類組:物理類 科目:應用數學(2001)

共_____ 頁 第__/__ 頁

皆為計算題,請詳列計算過程,無計算過程者不予計分 左側方格內數字為各小題配分

1. [20 points] Second-Order Linear ODE

Consider the differential equation

$$\frac{d^2x}{dt^2} + 2a\frac{dx}{dt} + b^2x = 0,$$

where x(t) is a real function, and both a and b are positive constants. Find the general solutions of this differential equation for the following three cases:

5

(a) a > b

5

(b) a = b

10

(c) a < b. Use the constant $w = \sqrt{b^2 - a^2}$ to express the derivation and solution for this case wherever applicable.

2. [20 points] Vector Analysis

(a) Given a vector field $\vec{H} = 2xy\hat{x} + (x^2 + z^2)\hat{y} + 2yz\hat{z}$. (Here \hat{x} , \hat{y} and \hat{z} are unit vectors in the directions of the x, y, and z axes, respectively).

5

i. Find the divergence of \vec{H} .

7

ii. Evaluate the flux of \vec{H} over the surface bounded by the rectangular region defined by $0 \le x \le 1, \ 1 \le y \le 2, \ -1 \le z \le 3$.

8

(b) Given a vector function $\vec{E} = y\hat{x} + x\hat{y}$. Evaluate the integral $\int_C \vec{E} \cdot d\vec{l}$ from (3,0,0) to $\frac{3}{\sqrt{2}}(1,1,0)$ along the circle of radius r=3.

3. [15 points] Matrix Diagonalization

Consider the matrix

$$A = \begin{pmatrix} 5 & -2 \\ -2 & 2 \end{pmatrix}.$$

5

(a) Find the eigenvalues of A.

5

(b) Find the normalized eigenvectors of A.

5

(c) Work out the matrix Q such that $Q^{-1}AQ$ is diagonal.

4. [25 points] Gaussian Integrals

5

(a) Show that

$$\left(\int_{-\infty}^{\infty} dx \, e^{-ax^2}\right)^2 = \frac{\pi}{a}$$

10

(b) Evaluate the integral

$$\int_{-\infty}^{\infty} dx \int_{-\infty}^{\infty} dy \, e^{-(ax^2 + 2bxy + cy^2)} \,,$$

expressed in terms of the eigenvalues λ and ξ of the matrix $\begin{pmatrix} a & b \\ b & c \end{pmatrix}$.

類組: 物理類 科目: 應用數學(2001)

共ン頁第ン頁

(c) As a specific case in the extension of the analysis in (b), evaluate the integral

$$\int_{-\infty}^{\infty} dx_1 \cdots \int_{-\infty}^{\infty} dx_N \, e^{-\sum_{j=1}^{N} (2x_j^2 - 2x_j x_{j+1})} \,,$$

for $N \gg 1$, where we denote $x_{N+1} \equiv x_1$.

Note that the integrand of the integral corresponds to the Boltzmann weight for the potential energy of an N-bead chain in one dimension subject to the periodic boundary condition, where each bead is connected by a spring with each of its two neighbors. Here, we assume N is so large that $\frac{1}{(2N+1)}\sum_{j=-N}^{N} \exp(i\frac{(k-l)2\pi}{N}j) \approx \delta_{kl} \text{ is a good approximation, for integers } 1 \leq k, l \leq N.$

5. [20 points] One-Dimensional Poisson Equation

(a) Solve the boundary value problem

$$\frac{d^2G(x,x')}{dx^2} = -\delta(x-x')$$
 on the interval $(0,1)$, $G(x=0,x') = G(x=1,x') = 0$,

where $\delta(x-x')$ is the Dirac delta function at a point x=x', between 0 and 1 (0 < x' < 1). The solution is the Green's function for the one-dimensional Poisson equation satisfying the given boundary conditions.

(b) Solve the boundary value problem

$$\frac{d^2\phi}{dx^2} = -x^2 \quad \text{on } (0,1),$$

$$\phi(0) = \phi(1) = 0,$$

using the Green's function obtained in (a).