參考文獻 |
1. Risch, S.J., Food Packaging History and Innovations. Journal of agricultural and food chemistry, 2009. 57(18): p. 8089-8092.
2. Yu, J., K. Ruengkajorn, D.-G. Crivoi, et al., High Gas Barrier Coating Using Non-Toxic Nanosheet Dispersions for Flexible Food Packaging Film. Nature communications, 2019. 10(1): p. 2398.
3. Anukiruthika, T., P. Sethupathy, A. Wilson, et al., Multilayer Packaging: Advances in Preparation Techniques and Emerging Food Applications. Comprehensive Reviews in Food Science and Food Safety, 2020. 19(3): p. 1156-1186.
4. Rejeesh, C. and T. Anto, Packaging of Milk and Dairy Products: Approaches to Sustainable Packaging. Materials Today: Proceedings, 2023. 72: p. 2946-2951.
5. Katekhong, W., P. Wongphan, P. Klinmalai, et al., Thermoplastic Starch Blown Films Functionalized by Plasticized Nitrite Blended with Pbat for Superior Oxygen Barrier and Active Biodegradable Meat Packaging. Food Chemistry, 2022. 374: p. 131709.
6. Ploypetchara, N., P. Suppakul, D. Atong, et al., Blend of Polypropylene/Poly (Lactic Acid) for Medical Packaging Application: Physicochemical, Thermal, Mechanical, and Barrier Properties. Energy Procedia, 2014. 56: p. 201-210.
7. Jaime, S.B., R.M. Alves, and P.F. Bócoli, Moisture and Oxygen Barrier Properties of Glass, Pet and Hdpe Bottles for Pharmaceutical Products. Journal of Drug Delivery Science and Technology, 2022. 71: p. 103330.
8. Castro, D., P. Ingram, R. Kodzius, et al. Characterization of Solid Uv Cross-Linked Pegda for Biological Applications. in 2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS). 2013. IEEE.
9. Yue, C., Y. Zhang, W. Lu, et al., Realizing the Curing of Polymer Composite Materials by Using Electrical Resistance Heating: A Review. Composites Part A: Applied Science and Manufacturing, 2022: p. 107181.
10. Rezakazemi, M., M. Sadrzadeh, and T. Matsuura, Thermally Stable Polymers for Advanced High-Performance Gas Separation
Membranes. Progress in Energy and Combustion Science, 2018.
66: p. 1-41.
11. Thiher, N.L., S.M. Schissel, and J.L. Jessop, Quantifying Uv/Eb
Dual Cure for Successful Mitigation of Oxygen Inhibition and Light Attenuation. Progress in Organic Coatings, 2020. 138: p. 105378.
12. Schwalm, R., Uv Coatings: Basics, Recent Developments and New Applications. 2006.
13. Abliz, D., Y. Duan, L. Steuernagel, et al., Curing Methods for Advanced Polymer Composites-a Review. Polymers and Polymer Composites, 2013. 21(6): p. 341-348.
14. Liu, F., A. Liu, W. Tao, et al., Preparation of Uv Curable Organic/Inorganic Hybrid Coatings-a Review. Progress in Organic Coatings, 2020. 145: p. 105685.
15. Peng, S., Z. Wang, J. Lin, et al., Tailored and Highly Stretchable Sensor Prepared by Crosslinking an Enhanced 3d Printed Uv‐ Curable Sacrificial Mold. Advanced Functional Materials, 2021. 31(10): p. 2008729.
16. Mendes-Felipe, C., J. Barbosa, S. Gonçalves, et al., High Dielectric Constant Uv Curable Polyurethane Acrylate/Indium Tin Oxide Composites for Capacitive Sensing. Composites Science and Technology, 2020. 199: p. 108363.
17. Mendes‐Felipe, C., J. Oliveira, I. Etxebarria, et al., State‐of‐the‐Art and Future Challenges of Uv Curable Polymer‐Based Smart Materials for Printing Technologies. Advanced Materials Technologies, 2019. 4(3): p. 1800618.
18. Todorova, D., K. Dimitrov, and M. Herzog, Solvent Free Uv Curable Coating for Paper Protection. Sustainable Chemistry and Pharmacy, 2021. 24: p. 100543.
19. He, H.-W., L. Wang, X. Yan, et al., Solvent-Free Electrospinning of Uv Curable Polymer Microfibers. RSC advances, 2016. 6(35): p. 29423-29427.
20. Hong, S.Y., Y.C. Kim, M. Wang, et al., Experimental Investigation of Mechanical Properties of Uv-Curable 3d Printing Materials. Polymer, 2018. 145: p. 88-94.
21. Goss, B., Bonding Glass and Other Substrates with Uv Curing Adhesives. International journal of adhesion and adhesives, 2002. 22(5): p. 405-408.
22. Kim, D. and S.P. Nunes, Green Solvents for Membrane Manufacture: Recent Trends and Perspectives. Current Opinion in Green and Sustainable Chemistry, 2021. 28: p. 100427.
23. Xie, W., T. Li, A. Tiraferri, et al., Toward the Next Generation of Sustainable Membranes from Green Chemistry Principles. ACS Sustainable Chemistry & Engineering, 2020. 9(1): p. 50-75.
24. Hanna, K., O. Yasar-Inceoglu, and O. Yasar, Drug Delivered Poly (Ethylene Glycol) Diacrylate (Pegda) Hydrogels and Their Mechanical Characterization Tests for Tissue Engineering Applications. MRS Advances, 2018. 3(30): p. 1697-1702.
25. Roach, D.J., C. Roberts, J. Wong, et al., Surface Modification of Fused Filament Fabrication (Fff) 3d Printed Substrates by Inkjet Printing Polyimide for Printed Electronics. Additive Manufacturing, 2020. 36: p. 101544.
26. Liu, B., Z. Xu, C. Fan, et al., A Solvent‐Free and Water‐Resistant Dipole–Dipole Interaction‐Based Super Adhesive. Macromolecular Rapid Communications, 2021. 42(9): p. 2100010.
27. Lin, H., T. Kai, B.D. Freeman, et al., The Effect of Cross-Linking on Gas Permeability in Cross-Linked Poly (Ethylene Glycol Diacrylate). Macromolecules, 2005. 38(20): p. 8381-8393.
28. Ghadimi, A., S. Norouzbahari, V. Vatanpour, et al., An Investigation on Gas Transport Properties of Cross-Linked Poly (Ethylene Glycol Diacrylate)(Xlpegda) and Xlpegda/Tio2 Membranes with a Focus on Co2 Separation. Energy & Fuels, 2018. 32(4): p. 5418-5432.
29. Jannatabadi, A.A., D. Bastani, S. Norouzbahari, et al., Co2 and Ch4 Diffusivities through Synthesized Zif-8 Nanocrystals: An Experimental and Theoretical Investigation. Microporous and Mesoporous Materials, 2021. 324: p. 111292.
30. Lee, T.H., A. Ozcan, I. Park, et al., Disclosing the Role of Defect‐ Engineered Metal–Organic Frameworks in Mixed Matrix Membranes for Efficient Co2 Separation: A Joint Experimental‐
Computational Exploration. Advanced Functional Materials, 2021.
31(38): p. 2103973.
31. Elrasheedy, A., N. Nady, M. Bassyouni, et al., Metal Organic
Framework Based Polymer Mixed Matrix Membranes: Review on
Applications in Water Purification. Membranes, 2019. 9(7): p. 88.
32. Kamble, A.R., C.M. Patel, and Z. Murthy, A Review on the Recent
Advances in Mixed Matrix Membranes for Gas Separation Processes. Renewable and Sustainable Energy Reviews, 2021. 145: p. 111062.
33. Harami, H.R., F. Amirkhani, H. Abedsoltan, et al., Mixed Matrix Membranes for Sustainable Electrical Energy‐Saving Applications. ChemBioEng Reviews, 2021. 8(1): p. 27-43.
34. Dong, G., H. Li, and V. Chen, Challenges and Opportunities for Mixed-Matrix Membranes for Gas Separation. Journal of Materials Chemistry A, 2013. 1(15): p. 4610-4630.
35. Ma, L., F. Svec, Y. Lv, et al., Engineering of the Filler/Polymer Interface in Metal–Organic Framework‐Based Mixed‐Matrix Membranes to Enhance Gas Separation. Chemistry–An Asian Journal, 2019. 14(20): p. 3502-3514.
36. Lin, R., B.V. Hernandez, L. Ge, et al., Metal Organic Framework Based Mixed Matrix Membranes: An Overview on Filler/Polymer Interfaces. Journal of Materials Chemistry A, 2018. 6(2): p. 293- 312.
37. Zhao, Q., S. Lian, R. Li, et al., Architecting Mofs-Based Mixed Matrix Membrane for Efficient Co2 Separation: Ameliorating Strategies toward Non-Ideal Interface. Chemical Engineering Journal, 2022: p. 136290.
38. Amirkhani, F., M. Mosadegh, M. Asghari, et al., The Beneficial Impacts of Functional Groups of Cnt on Structure and Gas Separation Properties of Peba Mixed Matrix Membranes. Polymer Testing, 2020. 82: p. 106285.
39. Jo, J.H., C.O. Lee, G.Y. Ryu, et al., Hierarchical Amine- Functionalized Zif-8 Mixed-Matrix Membranes with an Engineered Interface and Transport Pathway for Efficient Gas Separation. ACS Applied Polymer Materials, 2022. 4(9): p. 6426-6439.
40. Chen, R., C.-a. Tao, Z. Zhang, et al., Layer-by-Layer Fabrication of Core–Shell Fe3o4@ Uio-66-Nh2 with High Catalytic Reactivity toward the Hydrolysis of Chemical Warfare Agent Simulants. ACS applied materials & interfaces, 2019. 11(46): p. 43156-43165.
41. Jones, N.B., B. Gibbons, A.J. Morris, et al., Reversible Dissociation for Effective Storage of Diborane Gas within the Uio- 66-Nh2 Metal–Organic Framework. ACS applied materials & interfaces, 2022. 14(6): p. 8322-8332.
42. Li, Z., W. Zhang, M. Tao, et al., In-Situ Growth of Uio-66-Nh2 in Porous Polymeric Substrates at Room Temperature for Fabrication of Mixed Matrix Membranes with Fast Molecular Separation Performance. Chemical Engineering Journal, 2022. 435: p. 134804.
43. Rabiee, N., A.M. Ghadiri, V. Alinezhad, et al., Synthesis of Green Benzamide-Decorated Uio-66-Nh2 for Biomedical Applications. Chemosphere, 2022. 299: p. 134359.
44. Zhong, K., L. Huang, H. Li, et al., Enhanced Oxygen Reduction Upon Ag/Fe Co-Doped Uio-66-Nh2-Derived Porous Carbon as Bacteriostatic Catalysts in Microbial Fuel Cells. Carbon, 2021. 183: p. 62-75.
45. Zhao, J., C. Wang, S. Wang, et al., Experimental and Dft Study of Selective Adsorption Mechanisms of Pb (Ii) by Uio-66-Nh2 Modified with 1, 8-Dihydroxyanthraquinone. Journal of Industrial and Engineering Chemistry, 2020. 83: p. 111-122.
46. Guo, H., J. Liu, Y. Li, et al., Post-Synthetic Modification of Highly Stable Uio-66-Nh2 Membranes on Porous Ceramic Tubes with Enhanced H2 Separation. Microporous and Mesoporous Materials, 2021. 313: p. 110823.
47. Jia, M., Y. Feng, J. Qiu, et al., Amine-Functionalized Mofs@ Go as Filler in Mixed Matrix Membrane for Selective Co2 Separation. Separation and Purification Technology, 2019. 213: p. 63-69.
48. Yu, W., L. Sisi, Y. Haiyan, et al., Progress in the Functional Modification of Graphene/Graphene Oxide: A Review. RSC advances, 2020. 10(26): p. 15328-15345.
49. Tian, Y., Z. Yu, L. Cao, et al., Graphene Oxide: An Emerging Electromaterial for Energy Storage and Conversion. Journal of Energy Chemistry, 2021. 55: p. 323-344.
50. Tian, W., X. Liu, and W. Yu, Research Progress of Gas Sensor Based on Graphene and Its Derivatives: A Review. Applied Sciences, 2018. 8(7): p. 1118.
51. Lee, J., J. Kim, S. Kim, et al., Biosensors Based on Graphene Oxide and Its Biomedical Application. Advanced drug delivery reviews, 2016. 105: p. 275-287.
52. Anjum, M.W., F. Vermoortele, A.L. Khan, et al., Modulated Uio- 66-Based Mixed-Matrix Membranes for Co2 Separation. ACS applied materials & interfaces, 2015. 7(45): p. 25193-25201.
53. Abdullah, S.I. and M. Ansari, Mechanical Properties of Graphene Oxide (Go)/Epoxy Composites. Hbrc Journal, 2015. 11(2): p. 151- 156.
54. Jia, M., Y. Feng, S. Liu, et al., Graphene Oxide Gas Separation Membranes Intercalated by Uio-66-Nh2 with Enhanced Hydrogen Separation Performance. Journal of Membrane Science, 2017. 539: p. 172-177.
55. Raheem, D., Application of Plastics and Paper as Food Packaging Materials-an Overview. Emirates Journal of Food and Agriculture, 2013: p. 177-188.
56. Kirwan, M.J., S. Plant, and J.W. Strawbridge, Plastics in Food Packaging, in Food and Beverage Packaging Technology. 2011. p. 157-212.
57. Al-Naamani, L., S. Dobretsov, and J. Dutta, Chitosan-Zinc Oxide Nanoparticle Composite Coating for Active Food Packaging Applications. Innovative Food Science & Emerging Technologies, 2016. 38: p. 231-237.
58. Fotie, G., S. Gazzotti, M.A. Ortenzi, et al., Implementation of High Gas Barrier Laminated Films Based on Cellulose Nanocrystals for Food Flexible Packaging. Applied Sciences, 2020. 10(9): p. 3201.
59. Pasquier, E., B.D. Mattos, H. Koivula, et al., Multilayers of Renewable Nanostructured Materials with High Oxygen and Water Vapor Barriers for Food Packaging. ACS applied materials & interfaces, 2022. 14(26): p. 30236-30245.
60. Zhan, Y., Y. Meng, Y. Li, et al., Poly (Vinyl Alcohol)/Reduced Graphene Oxide Multilayered Coatings: The Effect of Filler Content on Gas Barrier and Surface Resistivity Properties. Composites Communications, 2021. 24: p. 100670.
61. Sangroniz, A., J.-B. Zhu, X. Tang, et al., Packaging Materials with Desired Mechanical and Barrier Properties and Full Chemical Recyclability. Nature Communications, 2019. 10(1): p. 3559.
62. Verma, M., S. Shakya, P. Kumar, et al., Trends in Packaging Material for Food Products: Historical Background, Current Scenario, and Future Prospects. Journal of food science and technology, 2021: p. 1-14.
63. Pan, T., S. Liu, L. Zhang, et al., Flexible Organic Optoelectronic Devices on Paper. Iscience, 2022: p. 103782.
64. Fang, X., S. Wu, Y. Wu, et al., High-Efficiency Adsorption of Norfloxacin Using Octahedral Uio-66-Nh2 Nanomaterials: Dynamics, Thermodynamics, and Mechanisms. Applied Surface Science, 2020. 518: p. 146226.
65. Sharma, N., V. Sharma, Y. Jain, et al. Synthesis and Characterization of Graphene Oxide (Go) and Reduced Graphene Oxide (Rgo) for Gas Sensing Application. in Macromolecular Symposia. 2017. Wiley Online Library.
66. Shahriary, L. and A.A. Athawale, Graphene Oxide Synthesized by Using Modified Hummers Approach. Int. J. Renew. Energy Environ. Eng, 2014. 2(01): p. 58-63.
67. Paulchamy, B., G. Arthi, and B. Lignesh, A Simple Approach to Stepwise Synthesis of Graphene Oxide Nanomaterial. J Nanomed Nanotechnol, 2015. 6(1): p. 1.
68. Manoratne, C., S. Rosa, and I. Kottegoda, Xrd-Hta, Uv Visible, Ftir and Sem Interpretation of Reduced Graphene Oxide Synthesized from High Purity Vein Graphite. Mater. Sci. Res. India, 2017. 14(1): p. 19-30.
69. Alam, S.N., N. Sharma, and L. Kumar, Synthesis of Graphene Oxide (Go) by Modified Hummers Method and Its Thermal Reduction to Obtain Reduced Graphene Oxide (Rgo). Graphene, 2017. 6(1): p. 1-18.
70. King, A.A., B.R. Davies, N. Noorbehesht, et al., A New Raman Metric for the Characterisation of Graphene Oxide and Its Derivatives. Scientific reports, 2016. 6(1): p. 19491.
71. Du, W., H. Wu, H. Chen, et al., Graphene Oxide in Aqueous and Nonaqueous Media: Dispersion Behaviour and Solution Chemistry. Carbon, 2020. 158: p. 568-579.
72. Wang, Z., Y. Jia, W. Song, et al., Optimization of Boron Adsorption from Desalinated Seawater onto Uio-66-Nh2/Go Composite Adsorbent Using Response Surface Methodology. Journal of Cleaner Production, 2021. 300: p. 126974.
73. Gómez, D.A., J. Coello, and S. Maspoch, The Influence of Particle Size on the Intensity and Reproducibility of Raman Spectra of Compacted Samples. Vibrational spectroscopy, 2019. 100: p. 48- 56.
74. Moore, T.T. and W.J. Koros, Non-Ideal Effects in Organic– Inorganic Materials for Gas Separation Membranes. Journal of Molecular Structure, 2005. 739(1-3): p. 87-98.
75. Li, J., G. Van Ewijk, D.J. Van Dijken, et al., Single-Step Application of Polyelectrolyte Complex Films as Oxygen Barrier Coatings. ACS applied materials & interfaces, 2021. 13(18): p. 21844-21853.
76. Schuchardt, D., M. Röhrl, S. Rosenfeldt, et al., Gas Barriers from in Situ Polymerized Poly (Ethylene Glycol) Diacrylate Clay Nanocomposites for Food Packaging. ACS Applied Polymer Materials, 2022. |