博碩士論文 110324067 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:37 、訪客IP:18.117.111.63
姓名 莫仁云(Jen-Yun Mo)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 通過阻抗和溶解度曲線確定鹽酸伊立替康三水合物注射液過飽和度的穩定性,以最大程度地減少碳足跡
(Stability of Supersaturation in Irinotecan Hydrochloride Trihydrate Injection Concentrate by Frustration and Solubility Curve for Maximum Carbon Footprint Reduction)
相關論文
★ 藉由結晶製程製備高水溶性化合物: 十二烷基硫酸鈉(SDS) 以及控制其水合物★ 唑來膦酸三水合物的初始溶劑篩選和在羥基磷灰石之表面吸附行為
★ The Effect of Upstream Performance of Biocatalytic Reaction on Downstream Purification Feasibility in Glycine Production Using Immobilized Aminoacylase★ 乙烯氨酚的結晶研究:溶劑.界面與固態分散的篩選
★ 外消旋(R/S)-(+/-)伊普的初始溶劑篩選及伊普鈉鹽結晶動力學★ 外消旋(R,S)-(±)-伊普鹽二水化合物的介晶質,成核與結晶成長
★ 卡爾指數與溶解速率常數的交叉行為關係與混合率的應用:批次對乙醯氨基酚的研究★ 蔗糖的同質異構型構
★ 磺胺噻唑的初始/雞尾酒混合溶劑式篩選和利用多型晶體的耕作方式篩選★ 關於量產路徑之初步鹽類篩選程序:以外消旋布洛芬之兩個不同鹽類為例
★ 卡馬西平的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造★ 西咪替丁的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造
★ 利用超音波結晶法降低小分子有機半導體分子的昇華點 以及藉由蛋殼膜增進AlQ3奈米管的光激發螢光強度★ 仿效生物膽結石的形成:在逐漸演化的(牛磺膽酸鈉-卵磷質-膽固醇)複雜脂質系統中結晶碳酸鈣
★ 蔗糖的多構形多形晶體與乙醯氨酚共溶劑篩選★ 共晶化合物的篩選、製備、鑑定、分子辨認及應用: 胞嘧啶和二羧酸的研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-8-31以後開放)
摘要(中) 鹽酸伊立替康三水合物作為濃縮注射液在 25 ºC 下表現出奇特的穩定性,過飽和度 為 20 mg/mL。這種晶體生長前的現象是由鹽酸伊立替康三水合物分子自組裝成大小約 為 1 nm 的二聚體引起的阻抗並隨後聚集形成大小約為 100 nm 的液體狀團簇。 非線性 范特霍夫圖驗證了鹽酸伊立替康三水合物溶液中結構組織的存在,而動態光散射分析 證實了濃度高於 10 μM 時二聚體聚集體的形成。 鹽酸伊立替康三水合物的晶型 b 已通 過粉末 X 射線衍射確定為鹽酸伊立替康三水合物的穩定形式,使用單晶和高溫 X 射線 衍射技術的進一步研究揭示了其作為通道水合物的特性。 熱重分析表明脫水發生在大 約 90 ºC。 將鹽酸伊立替康三水合物保持在 25 ºC 或以下以及 30 至 60 % 的相對濕度範 圍內以保持其化學計量至關重要,如動態蒸汽吸附實驗所證明的那樣。 以新發現的 30 mg/mL 作為目標是有望用於更濃縮的注射劑配方,經計算後發現當以 30 mg/mL 作為運 輸以及儲存的濃縮注射液時,在空運、卡車、鐵路和海運相關的碳足跡分別為 62.27、 11.26、1.16 和 2.21 公斤 CO2/公里已經比原來濃度 20 mg/mL 的少了約 33.4 %。 另外如 遵循且應用溶解度曲線在加熱過程上,年銷售濃縮注射液可以有效減少 CO2 排放量 1603.86 公斤。
摘要(英) Irinotecan HCl・3H2O demonstrates surprising stability as a concentrated injection at 25 ºC, with a supersaturation level of 20 mg/mL. This pre-nucleation phenomenon is a frustration caused by the self-assembly of irinotecan HCl・3H2O molecules into dimers with a size of about 1 nm and subsequent aggregation to form liquid-like clusters with a size of about 100 nm. Nonlinear Van′t Hoff plots verified the presence of the structural organization in irinotecan HCl ・3H2O solutions, while dynamic light scattering analysis was employed to confirm the formation of dimer aggregates at concentrations above 10 μM. Irinotecan HCl・3H2O Form b has been identified as the stable form by powder X-ray diffraction, and further studies using single crystal and high temperature X-ray diffraction techniques revealed its properties as a channel hydrate. Thermogravimetric analysis showed that dehydration occurred at approximately 90 ºC. It is critical to maintain irinotecan HCl・3H2O at or below 25 ºC and within a relative humidity range of 30 to 60% to maintain its stoichiometry, as demonstrated by the dynamic vapor sorption experiments. The newly discovered concentration of 30 mg/mL holds promising potential for use in more concentrated formulations of injectable drugs, then when combined with the solubility curve as an operational condition during the heating process, it enables effective energy conservation and carbon reduction. Calculations indicate that when transported as a commercial product at a concentration of 30 mg/mL, the carbon footprints associated with air, truck, rail, and sea transport are 62.27, 11.26, 1.16, and 2.21 kg CO2/km, III respectively, representing a reduction of approximately 33.4 % compared to the initial 20 mg/mL concentration. Furthermore, by following the dissolution curve as a guide during the heating process, the annual sales of concentrated injection solution can effectively reduce CO2 emissions by 1603.86 kg.
關鍵字(中) ★ 鹽酸伊立替康三水合物
★ 碳足跡
關鍵字(英) ★ Irinotecan Hydrochloride Trihydrate
★ Carbon Footprint
論文目次 摘要 I
Abstract II
Acknowledgment IV
Table of Contents VI
List of Figures IX
List of Tables XIV
Chapter 1 Introduction 1
1.1 Brief Introduction of Pharmaceutical Industry 1
1.2 Injection drug of Irinotecan HCl・3H2O 3
Chapter 2 Experimental Sections 11
2.1 Materials 11
2.1.1 Chemicals 11
2.1.2 Solvents 12
2.2 Experimental Methods 13
2.2.1 Initial Solvent Screening and Solubility Measurement 13
2.2.2 Recrystallization of Irinotecan HCl・3H2O 14
2.2.3 Stability of Irinotecan HCl・3H2O 15
2.3 Analytical Instruments 19
2.3.1 Optical Microscopy (OM) 19
2.3.2 Hot-Stage & Polarizing Optical Microscopy (HSOM) 19
2.3.3 Powder X-ray Diffraction (PXRD) 20
2.3.4 High Temperature X-ray Diffractometer (HT-PXRD) 20
2.3.5 Fourier Transform Infrared (FT-IR) Spectroscopy 20
2.3.6 Thermal Gravimetric Analysis (TGA) 21
2.3.7 Differential Scanning Calorimetry (DSC) 21
2.3.8 Nuclear Magnetic Resonance (NMR) 22
2.3.9 High Performance Liquid Chromatographic analyzer (HPLC) 22
2.3.10 Dynamic vapor sorption (DVS) 23
2.3.11 Dynamic Light Scattering (DLS) 24
Chapter 3 Results and Discussion 25
3.1 Use Test of Irinotecan HCl・3H2O 25
3.2 Initial Solvent Screening 31
3.3 Solubility Measurements 33
3.4 Stability Test for Irinotecan HCl・3H2O 34
3.4.1 Determination on Temperature 38
3.4.2 Storage Time without Crystallization 44
3.4.3 Determination on Humidity 56
3.4.4 Determination on NaCl wt % 62
3.5 Recrystallization of Irinotecan HCl・3H2O 64
3.5.1 Recrystallization by Cooling and Cooling-Antisolvent 64
3.5.2 Processing Operation of Recrystallization 65
Chapter 4 Conclusions and Future Works 67
4.1 Conclusions 67
4.2 Future Works 68
Appendices 69
References 78
參考文獻 World Economic Forum. https://www.weforum.org/agenda/2022/11/pharmaceutical-industry-reduce-climate-impact/ (accessed 2023-05-15).
CPI. https://www.uk-cpi.com/blog/the-future-of-the-pharma-industry-can-be-sustainable (accessed 2023-05-15).
J. Wey. Health Sector Emits 4.4% of Global Greenhouse Gas Emissions, Report Finds, S&P Global Market Intelligence.
https://www.spglobal.com/marketintelligence/en/news-insights/trending/x-14hy45lMgBoeKdr7b7Cw2 (accessed 2023-05-23).
Eckelman, M. J.; Huang, K.; Lagasse, R.; Senay, E.; Dubrow, R.; Sherman, J. D. Health Care Pollution and Public Health Damage in The United States: An Update: Study Examines Health Care Pollution and Public Health Damage in the United States. Health Aff. 2020, 39 (12), 2071-2079.
A. Padbidri. How can the Global Healthcare and Pharmaceutical Industry Reach Net Zero? South Pole April 17, 2023. https://www.southpole.com/blog/how-can-global-healthcare-and-pharmaceutical-industry-reach-net-zero (accessed 2023-05-23).
Vinoth, P.; Obeidat, A.; Al-Kindi, S.; Jain, V.; Jabbari-Zadeh, F.; Lui, M.; Al-Qaoud, A.; Khetan, A. Toward a Net-Zero Health Care System: Actions to Reduce Greenhouse Gas Emissions. NEJM Catalyst Innovations in Care Delivery 2022, 3 (6).
T. Eytan. Just Read: Carbon Footprint of the Global Pharmaceutical Industry –Significantly Worse than the Automotive Industry. Ted Eytan, MD MS MPH Washington, DC, USA. https://www.tedeytan.com/2019/09/05/34859 (accessed 2023-05-24).
Belkhir, L.; Elmeligi, A. Carbon Footprint of the Global Pharmaceutical Industry and Relative Impact of Its Major Players. J. Clean. Prod. 2019, 214, 185-194.
PwC. 生技醫藥產業加速淨零佈局綠電供應鏈全球趨勢。BIO Insights, 2022. https://www.pwc.tw/zh/publications/bio-insights/pdf/bio-insights-2205.pdf (accessed 2023-05-10).
Lotfi B. Big Pharma Emits More Greenhouse Gases Than the Automotive Industry. The Conversation. May 27, 2019, updated May 27, 2019.
https://theconversation.com/big-pharma-emits-more-greenhouse-gases-than-the-automotive-industry-115285 (accessed 2023-05-15).
Hattori, Y.; Shi, L.; Ding, W.; Koga, K.; Kawano, K.; Hakoshima, M.; Maitani, Y. Novel Irinotecan-Loaded Liposome Using Phytic Aid with High Therapeutic Efficacy for Colon Tumors. J. Control. Release. 2009, 136 (1), 30-37.
Anilanmert, B.; Ozdemir, F. A.; Erdinc, N.; Pekin, M. Potentiometric Determination of the Dissociation Constants of Epirubicin HCl and Irinotecan HCl. Mendeleev Commun. 2006, 16 (2), 97-98.
Sanli, N.; Sanli, S.; Alsancak, G. l. Determination of Dissociation Constants of Folinic Acid (Leucovorin), 5-Fluorouracil, and Irinotecan in Hydro-Organic Media by a Spectrophotometric Method. J. Chem. Eng. Data 2010, 55 (8), 2695-2699.
van Hengel, A. J.; Harkes, M. P.; Wichers, H. J.; Hesselink, P. G.; Buitelaar, R. M. Characterization of Callus Formation and Camptothecin Production by Cell Lines of Camptotheca Acuminata. Plant Cell, Tissue Organ Cult. 1992, 28, 11-18.
Kepler, J.; Wani, M.; McNaull, J.; Wall, M. E.; Levine, S. G. Plant Antitumor Agents. IV. An Approach Toward the Synthesis of Camptothecin. J. Org. Chem. 1969, 34 (12), 3853-3858.
Zhang, J.; Yu, Y.; Liu, D.; Liu, Z. Extraction and Composition of Three Naturally Occurring Anti-Cancer Alkaloids in Camptotheca Acuminata Seed and Leaf Extracts. Phytomedicine 2007, 14 (1), 50-56.
MacDonald, T. L.; Labroli, M. A.; Tepe, J. J. DNA Topoisomerase Inhibitors. 1999, 593-614.
Cersosimo, R. J. Irinotecan: A New Antineoplastic Agent for The Management of Colorectal Cancer. Ann. Pharmacother. 1998, 32 (12), 1324-1333.
Gao, J.; Logan, K. A.; Nesbitt, H.; Callan, B.; McKaig, T.; Taylor, M.; Love, M.; McHale, A. P.; Griffith, D. M.; Callan, J. F. A Single Microbubble Formulation Carrying 5-Fluorouridine, Irinotecan and Oxaliplatin to Enable FOLFIRINOX Treatment of Pancreatic and Colon Cancer Using Ultrasound Targeted Microbubble Destruction. J. Control. Release 2021, 338, 358-366.
Jeong, D.; Pal, T.; Kim, H.; Kim, T. W.; Biswas, G.; Lee, D.; Singh, T.; Murthy, A. S.; Kim, W.; Kim, K. T. Preparation of a Camptothecin‐Conjugated Molecular Carrier and Its Cytotoxic Effect Toward Human Colorectal Carcinoma in Vitro. Bull. Korean Chem. Soc. 2018, 39 (12), 1385-1393.
Hageman, M.J., Morozowich, W. Case Study: Irinotecan (CPT-11), A Water-soluble Prodrug of SN-38. In: Stella, V.J., Borchardt, R.T., Hageman, M.J., Oliyai, R., Maag, H., Tilley, J.W., Eds.; Prodrugs. Biotechnology: Pharmaceutical Aspects, Vol V; Springer, New York, NY, 2007; pp 569-579. DOI: 10.1007/978-0-387-49785-3_44
Fuchs, C.; Mitchell, E. P.; Hoff, P. M. Irinotecan in The Treatment of Colorectal Cancer. Cancer Treat. Rev. 2006, 32 (7), 491-503.
Bailly, C. Irinotecan: 25 Years of Cancer Treatment. Pharmacol. Res. 2019, 148, 104398.

Tay-Teo, K.; Ilbawi, A.; Hill, S. R. Comparison of Sales Income and Research and Development Costs for FDA-Approved Cancer Drugs Sold by Originator Drug Companies. JAMA Netw. Open 2019, 2 (1), e186875-e186875.
Ainurofiq, A.; Putro, D. S.; Ramadhani, D. A.; Putra, G. M.; Santo, L. D. C. D. E. A Review on Solubility Enhancement Methods for Poorly Water-Soluble Drugs. J. Rep. Pharm. Sci.
2021, 10 (1), 137.
Wang, B.; Hu, L.; Siahaan, T. J. Drug delivery: principles and applications; John Wiley & Sons, 2016.
Serajuddin, A. T. Salt Formation to Improve Drug Solubility. Adv. Drug Deliv. Rev. 2007, 59 (7), 603-616.
Gao, J.; Nesbitt, H.; Logan, K.; Burnett, K.; White, B.; Jack, I. G.; Taylor, M. A.; Love, M.; Callan, B.; McHale, A. P. An Ultrasound Responsive Microbubble-Liposome Conjugate for Targeted Irinotecan-Oxaliplatin Treatment of Pancreatic Cancer. Eur. J. Pharm. Biopharm. 2020, 157, 233-240.
Gupta, D.; Bhatia, D.; Dave, V.; Sutariya, V.; Varghese Gupta, S. Salts of Therapeutic Agents: Chemical, Physicochemical, and Biological Considerations. Molecules 2018, 23 (7), 1719.
Frampton, J. E. Liposomal Irinotecan: A Review in Metastatic Pancreatic Adenocarcinoma. Drugs 2020, 80, 1007-1018.
Brittain, H. G. Polymorphism in Pharmaceutical Solids. Drugs and the pharmaceutical sciences 1999, 95, 183-226.
Saifee, M.; Inamda, N.; Dhamecha, D.; Rathi, A. Drug Polymorphism: A Review. Int. J. Health Res. 2009, 2 (4).
Yu, L. X.; Furness, M. S.; Raw, A.; Outlaw, K. P. W.; Nashed, N. E.; Ramos, E.; Miller, S. P.; Adams, R. C.; Fang, F.; Patel, R. M. Scientific Considerations of Pharmaceutical Solid Polymorphism in Abbreviated New Drug Applications. Pharm. Res. 2003, 20, 531-536.
Rosenstein, S.; Lamy, P. P. Some Aspects of Polymorphism. Am. J. Health Syst. Pharm. 1969, 26 (10), 598-601.
Chemburkar, S. R.; Bauer, J.; Deming, K.; Spiwek, H.; Patel, K.; Morris, J.; Henry, R.; Spanton, S.; Dziki, W.; Porter, W. Dealing with The Impact of Ritonavir Polymorphs on The Late Stages of Bulk Drug Process Development. Org. Process Res. Dev. 2000, 4 (5), 413-417.
Wang, C.; Rosbottom, I.; Turner, T. D.; Laing, S.; Maloney, A. G.; Sheikh, A. Y.; Docherty, R.; Yin, Q.; Roberts, K. J. Molecular, Solid-State and Surface Structures of The Conformational Polymorphic Forms of Ritonavir in Relation to Their Physicochemical Properties. Pharm. Res. 2021, 38 (6), 971-990.
Forino, R.; Barbugian, N.; Zampieri, M.; Tomasi, A. Crystalline Polymorphic Form of Irinotecan Hydrochloride. US 20060046993 A1, March 2, 2006.
Forino, R.; Barbugian, N.; Zampieri, M.; Tomasi, A. Crystalline Polymorphic Form of Irinotecan Hydrochloride. EP 1487840 B1, February 26, 2003.
Chen, S.-P.; Harn, P.-J. Crystal Forms of Irinotecan Hydrochloride. US 7435818 B2, October 14, 2008.
Parthasaradhi Reddy, B.; Rathnakar Reddy, K.; Muralidhara Reddy, D.; Raji Reddy, R.; Ramachandra, P.; Vamsi Krishna, B. Novel Polymorph of Irinotecan Hydrochloride. WO 2012007952 A1, January 19, 2012.
Pozzi, G.; Ghetti, P.; Balsamo, G.; Negri, E.; Alpegiani, M.; Bedeschi, A.; Pizzocaro, R. Crystalline Irinotecan Hydrochloride and Methods for the Preparation Thereof. EP 2189461 B1, April 3, 2013.
Miyasaka, T.; Sawada, S.; Nokata, K.; Sugino, E.; Mutai, M. Camptothecin Derivatives and Process for Preparing Same. US 4604463, August 5, 1986.
Liao, Y.-X.; Huang, Y.-C. Polymorphism for Irinotecan Free Base. US 10919905 B2, February 16, 2021.
Hamad, M. L.; Engen, W.; Morris, K. R. Impact of Hydration State and Molecular Oxygen on The Chemical Stability of Levothyroxine Sodium. Pharm. Dev. Technol. 2015, 20 (3), 314-319.
Lee, H. L.; Cheng, Y. S.; Yeh, K. L.; Lee, T. A Novel Hydrate Form of Sodium Dodecyl Sulfate and Its Crystallization Process. ACS omega 2021, 6 (24), 15770-15781.
Pearson, D. The Crystal Maze. 2020. https://themedicinemaker.com/manufacture/the-crystal-maze (accessed 2020/8/14).
Healy, A. M.; Worku, Z. A.; Kumar, D.; Madi, A. M. Pharmaceutical Solvates, Hydrates and Amorphous Forms: A Special Emphasis on Cocrystals. Adv. Drug Deliv. Rev. 2017, 117, 25-46.
Jurczak, E.; Mazurek, A. H.; Szeleszczuk, Ł.; Pisklak, D. M.; Zielińska-Pisklak, M. Pharmaceutical Hydrates Analysis—Overview of Methods and Recent Advances. Pharmaceutics 2020, 12 (10), 959.
Raijada, D.; Bond, A. D.; Larsen, F. H.; Cornett, C.; Qu, H.; Rantanen, J. Exploring the Solid-Form Landscape of Pharmaceutical Hydrates: Transformation Pathways of the Sodium Naproxen Anhydrate-Hydrate System. Pharm. Res. 2013, 30, 280-289.
Braun, D. E.; Griesser, U. J. Stoichiometric and Nonstoichiometric Hydrates of Brucine. Cryst. Growth Des. 2016, 16 (10), 6111-6121.

Lu, E.; Li, S.; Wang, Z. Biorelevant Test for Supersaturable Formulation. Asian J. Pharm. 2017, 12 (1), 9-20.
Rao, A. R.; Rao, R.; Yadav, J.; Khagga, M. Scalable Synthetic Route to 2-Amino-5-Hydroxypropiophenone: Efficient Formal Synthesis of Irinotecan. Synth. Commun. 2013, 43 (12), 1661-1667.
Ezell, E. L.; Smith, L. L. 1H-and 13C-NMR Spectra of Camptothecin and Derivatives. J. Nat. Prod. 1991, 54 (6), 1645-1650.
Lee, N. J.; Ju, S. S.; Cho, W. J.; Kim, S. H.; Kang, K. T.; Brady, T.; Theodorakis, E. A. Synthesis and Antitumour Activity of Medium Molecular Weight Phthalimide Polymers of Camptothecin. Polym. Int. 2003, 52 (8), 1339-1345.
Talapatra, S. K.; Talapatra, B. Camptothecin, A Novel Pyrrolo[3,4-b]quinoline Alkaloid: Derived by Modification of an Indole System. Chemistry of Plant Natural Products: Stereochemistry, Conformation, Synthesis, Biology, and Medicine, Springer: Berlin, 2015; pp. 912.
Sawada, S.; Okajima, S.; Aiyama, R.; Nokata, K.-I.; Furuta, T.; Yokokura, T.; Sugino, E.; Yamaguchi, K.; Miyasaka, T. Synthesis and Antitumor Activity of 20 (S)-Camptothecin Derivatives: Carbamate-Linked, Water-Soluble Derivaties of 7-Ethyl-10-Hydroxycamptothecin. Chem. Pharm. Bull. 1991, 39 (6), 1446-1454.
Hasan-Nasab, B.; Ebrahimnejad, P.; Ebrahimi, P.; Sharifi, F.; Salili, M.; Shahlaee, F.; Nokhodchi, A. A Promising Targeting System to Enrich Irinotecan Antitumor Efficacy: Folic Acid Targeted Nanoparticles. J. Drug Deliv. Sci. Technol. 2021, 63, 102543.
Huimei, Y.; Lingjun, Q.; Qinghong, Z.; Danyu, J.; Changwei, L. Application of TA–MS Combined with PulseTA for Characterization of Materials. J. Therm. Anal. Calorim. 2011, 106 (1), 47-52.

Lee, T.; Lin, M. S. Sublimation Point Depression of Tris (8-hydroxyquinoline) Aluminum (III)(Alq3) by Crystal Engineering. Cryst. Growth Des. 2007, 7 (9), 1803-1810.
Aiyama, R.; Nagai, H.; Sawada, S.; Yokokura, T.; Itokawa, H.; Nakanishi, M. Determination of Self-association of Irinotecan Hydrochloride (CPT-11) in Aqueous Solution. Chem. Pharm. Bull. 1992, 40 (10), 2810-2813.
Hazra, M. K.; Roy, S.; Bagchi, B. Hydrophobic Hydration Driven Self-Assembly of Curcumin in Water: Similarities to Nucleation and Growth under Large Metastability, and an Analysis of Water Dynamics at Heterogeneous Surfaces. J. Chem. Phys.2014, 141 (18), 18C501.
Chattopadhyay, S.; Erdemir, D.; Evans, J. M.; Ilavsky, J.; Amenitsch, H.; Segre, C. U.; Myerson, A. S. SAXS Study of the Nucleation of Glycine Crystals from a Supersaturated Solution. Cryst. Growth Des. 2005, 5 (2), 523-527.
Yalkowsky, S. H. Solubility and Partitioning V: Dependence of Solubility on Melting Point. J. Pharm. Sci. 1981, 70 (8), 971-973.
Grant, D.; Mehdizadeh, M.; Chow, A.-L.; Fairbrother, J. Non-Linear van′t Hoff Solubility-Temperature Plots and their Pharmaceutical Interpretation. Int. J. Pharm. 1984, 18 (1-2), 25-38.
Bustamante, P.; Romero, S.; Peña, A.; Escalera, B.; Reillo, A. Enthalpy–Entropy Compensation for the Solubility of Drugs in Solvent Mixtures: Paracetamol, Acetanilide, and Nalidixic Acid in Dioxane–Water. J. Pharm. Sci. 1998, 87 (12), 1590-1596.
New Zealand Medicines and Medical Devices Safety Authority. Date of first approval 12. 2009, last revised February 2019. https://www.medsafe.govt.nz/profs/datasheet/i/irinotecanactavisinj.pdf (accessed 2023/3/06).


Reichenbach, J.; Wynne, K. Frustration vs Prenucleation: Understanding the Surprising Stability of Supersaturated Sodium Thiosulfate Solutions. J. Phys. Chem. B. 2018, 122 (30), 7590-7596.
De Yoreo, J. J.; Gilbert, P. U.; Sommerdijk, N. A.; Penn, R. L.; Whitelam, S.; Joester, D.; Zhang, H.; Rimer, J. D.; Navrotsky, A.; Banfield, J. F. Crystallization by Particle Attachment in Synthetic, Biogenic, and Geologic Environments. Science 2015, 349 (6247), aaa6760.
Wolde, P. R. t.; Frenkel, D. Enhancement of protein crystal nucleation by critical density fluctuations. Science 1997, 277 (5334), 1975-1978.
Tsarfati, Y.; Rosenne, S.; Weissman, H.; Shimon, L. J.; Gur, D.; Palmer, B. A.; Rybtchinski, B. Crystallization of Organic Molecules: Nonclassical Mechanism Revealed by Direct Imaging. ACS Cent. Sci. 2018, 4 (8), 1031-1036.
Starpharma. https://starpharma.com/drug_delivery/dep_irinotecan (accessed 2023-05-29).
Thiesen, J.; Krämer, I. Physicochemical Stability of Irinotecan Injection Concentrate and Diluted Infusion Solutions in PVC Bags. J. Oncol. Pharm. Pract. 2000, 6 (3), 115-121.
Drugs.com. https://www.drugs.com/price-guide/irinotecan (accessed 2023-05-29)
Carbonfund.org. https://carbonfund.org/calculation-methods/ (accessed 2023-05-29).
Tian, F.; Qu, H.; Zimmermann, A.; Munk, T.; Jørgensen, A. C.; Rantanen, J. Factors Affecting Crystallization of Hydrates. J. Pharm. Pharmacol. 2010, 62 (11), 1534-1546.
Liu, H.; Yuan, M.; Liu, Y.; Guo, Y.; Xiao, H.; Guo, L.; Liu, F. Self-Monitoring and Self-Delivery of Self-Assembled Fluorescent Nanoparticles in Cancer Therapy. Int. J. Nanomedicine 2021, 16, 2487.
指導教授 李度(Tu Lee) 審核日期 2023-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明