博碩士論文 110322059 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:3.141.164.253
姓名 曾朝語(Chao-Yu Tseng)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 浮式離岸風機基座之流固耦合模擬
(Fluid/Solid Coupled Simulation of the Sub-structure of Floating Offshore Wind Turbines)
相關論文
★ 定剪力流中二維平板尾流之風洞實驗★ 以大渦紊流模式模擬不同流況對二維方柱尾流之影響
★ 矩形建築物高寬比對其周遭風場影響之研究★ 台灣地區風速機率分佈之研究
★ 邊界層中雙棟並排矩形建築之表面風壓量測★ 排放角度與邊牆效應對浮昇射流影響之實驗研究
★ 低層建築物表面風壓之實驗研究★ 圓柱體形建築物表面風壓之實驗研究
★ 最大熵值理論在紊流剪力流上之應用★ 應用遺傳演算法探討海洋放流管之優化方案
★ 均勻流中圓柱體形建築物表面風壓之風洞實驗★ 大氣與森林之間紊流流場之風洞實驗
★ 以歐氏-拉氏法模擬煙流粒子在建築物尾流區中的擴散★ 以HHT分析法研究陣風風場中建築物之表面風壓
★ 以HHT時頻分析法研究陣風風場中物體所受之風力★ 風吹落物之軌跡預測模式與實驗研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來,全球各國都在開發海上風能,海上風力發電機可分為固定式基樁風機和浮式風機。本研究使用水槽實驗和流體/固體耦合數值模型來研究固定基樁風機與浮式風機Spar型基座在孤立波中的運動,利用三維大渦模式模擬圓柱體形基座受孤立波所受的波浪力。浮式基樁則以下重上輕的圓柱體來模擬,在靜止水中浮體簡單振盪試驗,發現數值模式的阻尼比 = 0.70與實驗結果最為接近,平均振盪週期與理論值的誤差為2.0%。在孤立波中,浮動圓柱所受的波浪力與位移與波高成線性正比,且大渦模式模擬得之波浪力十分接近由位移間接計算得之外力。此外,本研究探討不同波高對固定圓柱的波浪力,模擬結果發現:細長圓柱體的最大波浪荷載可以用一無因次阻力係數來計算,而波長的延長可使得作用在圓柱上的波浪荷載持續時間更長,儘管力的大小有所減小。並在相同流況下,比較固定圓柱和浮動圓柱所受的波浪力,發現固定圓柱所受的水平力遠大於浮動圓柱,這是由於浮動圓柱將大部分的波浪力轉換為推動圓柱之動能,導致受力減少。
摘要(英) This study incorporates a large eddy simulation (LES) model and a two-way coupled fluid/solid algorithm to investigate the wave loads on a fixed and a floating circular cylinder in solitary waves. The experimental results of the wave flume are used to validate the numerical simulations. The following findings are summarized based on the simulation results. In a simple oscillation test of a floating cylinder in stationary water, there is about 2.0% difference between the simulated and observed oscillation periods when the damping ratio is α = 0.70. In solitary waves, the wave loads and maximum displacements of the floating cylinder are linearly proportional to the wave height. The simulated wave loads obtained from the LES model closely match the values computed from the observed displacements of the floating cylinder. This study also examines the wave loads of a fixed cylinder under different wave heights and water depths. The simulation results indicate that the maximum wave load on a slender cylindrical body can be calculated using a dimensionless drag coefficient, and increasing the wavelength extends the duration of the wave impact on the cylinder. Furthermore, the wave loads experienced by a fixed cylinder are significantly larger than that on a floating cylinder under the same wave conditions. This is attributed to the fact that the floating cylinder converts most of the wave load into the kinetic energy of the floating cylinder.
關鍵字(中) ★ 流固耦合
★ 波浪荷載
★ 大渦模擬
★ 離岸風機
★ 浮式風機
關鍵字(英) ★ Fluid/Structure Interaction
★ Wave load
★ LES model
★ Off-shore Turbine
★ Floating Structure
論文目次 Abstract II
Contents III
Figure captions IV
Table captions VIII
Chapter 1 Introduction 1
Chapter 2 Numerical Model 4
Chapter 3 Model Validation 11
3.1 Vertical oscillation 11
3.2 Floating Cylinder 12
Chapter 4 Results and Discussion 16
4.1 Fixed Cylinder 16
4.2 Floating Cylinder 18
4.3 Wind Effect 19
Chapter 5 Conclusions 21
References 22
Figure 24
Table 66
參考文獻 [1] Smagorinsky, J., “General circulation experiments with the primitive equations: I. The basic experiment,” Mon. Weather Review, 91, 99-164 (1963).
[2] Cundall, P. A. and Strack, O.D.L. “A discrete numerical model for granular assemblies”. Géotechnique. 29 (1): 47-65. doi:10.1680/geot.1979.29.1.47 (1979).
[3] Hirt, C. W. and Nichols, B. D., “Volume of fluid (VOF) method for the dynamics of free boundaries,” J. Comput. Phys. 39(1), 201-225 (1981).
[4] G.T. Yates, K.H. Wang “Solitary Wave Scattering By a Vertical Cylinder: Experimental Study” The Fourth International Offshore and Polar Engineering Conference, Osaka, Japan, April (1994).
[5] DeLong, M. “Two examples of the impact of partitioning with Chaco and Metis on the convergence of additive-Schwarz preconditioned FGMRES.” Technical Report LA-UR-97-4181, Los Alamos National Laboratory, New Mexico, U.S.A. (1997).
[6] Ferziger, J. H., and Peric, M. Computational Methods for Fluid Dynamics, http://scitation.aip.org/content/aip/magazine/physicstoday/article/50/3/10.1063/1.881751 (2002).
[7] Gullbrand, J., Chow, F. K. The effect of numerical errors and turbulence models in large-eddy simulations of channel flow, with and without explicit filtering. J. Fluid Mech. Vol. 495, 322-341 (2003).
[8] Mo W., Irschik K., Oumeraci H. and Liu, P.L.-F. “A 3D numerical model for computing non-breaking wave forces on slender piles” Journal of Engineering Mathematics, Vol.58, 19-30 doi.org/10.1007/s10665-006-9094-6 (2007).
[9] Utsunomiya T, Sato T, Matsukuma H, Yago K. “Experimental validation for motion of a SPAR-type floating offshore wind turbine using 1/22.5 scale model”, Proceedings of the ASME 28th International Conference on Ocean, Offshore and Arctic Engineering, Hawaii 2009, No.79695, 951-959. doi.org/10.1115/OMAE2009-79695 (2009)
[10] Wu, T.-R., Chu, C.-R., Huang, C.-J., Wang, C.-Y., Chien, S.-Y., and Chen, M.-Z., “A two-way coupled simulation of moving solids in free-surface flows,” Computers and Fluids, 100, 347-355. doi.org/10.1016/.compfluid.2014.05.010 (2014)
[11] Zhou, B. Z., Wu, G.X. and Meng, Q.C. “Interactions of fully nonlinear solitary wave with a freely floating vertical cylinder,” Engineering Analysis with Boundary Elements Vol.69, 119-131. doi.org/10.1016/j.enganabound.2016.05.004 (2016)
[12] Subbulakshmi, A., Sundaravadivelu, R. “Heave damping of spar platform for offshore wind turbine with heave plate”. Ocean Engineering; 121:24-36. doi: 10.1016/j.oceaneng.2016.05.009 (2016).
[13] Ha M., Cheong C. “Pitch motion mitigation of spar-type floating substructure for offshore wind turbine using multilayer tuned liquid damper,” Ocean Eng.; 116: 157-164. doi.org/10.1016/j.oceaneng.2016.02.036 (2016).
[14] Chu C-R, Lin Y-A, Wu T-R, and Wang C-Y. Hydrodynamic force of circular cylinder close to the water surface. Computers and Fluids; 171:154-165. doi.org/10.1016/ compfluid.2018.05.032 (2018).
[15] Chu C-R, Wu Y-R, Wang C-Y, and Wu T-R. Slosh-induced hydrodynamic force in a water tank with multiple baffles. Ocean Eng.; 167: 282-292. doi.org/10.1016/j.oceaneng.2018.08.049 (2018).
[16] Chu C-R, Wu T-R, Tu Y-F, Hu S-K, Chiu C-L. Interaction of two free- falling spheres in water. Physics of Fluids ; 32 (3): 033304. doi.org/10.1063/1.5130467 (2020).
[17] Otter, A. Murphy, J. Pakrashi, V. Robertson, A., Desmond, C. A review of modeling techniques for floating offshore wind turbines, Wind Energy, 25 (5),831-857. doi.org/10.1002/we.2701 (2021)
[18] Tsai, I.-C., Li, S.-Y., Hsiao, S.-C. and Hsiao Y., Numerical simulation of 2-D fluid-structure interaction with a tightly coupled solver and establishment of the mooring model, Intern. J. of Naval Architecture and Ocean Eng. Vol.13, 433-449. doi.org/10.1016/j.ijnaoe.2021.06.002 (2021).
[19] Chen C., Ma Y., Fan. T. “Review of model experimental methods focusing on aerodynamic simulation of floating offshore wind turbines” Renewable and Sustainable Energy Reviews;157: 112036. doi.org/10.1016/j.rser.2021.112036 (2022)
[20] Chu, C.-R., Huynh, L.E. and Wu, T.-R. Large eddy simulation of the wave loads on submerged rectangular decks. Applied Ocean Research, Vol.120, 103051. doi.org/10.1016/j.apor.2022.103051 (2022).
[21] Yang R-Y, Wang C.-W., Huang C.-C., Chung C.-H., Chen C.-P., Huang C.-J. “The 1:20 scaled hydraulic model test and field experiment of barge-type floating offshore wind turbine system” Ocean Eng. doi.org/10.1016/j.oceaneng.2021.110486 (2022).
指導教授 朱佳仁 審核日期 2023-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明