redox mediators responsible for extracellular electron transfer. Biotechnology Advances 2018, 36, (7), 1815-1827.
34. Nevin, K. P.; Lovley, D. R., Lack of Production of Electron-Shuttling Compounds or Solubilization of Fe(III) during Reduction of Insoluble Fe(III) Oxide by Geobacter metallireducens. Applied and Environmental Microbiology 2000, 66, (5), 2248-2251.
35. Lies, D. P.; Hernandez, M. E.; Kappler, A.; Mielke, R. E.; Gralnick, J. A.; Newman, D. K., Shewanella oneidensis MR-1 uses overlapping pathways for iron reduction at a distance and by direct contact under conditions relevant for Biofilms. Appl Environ Microbiol 2005, 71, (8), 4414-26.
36. Chong, G. W.; Pirbadian, S.; El-Naggar, M. Y., Surface-Induced Formation and Redox-Dependent Staining of Outer Membrane Extensions in Shewanella oneidensis MR-1. Frontiers in Energy Research 2019, 7.
37. El-Naggar, M. Y.; Wanger, G.; Leung, K. M.; Yuzvinsky, T. D.; Southam, G.; Yang, J.; Lau, W. M.; Nealson, K. H.; Gorby, Y. A., Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1. Proc Natl Acad Sci U S A 2010, 107, (42), 18127-31.
38. Fredrickson, J. K.; Romine, M. F.; Beliaev, A. S.; Auchtung, J. M.; Driscoll, M. E.; Gardner, T. S.; Nealson, K. H.; Osterman, A. L.; Pinchuk, G.; Reed, J. L.; Rodionov, D. A.; Rodrigues, J. L.; Saffarini, D. A.; Serres, M. H.; Spormann, A. M.; Zhulin, I. B.; Tiedje, J. M., Towards environmental systems biology of Shewanella. Nat Rev Microbiol 2008, 6, (8), 592-603.
39. Kouzuma, A.; Kasai, T.; Hirose, A.; Watanabe, K., Catabolic and regulatory systems in Shewanella oneidensis MR-1 involved in electricity generation in microbial fuel cells. Front Microbiol 2015, 6, 609.
40. Pirbadian, S.; Barchinger, S. E.; Leung, K. M.; Byun, H. S.; Jangir, Y.; Bouhenni, R. A.; Reed, S. B.; Romine, M. F.; Saffarini, D. A.; Shi, L.; Gorby, Y. A.; Golbeck, J. H.; El-Naggar, M. Y., Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components. Proc Natl Acad Sci U S A 2014, 111, (35), 12883-8.
41. Breuer, M.; Rosso, K. M.; Blumberger, J.; Butt, J. N., Multi-haem cytochromes in Shewanella oneidensis MR-1: structures, functions and opportunities. J R Soc Interface 2015, 12, (102), 20141117.
42. Shi, L.; Squier, T. C.; Zachara, J. M.; Fredrickson, J. K., Respiration of metal (hydr)oxides by Shewanella and Geobacter: a key role for multihaem c-type cytochromes. Mol Microbiol 2007, 65, (1), 12-20.
43. Lower, B. H.; Yongsunthon, R.; Shi, L.; Wildling, L.; Gruber, H. J.; Wigginton, N. S.; Reardon, C. L.; Pinchuk, G. E.; Droubay, T. C.; Boily, J. F.; Lower, S. K., Antibody recognition force microscopy shows that outer membrane cytochromes OmcA and MtrC are expressed on the exterior surface of Shewanella oneidensis MR-1. Appl Environ Microbiol 2009, 75, (9), 2931-5.
44. Xiong, Y.; Shi, L.; Chen, B.; Mayer, M. U.; Lower, B. H.; Londer, Y.; Bose, S.; Hochella, M. F.; Fredrickson, J. K.; Squier, T. C., High-Affinity Binding and Direct Electron Transfer to Solid Metals by the Shewanella oneidensis MR-1 Outer Membrane c-type Cytochrome OmcA. Journal of the American Chemical Society 2006, 128, (43), 13978-13979.
45. Wigginton, N. S.; Rosso, K. M.; Hochella, M. F., Mechanisms of Electron Transfer in Two Decaheme Cytochromes from a Metal-Reducing Bacterium. The Journal of Physical Chemistry B 2007, 111, (44), 12857-12864.
46. Wang, Z.; Liu, C.; Wang, X.; Marshall, M. J.; Zachara, J. M.; Rosso, K. M.; Dupuis, M.; Fredrickson, J. K.; Heald, S.; Shi, L., Kinetics of reduction of Fe(III) complexes by outer membrane cytochromes MtrC and OmcA of Shewanella oneidensis MR-1. Appl Environ Microbiol 2008, 74, (21), 6746-55.
47. Ross, D. E.; Brantley, S. L.; Tien, M., Kinetic characterization of OmcA and MtrC, terminal reductases involved in respiratory electron transfer for dissimilatory iron reduction in Shewanella oneidensis MR-1. Appl Environ Microbiol 2009, 75, (16), 5218-26.
48. Schuetz, B.; Schicklberger, M.; Kuermann, J.; Spormann, A. M.; Gescher, J., Periplasmic electron transfer via the c-type cytochromes MtrA and FccA of Shewanella oneidensis MR-1. Appl Environ Microbiol 2009, 75, (24), 7789-96.
49. Kees, E. D.; Pendleton, A. R.; Paquete, C. M.; Arriola, M. B.; Kane, A. L.; Kotloski, N. J.; Intile, P. J.; Gralnick, J. A., Secreted Flavin Cofactors for Anaerobic Respiration of Fumarate and Urocanate by Shewanella oneidensis: Cost and Role. Appl Environ Microbiol 2019, 85, (16).
50. Covington, E. D.; Gelbmann, C. B.; Kotloski, N. J.; Gralnick, J. A., An essential role for UshA in processing of extracellular flavin electron shuttles by Shewanella oneidensis. Mol Microbiol 2010, 78, (2), 519-32.
51. Marsili, E.; Baron, D. B.; Shikhare, I. D.; Coursolle, D.; Gralnick, J. A.; Bond, D. R., Shewanella secretes flavins that mediate extracellular electron transfer. Proceedings of the National Academy of Sciences 2008, 105, (10), 3968-3973.
52. von Canstein, H.; Ogawa, J.; Shimizu, S.; Lloyd, J. R., Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Appl Environ Microbiol 2008, 74, (3), 615-23.
53. Okamoto, A.; Kalathil, S.; Deng, X.; Hashimoto, K.; Nakamura, R.; Nealson, K. H., Cell-secreted flavins bound to membrane cytochromes dictate electron transfer reactions to surfaces with diverse charge and pH. Sci Rep 2014, 4, 5628.
54. Coursolle, D.; Gralnick, J. A., Modularity of the Mtr respiratory pathway of Shewanella oneidensis strain MR-1. Mol Microbiol 2010, 77, (4), 995-1008.
55. O’Loughlin, E. J.; Kelly, S. D.; Kemner, K. M.; Csencsits, R.; Cook, R. E., Reduction of AgI, AuIII, CuII, and HgII by FeII/FeIII hydroxysulfate green rust. Chemosphere 2003, 53, (5), 437-446.
56. Wiatrowski, H. A.; Das, S.; Kukkadapu, R.; Ilton, E. S.; Barkay, T.; Yee, N., Reduction of Hg(II) to Hg(0) by Magnetite. Environmental Science & Technology 2009, 43, (14), 5307-5313.
57. Amirbahman, A.; Kent, D. B.; Curtis, G. P.; Marvin-Dipasquale, M. C., Kinetics of homogeneous and surface-catalyzed mercury(II) reduction by iron(II). Environ Sci Technol 2013, 47, (13), 7204-13.
58. Zhao, L.; Li, Y.; Zhang, L.; Zheng, J.; Pierce, E. M.; Gu, B., Mercury Adsorption on Minerals and Its Effect on Microbial Methylation. ACS Earth and Space Chemistry 2019, 3, (7), 1338-1345.
59. He, Z.; Traina, S. J.; Bigham, J. M.; Weavers, L. K., Sonolytic Desorption of Mercury from Aluminum Oxide. Environmental Science & Technology 2005, 39, (4), 1037-1044.
60. Hintelmann, H.; Keppel-Jones, K.; Evans, R. D., Constants of mercury methylation and demethylation rates in sediments and comparison of tracer and ambient mercury availability. Environmental Toxicology and Chemistry 2000, 19, (9), 2204-2211.
61. Jonsson, S.; Skyllberg, U.; Nilsson, M. B.; Westlund, P. O.; Shchukarev, A.; Lundberg, E.; Bjorn, E., Mercury methylation rates for geochemically relevant Hg(II) species in sediments. Environ Sci Technol 2012, 46, (21), 11653-9.
62. Jonsson, S.; Skyllberg, U.; Nilsson, M. B.; Lundberg, E.; Andersson, A.; Bjorn, E., Differentiated availability of geochemical mercury pools controls methylmercury levels in estuarine sediment and biota. Nat Commun 2014, 5, 4624.
63. Zhang, L.; Wu, S.; Zhao, L.; Lu, X.; Pierce, E. M.; Gu, B., Mercury Sorption and Desorption on Organo-Mineral Particulates as a Source for Microbial Methylation. Environ Sci Technol 2019, 53, (5), 2426-2433.
64. Coby, A. J.; Picardal, F. W., Influence of sediment components on the immobilization of Zn during microbial Fe-(hydr)oxide reduction. Environ Sci Technol 2006, 40, (12), 3813-8.
65. Gralnick, J. A.; Newman, D. K., Extracellular respiration. Molecular Microbiology 2007, 65, (1), 1-11.
66. Jiang, J.; Kappler, A., Kinetics of Microbial and Chemical Reduction of Humic Substances: Implications for Electron Shuttling. Environmental Science & Technology 2008, 42, (10), 3563-3569.
67. Aulenta, F.; Maio, V. D.; Ferri, T.; Majone, M., The humic acid analogue antraquinone-2,6-disulfonate (AQDS) serves as an electron shuttle in the electricity-driven microbial dechlorination of trichloroethene to cis-dichloroethene. Bioresour Technol 2010, 101, (24), 9728-33.
68. Gu, B.; Bian, Y.; Miller, C. L.; Dong, W.; Jiang, X.; Liang, L., Mercury reduction and complexation by natural organic matter in anoxic environments. Proc Natl Acad Sci U S A 2011, 108, (4), 1479-83.
69. Zheng, W.; Liang, L.; Gu, B., Mercury reduction and oxidation by reduced natural organic matter in anoxic environments. Environ Sci Technol 2012, 46, (1), 292-9.
70. Lovley, D. R.; Coates, J. D.; Blunt-Harris, E. L.; Phillips, E. J. P.; Woodward, J. C., Humic substances as electron acceptors for microbial respiration. Nature 1996, 382, (6590), 445-448.
71. Lovley, D. R.; Fraga, J. L.; Blunt-Harris, E. L.; Hayes, L. A.; Phillips, E. J. P.; Coates, J. D., Humic substances as a mediator for microbially catalyzed metal reduction. Acta Hydrochimica et Hydrobiologica 1998, 26, (3), 152-157.
72. Rocha, J. C.; Junior, É. S.; Zara, L. F.; Rosa, A. H.; dos Santos, A.; Burba, P., Reduction of mercury(II) by tropical river humic substances (Rio Negro) — A possible process of the mercury cycle in Brazil. Talanta 2000, 53, (3), 551-559.
73. Kappler, A.; Benz, M.; Schink, B.; Brune, A., Electron shuttling via humic acids in microbial iron(III) reduction in a freshwater sediment. FEMS Microbiology Ecology 2004, 47, (1), 85-92.
74. Uchimiya, M.; Stone, A. T., Reversible redox chemistry of quinones: impact on biogeochemical cycles. Chemosphere 2009, 77, (4), 451-8.
75. Wolf, M.; Kappler, A.; Jiang, J.; Meckenstock, R. U., Effects of Humic Substances and Quinones at Low Concentrations on Ferrihydrite Reduction by Geobacter metallireducens. Environmental Science & Technology 2009, 43, (15), 5679-5685.
76. Roden, E. E.; Kappler, A.; Bauer, I.; Jiang, J.; Paul, A.; Stoesser, R.; Konishi, H.; Xu, H., Extracellular electron transfer through microbial reduction of solid-phase humic substances. Nature Geoscience 2010, 3, (6), 417-421.
77. Chen, J.; Gu, B.; Royer, R.; Burgos, W., The roles of natural organic matter in chemical and microbial reduction of ferric iron. The Science of The Total Environment 2003, 307, (1-3), 167-178.
78. Newman, D. K.; Kolter, R., A role for excreted quinones in extracellular electron transfer. Nature 2000, 405, (6782), 94-97.
79. Barkay, T.; Miller, S. M.; Summers, A. O., Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiology Reviews 2003, 27, (2-3), 355-384.
80. Lin, C.-C.; Yee, N.; Barkay, T., Microbial Transformations in the Mercury Cycle. In Environmental Chemistry and Toxicology of Mercury, 2011; pp 155-191.
81. Charlet, L.; Bosbach, D.; Peretyashko, T., Natural attenuation of TCE, As, Hg linked to the heterogeneous oxidation of Fe(II): an AFM study. Chemical Geology 2002, 190, (1), 303-319.
82. Coursolle, D.; Baron, D. B.; Bond, D. R.; Gralnick, J. A., The Mtr respiratory pathway is essential for reducing flavins and electrodes in Shewanella oneidensis. J Bacteriol 2010, 192, (2), 467-74.
83. Abboud, R.; Popa, R.; Souza-Egipsy, V.; Giometti, C. S.; Tollaksen, S.; Mosher, J. J.; Findlay, R. H.; Nealson, K. H., Low-temperature growth of Shewanella oneidensis MR-1. Appl Environ Microbiol 2005, 71, (2), 811-6.
84. Jeong, Y.-S.; Song, S.-K.; Lee, S.-J.; Hur, B.-K., The growth and EPA synthesis of Shewanella oneidensis MR-1 and expectation of EPA biosynthetic pathway. Biotechnology and Bioprocess Engineering 2006, 11, (2), 127.
85. Khare, N.; Hesterberg, D.; Beauchemin, S.; Wang, S.-L., XANES Determination of Adsorbed Phosphate Distribution between Ferrihydrite and Boehmite in Mixtures. Soil Science Society of America Journal 2004, 68, (2), 460-469.
86. Ekstrom, E. B.; Morel, F. M. M., Cobalt Limitation of Growth and Mercury Methylation in Sulfate-Reducing Bacteria. Environmental Science & Technology 2008, 42, (1), 93-99.
87. Szczuka, A.; Morel, F. M.; Schaefer, J. K., Effect of thiols, zinc, and redox conditions on Hg uptake in Shewanella oneidensis. Environ Sci Technol 2015, 49, (12), 7432-8.
88. Kostka, J.; Stucki, J.; Nealson, K.; Wu, J. U. N., Reduction of Structural Fe(III) in Smectite by a Pure Culture of Shewanella Putrefaciens Strain MR1. Clays and Clay Minerals - CLAYS CLAY MINER 1996, 44, 522-529.
89. Kostka, J. E.; Wu, J.; Nealson, K. H.; Stucki, J. W., The impact of structural Fe(III) reduction by bacteria on the surface chemistry of smectite clay minerals. Geochimica et Cosmochimica Acta 1999, 63, (22), 3705-3713.
90. Komadel, P.; Madejová, J.; Stucki, J. W., Structural Fe(III) reduction in smectites. Applied Clay Science 2006, 34, (1-4), 88-94.
91. Ribeiro, F. R.; Fabris, J. D.; Kostka, J. E.; Komadel, P.; Stucki, J. W., Comparisons of structural iron reduction in smectites by bacteria and dithionite: II. A variable-temperature Mössbauer spectroscopic study of Garfield nontronite. Pure and Applied Chemistry 2009, 81, (8), 1499-1509.
92. Schaefer, M. V.; Gorski, C. A.; Scherer, M. M., Spectroscopic Evidence for Interfacial Fe(II)−Fe(III) Electron Transfer in a Clay Mineral. Environmental Science & Technology 2011, 45, (2), 540-545.
93. Neumann, A.; Olson, T. L.; Scherer, M. M., Spectroscopic evidence for Fe(II)-Fe(III) electron transfer at clay mineral edge and basal sites. Environ Sci Technol 2013, 47, (13), 6969-77.
94. Latta, D. E.; Neumann, A.; Premaratne, W. A. P. J.; Scherer, M. M., Fe(II)–Fe(III) Electron Transfer in a Clay Mineral with Low Fe Content. ACS Earth and Space Chemistry 2017, 1, (4), 197-208.
95. Mackenzie, R. C., Cation Exchange and Clay Mineral Structure. Nature 1951, 168, (4264), 107-108.
96. Norrish, K., The swelling of montmorillonite. Discussions of the Faraday Society 1954, 18, (0), 120-134.
97. Peng, J.; Yi, H.; Song, S.; Zhan, W.; Zhao, Y., Driving force for the swelling of montmorillonite as affected by surface charge and exchangeable cations: A molecular dynamic study. Results in Physics 2019, 12, 113-117.
98. Samain, L.; Jaworski, A.; Edén, M.; Ladd, D. M.; Seo, D.-K.; Javier Garcia-Garcia, F.; Häussermann, U., Structural analysis of highly porous γ-Al2O3. Journal of Solid State Chemistry 2014, 217, 1-8.
99. Ginting, E.; Bukit, N., Synthesis and Characterization of Alumina Precursors Derived from Aluminum Metal through Electrochemical Method. Indonesian Journal of Chemistry 2015, 15, 123-129.
100. Wischert, R.; Laurent, P.; Coperet, C.; Delbecq, F.; Sautet, P., gamma-Alumina: the essential and unexpected role of water for the structure, stability, and reactivity of "defect" sites. J Am Chem Soc 2012, 134, (35), 14430-49.
101. Reinsch, B. C.; Forsberg, B.; Penn, R. L.; Kim, C. S.; Lowry, G. V., Chemical Transformations during Aging of Zerovalent Iron Nanoparticles in the Presence of Common Groundwater Dissolved Constituents. Environmental Science & Technology 2010, 44, (9), 3455-3461.
102. Kosmulski, M., pH-dependent surface charging and points of zero charge. IV. Update and new approach. J Colloid Interface Sci 2009, 337, (2), 439-48.
103. Jastrzębska, A. M.; Karwowska, E.; Olszyna, A. R.; Kunicki, A., Influence of bacteria adsorption on zeta potential of Al2O3 and Al2O3/Ag nanoparticles in electrolyte and drinking water environment studied by means of zeta potential. Surface and Coatings Technology 2015, 271, 225-233.
104. Keller, A. A.; Wang, H.; Zhou, D.; Lenihan, H. S.; Cherr, G.; Cardinale, B. J.; Miller, R.; Ji, Z., Stability and Aggregation of Metal Oxide Nanoparticles in Natural Aqueous Matrices. Environmental Science & Technology 2010, 44, (6), 1962-1967.
105. Mathur, S. S.; Dzombak, D. A., Chapter 16 - Surface complexation modeling: Goethite. In Interface Science and Technology, Lützenkirchen, J., Ed. Elsevier: 2006; Vol. 11, pp 443-468.
106. Kim, C. S.; Rytuba, J. J.; Brown, G. E., EXAFS study of mercury(II) sorption to Fe- and Al-(hydr)oxides. Journal of Colloid and Interface Science 2004, 271, (1), 1-15.
107. Kim, C. S.; Rytuba, J. J.; Brown, G. E., EXAFS study of mercury(II) sorption to Fe- and Al-(hydr)oxides. II. Effects of chloride and sulfate. J Colloid Interface Sci 2004, 270, (1), 9-20.
108. Hu, H.; Lin, H.; Zheng, W.; Rao, B.; Feng, X.; Liang, L.; Elias, D. A.; Gu, B., Mercury reduction and cell-surface adsorption by Geobacter sulfurreducens PCA. Environ Sci Technol 2013, 47, (19), 10922-30.
109. Bucking, C.; Popp, F.; Kerzenmacher, S.; Gescher, J., Involvement and specificity of Shewanella oneidensis outer membrane cytochromes in the reduction of soluble and solid-phase terminal electron acceptors. FEMS Microbiol Lett 2010, 306, (2), 144-51.
110. Vandevivere, P.; Kirchman, D. L., Attachment stimulates exopolysaccharide synthesis by a bacterium. Appl Environ Microbiol 1993, 59, (10), 3280-6.
111. Flemming, H. C.; Wingender, J.; Szewzyk, U.; Steinberg, P.; Rice, S. A.; Kjelleberg, S., Biofilms: an emergent form of bacterial life. Nat Rev Microbiol 2016, 14, (9), 563-75.
112. Dohnalkova, A. C.; Marshall, M. J.; Arey, B. W.; Williams, K. H.; Buck, E. C.; Fredrickson, J. K., Imaging hydrated microbial extracellular polymers: comparative analysis by electron microscopy. Appl Environ Microbiol 2011, 77, (4), 1254-62.
113. Li, S. W.; Sheng, G. P.; Cheng, Y. Y.; Yu, H. Q., Redox properties of extracellular polymeric substances (EPS) from electroactive bacteria. Sci Rep 2016, 6, 39098.
114. Xiao, Y.; Zhang, E.; Zhang, J.; Dai, Y.; Yang, Z.; Christensen, H. E. M.; Ulstrup, J.; Zhao, F., Extracellular polymeric substances are transient media for microbial extracellular electron transfer. Science Advances 2017, 3, (7), e1700623.
115. Costa, O. Y. A.; Raaijmakers, J. M.; Kuramae, E. E., Microbial Extracellular Polymeric Substances: Ecological Function and Impact on Soil Aggregation. Front Microbiol 2018, 9, 1636.
116. Gao, L.; Lu, X.; Liu, H.; Li, J.; Li, W.; Song, R.; Wang, R.; Zhang, D.; Zhu, J., Mediation of Extracellular Polymeric Substances in Microbial Reduction of Hematite by Shewanella oneidensis MR-1. Front Microbiol 2019, 10, 575.
117. Marshall, M. J.; Beliaev, A. S.; Dohnalkova, A. C.; Kennedy, D. W.; Shi, L.; Wang, Z.; Boyanov, M. I.; Lai, B.; Kemner, K. M.; McLean, J. S.; Reed, S. B.; Culley, D. E.; Bailey, V. L.; Simonson, C. J.; Saffarini, D. A.; Romine, M. F.; Zachara, J. M.; Fredrickson, J. K., c-Type cytochrome-dependent formation of U(IV) nanoparticles by Shewanella oneidensis. PLoS Biol 2006, 4, (9), e268.
118. Korenevsky, A.; Beveridge, T. J., The surface physicochemistry and adhesiveness of Shewanella are affected by their surface polysaccharides. Microbiology (Reading) 2007, 153, (Pt 6), 1872-1883.
119. Kouzuma, A.; Meng, X. Y.; Kimura, N.; Hashimoto, K.; Watanabe, K., Disruption of the putative cell surface polysaccharide biosynthesis gene SO3177 in Shewanella oneidensis MR-1 enhances adhesion to electrodes and current generation in microbial fuel cells. Appl Environ Microbiol 2010, 76, (13), 4151-7.
120. Cao, B.; Ahmed, B.; Kennedy, D. W.; Wang, Z.; Shi, L.; Marshall, M. J.; Fredrickson, J. K.; Isern, N. G.; Majors, P. D.; Beyenal, H., Contribution of extracellular polymeric substances from Shewanella sp. HRCR-1 biofilms to U(VI) immobilization. Environ Sci Technol 2011, 45, (13), 5483-90.
121. Cao, B.; Shi, L.; Brown, R. N.; Xiong, Y.; Fredrickson, J. K.; Romine, M. F.; Marshall, M. J.; Lipton, M. S.; Beyenal, H., Extracellular polymeric substances from Shewanella sp. HRCR-1 biofilms: characterization by infrared spectroscopy and proteomics. Environ Microbiol 2011, 13, (4), 1018-31.
122. Zhang, Z.; Si, R.; Lv, J.; Ji, Y.; Chen, W.; Guan, W.; Cui, Y.; Zhang, T., Effects of Extracellular Polymeric Substances on the Formation and Methylation of Mercury Sulfide Nanoparticles. Environ Sci Technol 2020, 54, (13), 8061-8071.
123. Reardon, C. L.; Dohnalkova, A. C.; Nachimuthu, P.; Kennedy, D. W.; Saffarini, D. A.; Arey, B. W.; Shi, L.; Wang, Z.; Moore, D.; McLean, J. S.; Moyles, D.; Marshall, M. J.; Zachara, J. M.; Fredrickson, J. K.; Beliaev, A. S., Role of outer-membrane cytochromes MtrC and OmcA in the biomineralization of ferrihydrite by Shewanella oneidensis MR-1. Geobiology 2010, 8, (1), 56-68.
124. Jing, X.; Wu, Y.; Shi, L.; Peacock, C. L.; Ashry, N. M.; Gao, C.; Huang, Q.; Cai, P.; Liu, S.-J., Outer Membrane c-Type Cytochromes OmcA and MtrC Play Distinct Roles in Enhancing the Attachment of Shewanella oneidensis MR-1 Cells to Goethite. Applied and Environmental Microbiology 2020, 86, (23), e01941-20.
125. Zheng, W.; Lin, H.; Mann, B. F.; Liang, L.; Gu, B., Oxidation of dissolved elemental mercury by thiol compounds under anoxic conditions. Environ Sci Technol 2013, 47, (22), 12827-34.
126. Belkin, A.; Bezryadin, A.; Hendren, L.; Hubler, A., Recovery of Alumina Nanocapacitors after High Voltage Breakdown. Sci Rep 2017, 7, (1), 932.
127. Stookey, L. L., Ferrozine---a new spectrophotometric reagent for iron. Analytical Chemistry 1970, 42, (7), 779-781.
128. Schwertmann, U., and R.M. Cornell, “Iron oxides in the laboratory: preparation and characterization”, WILEY-VCH Verlag GmbH 2000
129. Kotloski, N. J., Export and role of flavin electron shuttles in Shewanella oneidensis Strain MR-1. University of Minnesota 2014
130. 廖炳傑, 2014. 異化性鐵還原狀態下非生物性汞氧化還原 作用及其對地下水水質之影響. 中央大學環境工程研究所學位論文
131. 王詩芸, 2016. 吸附汞之三價鐵礦於生物還原溶解過程中元素汞的生成與移動潛勢;Reductive dissolution of mercury-bearing iron(III) (oxyhydr)oxides by dissimilatory iron-reducing bacteria and the potential to mobilize mercury in its elemental form. 中央大學環境工程研究所學位論文
132. 陳詠菁, 2018. Shewanella oneidensis MR-1 於水相均質系統中還原 二價汞之機制探討 Endogenous flavins dominate extracellular reduction of Hg(II) to Hg(0) by Shewanella oneidensis MR-1 in aqueous phase. 中央大學環境工程研究所學位論文 |