參考文獻 |
(1) Omer, A. M. Green energies and the environment. Renewable and sustainable energy reviews 2008, 12 (7), 1789-1821.
(2) Potocnik, J. Renewable energy sources and the realities of setting an energy agenda. Science 2007, 315 (5813), 810-811.
(3) https://www.nrel.gov/pv/cell-efficiency.html. (accessed.
(4) Louwen, A.; Van Sark, W.; Schropp, R.; Faaij, A. A cost roadmap for silicon heterojunction solar cells. Solar Energy Materials and Solar Cells 2016, 147, 295-314.
(5) Kayes, B. M.; Zhang, L.; Twist, R.; Ding, I.-K.; Higashi, G. S. Flexible thin-film tandem solar cells with> 30% efficiency. IEEE Journal of Photovoltaics 2014, 4 (2), 729-733.
(6) Lee, T. D.; Ebong, A. U. A review of thin film solar cell technologies and challenges. Renewable and Sustainable Energy Reviews 2017, 70, 1286-1297.
(7) Krebs, F. C.; Espinosa, N.; Hösel, M.; Søndergaard, R. R.; Jørgensen, M. 25th anniversary article: rise to power–OPV‐based solar parks. Advanced Materials 2014, 26 (1), 29-39.
(8) Gong, J.; Liang, J.; Sumathy, K. Review on dye-sensitized solar cells (DSSCs): Fundamental concepts and novel materials. Renewable and Sustainable Energy Reviews 2012, 16 (8), 5848-5860.
(9) Green, M. A.; Ho-Baillie, A.; Snaith, H. J. The emergence of perovskite solar cells. Nature photonics 2014, 8 (7), 506-514.
(10) Katz, E. A. Perovskite: name puzzle and German‐Russian odyssey of discovery. Helvetica Chimica Acta 2020, 103 (6), e2000061.
(11) Kim, J. Y.; Lee, J.-W.; Jung, H. S.; Shin, H.; Park, N.-G. High-efficiency perovskite solar cells. Chemical Reviews 2020, 120 (15), 7867-7918.
(12) Rong, Y.; Hu, Y.; Mei, A.; Tan, H.; Saidaminov, M. I.; Seok, S. I.; McGehee, M. D.; Sargent, E. H.; Han, H. Challenges for commercializing perovskite solar cells. Science 2018, 361 (6408), eaat8235.
(13) Roy, P.; Sinha, N. K.; Tiwari, S.; Khare, A. A review on perovskite solar cells: Evolution of architecture, fabrication techniques, commercialization issues and status. Solar Energy 2020, 198, 665-688.
(14) Chen, W.; Shi, Y.; Wang, Y.; Feng, X.; Djurišić, A. B.; Woo, H. Y.; Guo, X.; He, Z. N-type conjugated polymer as efficient electron transport layer for planar inverted perovskite solar cells with power conversion efficiency of 20.86%. Nano Energy 2020, 68, 104363.
(15) Noel, N. K.; Abate, A.; Stranks, S. D.; Parrott, E. S.; Burlakov, V. M.; Goriely, A.; Snaith, H. J. Enhanced photoluminescence and solar cell performance via Lewis base passivation of organic–inorganic lead halide perovskites. ACS nano 2014, 8 (10), 9815-9821.
(16) Gao, F.; Zhao, Y.; Zhang, X.; You, J. Recent progresses on defect passivation toward efficient perovskite solar cells. Advanced Energy Materials 2020, 10 (13), 1902650.
(17) Shi, Y.; Guo, H.; Qin, M.; Zhao, J.; Wang, Y.; Wang, H.; Wang, Y.; Facchetti, A.; Lu, X.; Guo, X. Thiazole imide‐based all‐acceptor homopolymer: achieving high‐performance unipolar electron transport in organic thin‐film transistors. Advanced Materials 2018, 30 (10), 1705745.
(18) Huang, J.; Ge, C.; Qin, F.; Zhang, J.; Yang, X.; Zou, Y.; Zhou, Y.; Li, W.-S.; Gao, X. A dithieno [3, 2-a: 3′, 2′-j][5, 6, 11, 12] chrysene diimide based polymer as an electron transport layer for efficient inverted perovskite solar cells. Journal of Materials Chemistry C 2022, 10 (7), 2703-2710.
(19) Jung, S. K.; Lee, D. S.; Ann, M. H.; Im, S. H.; Kim, J. H.; Kwon, O. P. Non‐Fullerene Organic Electron‐Transporting Materials for Perovskite Solar Cells. ChemSusChem 2018, 11 (22), 3882-3892.
(20) Shao, Y.; Yuan, Y.; Huang, J. Correlation of energy disorder and open-circuit voltage in hybrid perovskite solar cells. Nature Energy 2016, 1 (1), 1-6.
(21) Park, J.-S.; Choi, S.; Yan, Y.; Yang, Y.; Luther, J. M.; Wei, S.-H.; Parilla, P.; Zhu, K. Electronic structure and optical properties of α-CH3NH3PbBr3 perovskite single crystal. The journal of physical chemistry letters 2015, 6 (21), 4304-4308.
(22) Liu, H.; Huang, Z.; Wei, S.; Zheng, L.; Xiao, L.; Gong, Q. Nano-structured electron transporting materials for perovskite solar cells. Nanoscale 2016, 8 (12), 6209-6221.
(23) Jiang, K.; Wu, F.; Yu, H.; Yao, Y.; Zhang, G.; Zhu, L.; Yan, H. A perylene diimide-based electron transport layer enabling efficient inverted perovskite solar cells. Journal of Materials Chemistry A 2018, 6 (35), 16868-16873.
(24) Huang, J.; Tan, S.; Lund, P. D.; Zhou, H. Impact of H 2 O on organic–inorganic hybrid perovskite solar cells. Energy & Environmental Science 2017, 10 (11), 2284-2311.
(25) Sun, H.; Guo, X.; Facchetti, A. High-performance n-type polymer semiconductors: applications, recent development, and challenges. Chem 2020, 6 (6), 1310-1326.
(26) Wang, W.; Yuan, J.; Shi, G.; Zhu, X.; Shi, S.; Liu, Z.; Han, L.; Wang, H.-Q.; Ma, W. Inverted planar heterojunction perovskite solar cells employing polymer as the electron conductor. ACS Applied Materials & Interfaces 2015, 7 (7), 3994-3999.
(27) Onwubiko, A.; Yue, W.; Jellett, C.; Xiao, M.; Chen, H.-Y.; Ravva, M. K.; Hanifi, D. A.; Knall, A.-C.; Purushothaman, B.; Nikolka, M. Fused electron deficient semiconducting polymers for air stable electron transport. Nature communications 2018, 9 (1), 416.
(28) Dou, C.; Long, X.; Ding, Z.; Xie, Z.; Liu, J.; Wang, L. An Electron‐Deficient Building Block Based on the B← N Unit: An Electron Acceptor for All‐Polymer Solar Cells. Angewandte Chemie International Edition 2016, 55 (4), 1436-1440.
(29) Kim, H. I.; Kim, M. J.; Choi, K.; Lim, C.; Kim, Y. H.; Kwon, S. K.; Park, T. Improving the performance and stability of inverted planar flexible perovskite solar cells employing a novel NDI‐based polymer as the electron transport layer. Advanced Energy Materials 2018, 8 (16), 1702872.
(30) Liu, X.; Li, X.; Zou, Y.; Liu, H.; Wang, L.; Fang, J.; Yang, C. Energy level-modulated non-fullerene small molecule acceptors for improved V OC and efficiency of inverted perovskite solar cells. Journal of Materials Chemistry A 2019, 7 (7), 3336-3343.
(31) Shi, Y.; Chen, W.; Wu, Z.; Wang, Y.; Sun, W.; Yang, K.; Tang, Y.; Woo, H. Y.; Zhou, M.; Djurišić, A. B. Imide-functionalized acceptor–acceptor copolymers as efficient electron transport layers for high-performance perovskite solar cells. Journal of Materials Chemistry A 2020, 8 (27), 13754-13762.
(32) Wang, N.; Zhao, K.; Ding, T.; Liu, W.; Ahmed, A. S.; Wang, Z.; Tian, M.; Sun, X. W.; Zhang, Q. Improving interfacial charge recombination in planar heterojunction perovskite photovoltaics with small molecule as electron transport layer. Advanced Energy Materials 2017, 7 (18), 1700522.
(33) Jung, S. K.; Heo, J. H.; Lee, D. W.; Lee, S. C.; Lee, S. H.; Yoon, W.; Yun, H.; Im, S. H.; Kim, J. H.; Kwon, O. P. Nonfullerene electron transporting material based on naphthalene diimide small molecule for highly stable perovskite solar cells with efficiency exceeding 20%. Advanced Functional Materials 2018, 28 (20), 1800346.
(34) Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. Gaussian 09 (Gaussian, Inc., Wallingford, CT, 2009). Google Scholar There is no corresponding record for this reference 2020.
(35) Frisch, M.; Clemente, F. Gaussian 09, revision a. 01, mj frisch, gw trucks, hb schlegel, ge scuseria, ma robb, jr cheeseman, g. Scalmani, V. Barone, B. Mennucci, GA Petersson, H. Nakatsuji, M. Caricato, X. Li, HP Hratchian, AF Izmaylov, J. Bloino, G. Zhe 2009, 20-44.
(36) Dong, C.; Deng, S.; Meng, B.; Liu, J.; Wang, L. A Distannylated Monomer of a Strong Electron‐Accepting Organoboron Building Block: Enabling Acceptor–Acceptor‐Type Conjugated Polymers for n‐Type Thermoelectric Applications. Angewandte Chemie 2021, 133 (29), 16320-16326.
(37) Douglas, J. D.; Griffini, G.; Holcombe, T. W.; Young, E. P.; Lee, O. P.; Chen, M. S.; Fréchet, J. M. Functionalized isothianaphthene monomers that promote quinoidal character in donor–acceptor copolymers for organic photovoltaics. Macromolecules 2012, 45 (10), 4069-4074.
(38) Yang, J.; Cao, Q.; He, Z.; Pu, X.; Li, T.; Gao, B.; Li, X. The poly (styrene-co-acrylonitrile) polymer assisted preparation of high-performance inverted perovskite solar cells with efficiency exceeding 22%. Nano Energy 2021, 82, 105731.
(39) Zhang, B.; Yu, Y.; Zhou, J.; Wang, Z.; Tang, H.; Xie, S.; Xie, Z.; Hu, L.; Yip, H. L.; Ye, L. 3, 4‐Dicyanothiophene—a Versatile Building Block for Efficient Nonfullerene Polymer Solar Cells. Advanced Energy Materials 2020, 10 (12), 1904247.
(40) Simas, A. B.; Pereira, V. L.; Barreto Jr, C. B.; Sales, D. L. d.; Carvalho, L. L. d. An expeditious and consistent procedure for tetrahydrofuran (THF) drying and deoxygenation by the still apparatus. Química Nova 2009, 32, 2473-2475.
(41) Wisser, F. M.; Berruyer, P.; Cardenas, L.; Mohr, Y.; Quadrelli, E. A.; Lesage, A.; Farrusseng, D.; Canivet, J. Hammett parameter in microporous solids as macroligands for heterogenized photocatalysts. ACS Catalysis 2018, 8 (3), 1653-1661.
(42) Rice, C. R.; Onions, S.; Vidal, N.; Wallis, J. D.; Senna, M. C.; Pilkington, M.; Stoeckli‐Evans, H. The Coordination Chemistry of 3, 3′‐Diamino‐2, 2′‐bipyridine and Its Dication: Exploring the Role of the Amino Groups by X‐ray Crystallography. European Journal of Inorganic Chemistry 2002, 2002 (8), 1985-1997.
(43) Yoon, S. E.; Shin, S. J.; Lee, S. Y.; Jeon, G. G.; Kang, H.; Seo, H.; Zheng, J.; Kim, J. H. Strategic Side-Chain Engineering Approach for Optimizing Thermoelectric Properties of Isoindigo-Based Conjugated Polymers. ACS Applied Polymer Materials 2020, 2 (7), 2729-2735.
(44) Wang, M.; Wang, B.; Song, W.; Wang, X.; Peng, X.; Long, X.; Xia, Y. Oxygen Reduction Activity of B← N‐Containing Organic Molecule Affected by Asymmetric Regulation. Small 2022, 18 (3), 2105524.
(45) Seo, U. R.; Chung, Y. K.; Lee, C. Base‐Catalyzed One‐Pot Synthesis of Unsymmetrical Fluorenes from Aromatic ortho‐Dialdehydes and 1, 3‐Dicarbonyl Compounds. ChemCatChem 2016, 8 (6), 1051-1054.
(46) Montavon, T. J.; Türkmen, Y. E.; Shamsi, N. A.; Miller, C.; Sumaria, C. S.; Rawal, V. H.; Kozmin, S. A. [2+ 2+ 2] Cycloadditions of Siloxy Alkynes with 1, 2‐Diazines: From Reaction Discovery to Identification of an Antiglycolytic Chemotype. Angewandte Chemie International Edition 2013, 52 (51), 13576-13579.
(47) Balandier, J.-Y.; Quist, F.; Amato, C.; Bouzakraoui, S.; Cornil, J.; Sergeyev, S.; Geerts, Y. Synthesis of soluble oligothiophenes bearing cyano groups, their optical and electrochemical properties. Tetrahedron 2010, 66 (49), 9560-9572.
(48) Yang, L.; Zhu, Y.; Liu, J.; Chen, Y.; Wu, J.; Pang, Z.; Lu, Z.; Zhao, S.; Huang, Y. Marked effects of azulenyl vs. naphthyl groups on donor-π-acceptor-π-donor small molecules for organic photovoltaic cells. Dyes and Pigments 2021, 187, 109079.
(49) De Castro, M. L.; Priego-Capote, F. Soxhlet extraction: Past and present panacea. Journal of chromatography A 2010, 1217 (16), 2383-2389.
(50) Lee, J.; Kim, G. W.; Kim, M.; Park, S. A.; Park, T. Nonaromatic green‐solvent‐processable, dopant‐free, and lead‐capturable hole transport polymers in perovskite solar cells with high efficiency. Advanced Energy Materials 2020, 10 (8), 1902662.
(51) Kranthiraja, K.; Gunasekar, K.; Kim, H.; Cho, A. N.; Park, N. G.; Kim, S.; Kim, B. J.; Nishikubo, R.; Saeki, A.; Song, M. High‐performance long‐term‐stable dopant‐free perovskite solar cells and additive‐free organic solar cells by employing newly designed multirole π‐conjugated polymers. Advanced Materials 2017, 29 (23), 1700183.
(52) Wang, K.; Liu, J.; Yin, J.; Aydin, E.; Harrison, G. T.; Liu, W.; Chen, S.; Mohammed, O. F.; De Wolf, S. Defect passivation in perovskite solar cells by cyano‐based π‐conjugated molecules for improved performance and stability. Advanced Functional Materials 2020, 30 (35), 2002861. |