參考文獻 |
World Economic Forum. https://www.weforum.org/agenda/2022/11/pharmaceutical-industry-reduce-climate-impact/ (accessed 2023-05-15).
CPI. https://www.uk-cpi.com/blog/the-future-of-the-pharma-industry-can-be-sustainable (accessed 2023-05-15).
J. Wey. Health Sector Emits 4.4% of Global Greenhouse Gas Emissions, Report Finds, S&P Global Market Intelligence.
https://www.spglobal.com/marketintelligence/en/news-insights/trending/x-14hy45lMgBoeKdr7b7Cw2 (accessed 2023-05-23).
Eckelman, M. J.; Huang, K.; Lagasse, R.; Senay, E.; Dubrow, R.; Sherman, J. D. Health Care Pollution and Public Health Damage in The United States: An Update: Study Examines Health Care Pollution and Public Health Damage in the United States. Health Aff. 2020, 39 (12), 2071-2079.
A. Padbidri. How can the Global Healthcare and Pharmaceutical Industry Reach Net Zero? South Pole April 17, 2023. https://www.southpole.com/blog/how-can-global-healthcare-and-pharmaceutical-industry-reach-net-zero (accessed 2023-05-23).
Vinoth, P.; Obeidat, A.; Al-Kindi, S.; Jain, V.; Jabbari-Zadeh, F.; Lui, M.; Al-Qaoud, A.; Khetan, A. Toward a Net-Zero Health Care System: Actions to Reduce Greenhouse Gas Emissions. NEJM Catalyst Innovations in Care Delivery 2022, 3 (6).
T. Eytan. Just Read: Carbon Footprint of the Global Pharmaceutical Industry –Significantly Worse than the Automotive Industry. Ted Eytan, MD MS MPH Washington, DC, USA. https://www.tedeytan.com/2019/09/05/34859 (accessed 2023-05-24).
Belkhir, L.; Elmeligi, A. Carbon Footprint of the Global Pharmaceutical Industry and Relative Impact of Its Major Players. J. Clean. Prod. 2019, 214, 185-194.
PwC. 生技醫藥產業加速淨零佈局綠電供應鏈全球趨勢。BIO Insights, 2022. https://www.pwc.tw/zh/publications/bio-insights/pdf/bio-insights-2205.pdf (accessed 2023-05-10).
Lotfi B. Big Pharma Emits More Greenhouse Gases Than the Automotive Industry. The Conversation. May 27, 2019, updated May 27, 2019.
https://theconversation.com/big-pharma-emits-more-greenhouse-gases-than-the-automotive-industry-115285 (accessed 2023-05-15).
Hattori, Y.; Shi, L.; Ding, W.; Koga, K.; Kawano, K.; Hakoshima, M.; Maitani, Y. Novel Irinotecan-Loaded Liposome Using Phytic Aid with High Therapeutic Efficacy for Colon Tumors. J. Control. Release. 2009, 136 (1), 30-37.
Anilanmert, B.; Ozdemir, F. A.; Erdinc, N.; Pekin, M. Potentiometric Determination of the Dissociation Constants of Epirubicin HCl and Irinotecan HCl. Mendeleev Commun. 2006, 16 (2), 97-98.
Sanli, N.; Sanli, S.; Alsancak, G. l. Determination of Dissociation Constants of Folinic Acid (Leucovorin), 5-Fluorouracil, and Irinotecan in Hydro-Organic Media by a Spectrophotometric Method. J. Chem. Eng. Data 2010, 55 (8), 2695-2699.
van Hengel, A. J.; Harkes, M. P.; Wichers, H. J.; Hesselink, P. G.; Buitelaar, R. M. Characterization of Callus Formation and Camptothecin Production by Cell Lines of Camptotheca Acuminata. Plant Cell, Tissue Organ Cult. 1992, 28, 11-18.
Kepler, J.; Wani, M.; McNaull, J.; Wall, M. E.; Levine, S. G. Plant Antitumor Agents. IV. An Approach Toward the Synthesis of Camptothecin. J. Org. Chem. 1969, 34 (12), 3853-3858.
Zhang, J.; Yu, Y.; Liu, D.; Liu, Z. Extraction and Composition of Three Naturally Occurring Anti-Cancer Alkaloids in Camptotheca Acuminata Seed and Leaf Extracts. Phytomedicine 2007, 14 (1), 50-56.
MacDonald, T. L.; Labroli, M. A.; Tepe, J. J. DNA Topoisomerase Inhibitors. 1999, 593-614.
Cersosimo, R. J. Irinotecan: A New Antineoplastic Agent for The Management of Colorectal Cancer. Ann. Pharmacother. 1998, 32 (12), 1324-1333.
Gao, J.; Logan, K. A.; Nesbitt, H.; Callan, B.; McKaig, T.; Taylor, M.; Love, M.; McHale, A. P.; Griffith, D. M.; Callan, J. F. A Single Microbubble Formulation Carrying 5-Fluorouridine, Irinotecan and Oxaliplatin to Enable FOLFIRINOX Treatment of Pancreatic and Colon Cancer Using Ultrasound Targeted Microbubble Destruction. J. Control. Release 2021, 338, 358-366.
Jeong, D.; Pal, T.; Kim, H.; Kim, T. W.; Biswas, G.; Lee, D.; Singh, T.; Murthy, A. S.; Kim, W.; Kim, K. T. Preparation of a Camptothecin‐Conjugated Molecular Carrier and Its Cytotoxic Effect Toward Human Colorectal Carcinoma in Vitro. Bull. Korean Chem. Soc. 2018, 39 (12), 1385-1393.
Hageman, M.J., Morozowich, W. Case Study: Irinotecan (CPT-11), A Water-soluble Prodrug of SN-38. In: Stella, V.J., Borchardt, R.T., Hageman, M.J., Oliyai, R., Maag, H., Tilley, J.W., Eds.; Prodrugs. Biotechnology: Pharmaceutical Aspects, Vol V; Springer, New York, NY, 2007; pp 569-579. DOI: 10.1007/978-0-387-49785-3_44
Fuchs, C.; Mitchell, E. P.; Hoff, P. M. Irinotecan in The Treatment of Colorectal Cancer. Cancer Treat. Rev. 2006, 32 (7), 491-503.
Bailly, C. Irinotecan: 25 Years of Cancer Treatment. Pharmacol. Res. 2019, 148, 104398.
Tay-Teo, K.; Ilbawi, A.; Hill, S. R. Comparison of Sales Income and Research and Development Costs for FDA-Approved Cancer Drugs Sold by Originator Drug Companies. JAMA Netw. Open 2019, 2 (1), e186875-e186875.
Ainurofiq, A.; Putro, D. S.; Ramadhani, D. A.; Putra, G. M.; Santo, L. D. C. D. E. A Review on Solubility Enhancement Methods for Poorly Water-Soluble Drugs. J. Rep. Pharm. Sci.
2021, 10 (1), 137.
Wang, B.; Hu, L.; Siahaan, T. J. Drug delivery: principles and applications; John Wiley & Sons, 2016.
Serajuddin, A. T. Salt Formation to Improve Drug Solubility. Adv. Drug Deliv. Rev. 2007, 59 (7), 603-616.
Gao, J.; Nesbitt, H.; Logan, K.; Burnett, K.; White, B.; Jack, I. G.; Taylor, M. A.; Love, M.; Callan, B.; McHale, A. P. An Ultrasound Responsive Microbubble-Liposome Conjugate for Targeted Irinotecan-Oxaliplatin Treatment of Pancreatic Cancer. Eur. J. Pharm. Biopharm. 2020, 157, 233-240.
Gupta, D.; Bhatia, D.; Dave, V.; Sutariya, V.; Varghese Gupta, S. Salts of Therapeutic Agents: Chemical, Physicochemical, and Biological Considerations. Molecules 2018, 23 (7), 1719.
Frampton, J. E. Liposomal Irinotecan: A Review in Metastatic Pancreatic Adenocarcinoma. Drugs 2020, 80, 1007-1018.
Brittain, H. G. Polymorphism in Pharmaceutical Solids. Drugs and the pharmaceutical sciences 1999, 95, 183-226.
Saifee, M.; Inamda, N.; Dhamecha, D.; Rathi, A. Drug Polymorphism: A Review. Int. J. Health Res. 2009, 2 (4).
Yu, L. X.; Furness, M. S.; Raw, A.; Outlaw, K. P. W.; Nashed, N. E.; Ramos, E.; Miller, S. P.; Adams, R. C.; Fang, F.; Patel, R. M. Scientific Considerations of Pharmaceutical Solid Polymorphism in Abbreviated New Drug Applications. Pharm. Res. 2003, 20, 531-536.
Rosenstein, S.; Lamy, P. P. Some Aspects of Polymorphism. Am. J. Health Syst. Pharm. 1969, 26 (10), 598-601.
Chemburkar, S. R.; Bauer, J.; Deming, K.; Spiwek, H.; Patel, K.; Morris, J.; Henry, R.; Spanton, S.; Dziki, W.; Porter, W. Dealing with The Impact of Ritonavir Polymorphs on The Late Stages of Bulk Drug Process Development. Org. Process Res. Dev. 2000, 4 (5), 413-417.
Wang, C.; Rosbottom, I.; Turner, T. D.; Laing, S.; Maloney, A. G.; Sheikh, A. Y.; Docherty, R.; Yin, Q.; Roberts, K. J. Molecular, Solid-State and Surface Structures of The Conformational Polymorphic Forms of Ritonavir in Relation to Their Physicochemical Properties. Pharm. Res. 2021, 38 (6), 971-990.
Forino, R.; Barbugian, N.; Zampieri, M.; Tomasi, A. Crystalline Polymorphic Form of Irinotecan Hydrochloride. US 20060046993 A1, March 2, 2006.
Forino, R.; Barbugian, N.; Zampieri, M.; Tomasi, A. Crystalline Polymorphic Form of Irinotecan Hydrochloride. EP 1487840 B1, February 26, 2003.
Chen, S.-P.; Harn, P.-J. Crystal Forms of Irinotecan Hydrochloride. US 7435818 B2, October 14, 2008.
Parthasaradhi Reddy, B.; Rathnakar Reddy, K.; Muralidhara Reddy, D.; Raji Reddy, R.; Ramachandra, P.; Vamsi Krishna, B. Novel Polymorph of Irinotecan Hydrochloride. WO 2012007952 A1, January 19, 2012.
Pozzi, G.; Ghetti, P.; Balsamo, G.; Negri, E.; Alpegiani, M.; Bedeschi, A.; Pizzocaro, R. Crystalline Irinotecan Hydrochloride and Methods for the Preparation Thereof. EP 2189461 B1, April 3, 2013.
Miyasaka, T.; Sawada, S.; Nokata, K.; Sugino, E.; Mutai, M. Camptothecin Derivatives and Process for Preparing Same. US 4604463, August 5, 1986.
Liao, Y.-X.; Huang, Y.-C. Polymorphism for Irinotecan Free Base. US 10919905 B2, February 16, 2021.
Hamad, M. L.; Engen, W.; Morris, K. R. Impact of Hydration State and Molecular Oxygen on The Chemical Stability of Levothyroxine Sodium. Pharm. Dev. Technol. 2015, 20 (3), 314-319.
Lee, H. L.; Cheng, Y. S.; Yeh, K. L.; Lee, T. A Novel Hydrate Form of Sodium Dodecyl Sulfate and Its Crystallization Process. ACS omega 2021, 6 (24), 15770-15781.
Pearson, D. The Crystal Maze. 2020. https://themedicinemaker.com/manufacture/the-crystal-maze (accessed 2020/8/14).
Healy, A. M.; Worku, Z. A.; Kumar, D.; Madi, A. M. Pharmaceutical Solvates, Hydrates and Amorphous Forms: A Special Emphasis on Cocrystals. Adv. Drug Deliv. Rev. 2017, 117, 25-46.
Jurczak, E.; Mazurek, A. H.; Szeleszczuk, Ł.; Pisklak, D. M.; Zielińska-Pisklak, M. Pharmaceutical Hydrates Analysis—Overview of Methods and Recent Advances. Pharmaceutics 2020, 12 (10), 959.
Raijada, D.; Bond, A. D.; Larsen, F. H.; Cornett, C.; Qu, H.; Rantanen, J. Exploring the Solid-Form Landscape of Pharmaceutical Hydrates: Transformation Pathways of the Sodium Naproxen Anhydrate-Hydrate System. Pharm. Res. 2013, 30, 280-289.
Braun, D. E.; Griesser, U. J. Stoichiometric and Nonstoichiometric Hydrates of Brucine. Cryst. Growth Des. 2016, 16 (10), 6111-6121.
Lu, E.; Li, S.; Wang, Z. Biorelevant Test for Supersaturable Formulation. Asian J. Pharm. 2017, 12 (1), 9-20.
Rao, A. R.; Rao, R.; Yadav, J.; Khagga, M. Scalable Synthetic Route to 2-Amino-5-Hydroxypropiophenone: Efficient Formal Synthesis of Irinotecan. Synth. Commun. 2013, 43 (12), 1661-1667.
Ezell, E. L.; Smith, L. L. 1H-and 13C-NMR Spectra of Camptothecin and Derivatives. J. Nat. Prod. 1991, 54 (6), 1645-1650.
Lee, N. J.; Ju, S. S.; Cho, W. J.; Kim, S. H.; Kang, K. T.; Brady, T.; Theodorakis, E. A. Synthesis and Antitumour Activity of Medium Molecular Weight Phthalimide Polymers of Camptothecin. Polym. Int. 2003, 52 (8), 1339-1345.
Talapatra, S. K.; Talapatra, B. Camptothecin, A Novel Pyrrolo[3,4-b]quinoline Alkaloid: Derived by Modification of an Indole System. Chemistry of Plant Natural Products: Stereochemistry, Conformation, Synthesis, Biology, and Medicine, Springer: Berlin, 2015; pp. 912.
Sawada, S.; Okajima, S.; Aiyama, R.; Nokata, K.-I.; Furuta, T.; Yokokura, T.; Sugino, E.; Yamaguchi, K.; Miyasaka, T. Synthesis and Antitumor Activity of 20 (S)-Camptothecin Derivatives: Carbamate-Linked, Water-Soluble Derivaties of 7-Ethyl-10-Hydroxycamptothecin. Chem. Pharm. Bull. 1991, 39 (6), 1446-1454.
Hasan-Nasab, B.; Ebrahimnejad, P.; Ebrahimi, P.; Sharifi, F.; Salili, M.; Shahlaee, F.; Nokhodchi, A. A Promising Targeting System to Enrich Irinotecan Antitumor Efficacy: Folic Acid Targeted Nanoparticles. J. Drug Deliv. Sci. Technol. 2021, 63, 102543.
Huimei, Y.; Lingjun, Q.; Qinghong, Z.; Danyu, J.; Changwei, L. Application of TA–MS Combined with PulseTA for Characterization of Materials. J. Therm. Anal. Calorim. 2011, 106 (1), 47-52.
Lee, T.; Lin, M. S. Sublimation Point Depression of Tris (8-hydroxyquinoline) Aluminum (III)(Alq3) by Crystal Engineering. Cryst. Growth Des. 2007, 7 (9), 1803-1810.
Aiyama, R.; Nagai, H.; Sawada, S.; Yokokura, T.; Itokawa, H.; Nakanishi, M. Determination of Self-association of Irinotecan Hydrochloride (CPT-11) in Aqueous Solution. Chem. Pharm. Bull. 1992, 40 (10), 2810-2813.
Hazra, M. K.; Roy, S.; Bagchi, B. Hydrophobic Hydration Driven Self-Assembly of Curcumin in Water: Similarities to Nucleation and Growth under Large Metastability, and an Analysis of Water Dynamics at Heterogeneous Surfaces. J. Chem. Phys.2014, 141 (18), 18C501.
Chattopadhyay, S.; Erdemir, D.; Evans, J. M.; Ilavsky, J.; Amenitsch, H.; Segre, C. U.; Myerson, A. S. SAXS Study of the Nucleation of Glycine Crystals from a Supersaturated Solution. Cryst. Growth Des. 2005, 5 (2), 523-527.
Yalkowsky, S. H. Solubility and Partitioning V: Dependence of Solubility on Melting Point. J. Pharm. Sci. 1981, 70 (8), 971-973.
Grant, D.; Mehdizadeh, M.; Chow, A.-L.; Fairbrother, J. Non-Linear van′t Hoff Solubility-Temperature Plots and their Pharmaceutical Interpretation. Int. J. Pharm. 1984, 18 (1-2), 25-38.
Bustamante, P.; Romero, S.; Peña, A.; Escalera, B.; Reillo, A. Enthalpy–Entropy Compensation for the Solubility of Drugs in Solvent Mixtures: Paracetamol, Acetanilide, and Nalidixic Acid in Dioxane–Water. J. Pharm. Sci. 1998, 87 (12), 1590-1596.
New Zealand Medicines and Medical Devices Safety Authority. Date of first approval 12. 2009, last revised February 2019. https://www.medsafe.govt.nz/profs/datasheet/i/irinotecanactavisinj.pdf (accessed 2023/3/06).
Reichenbach, J.; Wynne, K. Frustration vs Prenucleation: Understanding the Surprising Stability of Supersaturated Sodium Thiosulfate Solutions. J. Phys. Chem. B. 2018, 122 (30), 7590-7596.
De Yoreo, J. J.; Gilbert, P. U.; Sommerdijk, N. A.; Penn, R. L.; Whitelam, S.; Joester, D.; Zhang, H.; Rimer, J. D.; Navrotsky, A.; Banfield, J. F. Crystallization by Particle Attachment in Synthetic, Biogenic, and Geologic Environments. Science 2015, 349 (6247), aaa6760.
Wolde, P. R. t.; Frenkel, D. Enhancement of protein crystal nucleation by critical density fluctuations. Science 1997, 277 (5334), 1975-1978.
Tsarfati, Y.; Rosenne, S.; Weissman, H.; Shimon, L. J.; Gur, D.; Palmer, B. A.; Rybtchinski, B. Crystallization of Organic Molecules: Nonclassical Mechanism Revealed by Direct Imaging. ACS Cent. Sci. 2018, 4 (8), 1031-1036.
Starpharma. https://starpharma.com/drug_delivery/dep_irinotecan (accessed 2023-05-29).
Thiesen, J.; Krämer, I. Physicochemical Stability of Irinotecan Injection Concentrate and Diluted Infusion Solutions in PVC Bags. J. Oncol. Pharm. Pract. 2000, 6 (3), 115-121.
Drugs.com. https://www.drugs.com/price-guide/irinotecan (accessed 2023-05-29)
Carbonfund.org. https://carbonfund.org/calculation-methods/ (accessed 2023-05-29).
Tian, F.; Qu, H.; Zimmermann, A.; Munk, T.; Jørgensen, A. C.; Rantanen, J. Factors Affecting Crystallization of Hydrates. J. Pharm. Pharmacol. 2010, 62 (11), 1534-1546.
Liu, H.; Yuan, M.; Liu, Y.; Guo, Y.; Xiao, H.; Guo, L.; Liu, F. Self-Monitoring and Self-Delivery of Self-Assembled Fluorescent Nanoparticles in Cancer Therapy. Int. J. Nanomedicine 2021, 16, 2487. |