國立中央大學 113 學年度碩士班考試入學試題

所別: 統計研究所 碩士班 不分組(一般生)

第<u></u> 上頁 / 共<u>ン</u>頁

統計研究所 碩士班 不分組(在職生)

科目: 數理統計

*本科考試可使用計算器,廠牌、功能不拘

計算題應詳列計算過程,無計算過程者不予計分

- 1. Let $f(x,y) = ce^{-y}$, where c > 0 and $0 < x < y < \infty$, be the joint probability density function (pdf) of random variables X and Y.
 - (a) Find the value of c. (5%)
 - (b) Calculate P(X + Y > 1). (5%)
 - (c) Compute the conditional variance Var(Y|X=x), compare it with Var(Y), and explain your finding. (10%)
- 2. Let (X_1, \ldots, X_n) be a random sample from a distribution having pdf

$$f(x) = \frac{1}{\theta}e^{-(x-\theta)/\theta}, \ x > \theta,$$

where $\theta > 0$ is an unknown parameter.

- (a) Find a statistic that is minimal sufficient for θ . (10%)
- (b) Show whether the minimal sufficient statistic in (a) is complete. (10%)
- 3. Let (X_1, \ldots, X_n) be a random sample from $N(\mu, \sigma^2)$ with an unknown $\mu \in \mathcal{R}$ and a known $\sigma^2 > 0$.
 - (a) Find the uniformly minimum-variance unbiased estimator (UMVUE) of $e^{t\mu}$ with a fixed $t \neq 0$. (10%)
 - (b) Show that the variance of the UMVUE is larger than the Cramér-Rao lower bound. (10%)
- 4. Let $(X_1, ..., X_n)$ be a random sample from a distribution having pdf $f_{\theta,j}$, where $\theta > 0$, j = 1, 2, $f_{\theta,1}(x) = (\sqrt{2\pi}\theta)^{-1} \exp\{-x^2/(2\theta^2)\}$, and $f_{\theta,2}(x) = (2\theta)^{-1} \exp\{-|x|/\theta\}$, $x \in \mathcal{R}$.
 - (a) Find a maximum likelihood estimator (MLE) of (θ, j) . (10%)
 - (b) Show whether the MLE of j in (a) is consistent. (10%)

注:背面有試題

國立中央大學 113 學年度碩士班考試入學試題

所別: 統計研究所 碩士班 不分組(一般生)

第<u>ン</u>頁 / 共<u>/</u>頁

統計研究所 碩士班 不分組(在職生)

科目: 數理統計

*本科考試可使用計算器,廠牌、功能不拘

- 5. Let (X_1, \ldots, X_n) be a random sample from $N(\theta, \sigma^2)$, where $\theta \in \mathcal{R}$ and $\sigma^2 > 0$. We are interested in testing $H_0: \theta = \theta_0$ versus $H_1: \theta \neq \theta_0$ with an unknown σ^2 .
 - (a) Show that the test rejecting H_0 when

$$|\overline{X} - \theta_0| > t_{n-1,\alpha/2} \sqrt{S^2/n}$$

is a likelihood ratio test (LRT) of size α , where \overline{X} and S^2 are the sample mean and sample variance of the random sample, respectively, and $t_{n,p}$ denotes the (1-p)th quantile of a t distribution with n degrees of freedom. (15%)

(b) Find a $1 - \alpha$ confidence interval for θ based on (a). (5%)

注:背面有試題