博碩士論文 110223066 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:3.148.237.97
姓名 黃志源(Jhih-Yuan Huang)  查詢紙本館藏   畢業系所 化學學系
論文名稱 做為反式鈣鈦礦太陽能電池的電子傳遞材料B-N缺電子共軛高分子
相關論文
★ 導電高分子應用於鋁質電解電容器之研究★ 異参茚并苯衍生物合成與性質之研究
★ 含雙吡啶或二氮雜啡衍生物配位 基之釕金屬錯合物的合成與其在 染料敏化太陽能電池之應用★ 新型噻吩環戊烷有機染料於染料敏化太陽能電池之應用
★ 應用於染料敏化太陽能電池之新型釕金屬錯合物的合成與性質探討★ 釕金屬光敏化劑的設計與合成及其在染料敏化太陽能電池之應用
★ 染敏電池用之非對稱釕錯合物之輔助配位基的設計與合成★ 含雙噻吩環戊烷之電變色高分子的研究
★ 含噻吩衍生物非對稱方酸染料應用於染料敏化 太陽能電池★ 高品質導電聚苯胺薄膜的合成及應用
★ 染料敏化太陽能電池用導電高分子聚苯胺及聚二氧乙基噻吩陰極催化劑的探討★ 具多功能性之非對稱型釕錯合物的設計與合成並應用於染料敏化太陽能電池
★ 含乙烯噻吩固著配位基之非對稱型釕金屬錯合物應用於染料敏化太陽能電池★ 染料敏化太陽能電池用二茂鐵系統電解質的探討
★ 合成含喹啉衍生物非對稱方酸染料應用於染料敏化太陽能電池★ 合成新穎輔助配位基於無硫氰酸釕金屬光敏劑在染料敏化太陽能電池上的應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-1-29以後開放)
摘要(中) 反式鉛鈣鈦礦太陽能電池(Perovskite solar cells,簡稱PSCs)中的電子傳遞層(Electron Transport Layer,簡稱ETL)功能是將鈣鈦礦層吸光所激發的電子萃取後並傳遞至外線路,因此合成出低LUMO能階的高分子就很重要。本研究合成D-A type共軛高分子P-BNBP-BT-CN,Donor為四環共平面結構的BNBP (double B ← N bridged bipyridine)具有高平面性、低LUMO能階的優點,Acceptor為ITN-CN (benzo[c]thiophene-5,6-dicarbonitrile)結構及帶有兩個強拉電子的氰基,能降低LUMO能階,同時屬於路易斯鹼的氰基可與鈣鈦礦層中屬於路易士酸的Pb2+作用,修飾鈣鈦礦層表面的缺陷。另外使用與ITN-CN結構少一個芳香環的Th-CN ( Thiophene-3,4-dicarbonitrile )結構作為Acceptor單元,合成出高分子P-BNBP-Th-CN。高分子P-BNBP-BT-CN及高分子P-BNBP-Th-CN具有有良好的熱穩定性(熱裂解溫度分別為271 ℃及276 ℃)及良好的疏水性(水接觸角分別為96度及93度) ;由兩個高分子各別與PbI2混合後之FTIR穿透光譜顯示P-BNBP-BT-CN結構中之CN(氰)基往低波數位移6 cm-1、P-BNBP-Th-CN結構中之CN(氰)基往低波數位移4 cm-1,證實CN能與Pb2+作用修飾鈣鈦礦層中的Pb2+缺陷;P-BNBP-BT-CN的HOMO與LUMO能階則為-5.48 eV及-3.81 eV,P-BNBP-Th-CN的HOMO與LUMO能階則為-5.51 eV及-3.7 eV,以兩個高分子分別做為ETL所組裝之反式PSCs (吸光層組成為(FAPbI3)0.9(MAPbBr3)0.1 )的光電轉換效率(PCE)值分別是0.42%及0.42%。
摘要(英) Perovskite solar cells (PSCs) employ an electron transport layer (ETL) to extract and transfer electrons from the perovskite layer by exciting with light to the external circuit. Therefore, it is crucial that conjugated polymers ETL should have a low-lying frontier orbital energy level for ETL. In this study, a D-A type conjugated polymer, P-BNBP-BT-CN, was synthesized. The donor component, BNBP (double B ← N bridged bipyridine), is a four-ring planar structure that offers high planarity and a low-lying LUMO energy level. The acceptor component, ITN-CN (benzo[c]thiophene-5,6-dicarbonitrile), contains two strong electron-withdrawing cyano groups. Which can further reduce the LUMO energy level. Additionally, the cyano groups act as Lewis bases, which can interact with the Pb2+ defect in the perovskite layer to passivate the perovskite suface. Another acceptor unit, Th-CN (thiophene-3,4-dicarbonitrile), which lacks one aromatic ring compared to ITN-CN, was incorporated into the polymer to form P-BNBP-Th-CN. Both P-BNBP-BT-CN and P-BNBP-Th-CN exhibit good thermal stability (decomposition temperatures of 271°C and 276°C, respectively) and hydrophobicity (water contact angles are 96 degrees and 93 degrees, respectively). FTIR transmittance spectra of the two polymers mixed with PbI2 show a red-shift of the CN stretching vibration by 6 cm-1 for P-BNBP-BT-CN and 4 cm-1 for P-BNBP-Th-CN, indicating the interaction of CN groups with coordination unsaturated Pb2+. The HOMO and LUMO energy levels of P-BNBP-BT-CN are -5.48 eV and -3.81 eV, respectively, while those of P-BNBP-Th-CN are -5.51 eV and -3.7 eV, respectively. When used P-BNBP-BT-CN and P-BNBP-Th-CN as ETLs in inverted PSCs with a composition of (FAPbI3)0.9(MAPbBr3)0.1 as perovskite absorber, the power conversion efficiency (PCE) values of the corresponding devices based on P-BNBP-BT-CN and P-BNBP-Th-CN are both around 0.42%.
關鍵字(中) ★ 鈣鈦礦太陽能電池
★ 共軛高分子
關鍵字(英)
論文目次 摘要 i
Abstract ii
目錄 v
圖目錄 vii
表目錄 ix
第一章、緒論 1
1-1、前言 1
1-2、太陽能電池種類 1
1-3、鈣鈦礦太陽能電池(PSC)之架構與工作原理 3
1-4、反式鈣鈦礦太陽能電池的電子傳遞層所需性質 7
1-4-1、聚合物電子傳遞層的設計策略 8
1-4-2、目前反式 PSCs常見有機電子傳遞材料 8
1-5、使用BNBP構成的聚合物電子傳遞材料及設計 9
1-6、合成具有低前置軌域能階共聚物的策略 12
1-7、研究動機 17
第二章 實驗部分 18
2-1、實驗藥品 18
2-2、中間產物與產物結構簡稱與分子量 23
2-3、實驗步驟 27
2-3-1、Donor: B(PIN)2-BNBP的合成,如圖2-3-1所示 27
2-3-2、Acceptor 1: ITN-CN的合成,如圖2-3-2所示 31
2-3-3、Acceptor 2: Br-CN-Th的合成【47】,如圖2-3-3所示 34
2-3-4、Pd(PPh3)4催化劑合成,如圖2-3-4所示 35
2-3-5、P-BNBP-BT-CN、P-BNBP-Th-CN的合成圖,如圖2-3-5所示 36
2-4、儀器分析與樣品製備 38
2-4-1核磁共振光譜儀(Nuclear Magnetic Resonance Spectrometer) 38
2-4-2熱重分析(Thermogravimetric Analysis) 39
2-4-3電化學測量(Electrochemical Measurement System) 40
2-4-4紫外光/可見光吸收光譜儀 (Ultraviolet Visible Spectrophoto-meter, UV/Vis Spectrophotometer) 42
2-4-5接觸角量測儀(Contact angle meter) 43
2-4-6聚焦微波化學反應系統(CEM) 43
2-4-7傅立葉轉換紅外光光譜儀(Fourier transform infrared spectrometer) 44
第三章 結果與討論 46
3-1、結構鑑定 46
3-2、前置軌域理論計算 48
3-3、兩個高分子的紫外光/可見光光譜圖 49
3-4、電化學循環伏安圖及前置軌域能階 51
3-5、高分子膜的親疏水性 52
3-6、兩個高分子的熱重分析 53
3-7、兩個高分子及其與PbI2混合後的FTIR穿透光譜圖 55
3-8、兩個高分子做為電子傳遞材料所組裝之反式鈣鈦礦太陽能電池元件的光伏表現 57
第四章 結論 59
參考文獻 60
附錄 65
參考文獻 (1) Omer, A. M. Green energies and the environment. Renewable and sustainable energy reviews 2008, 12 (7), 1789-1821.
(2) Potocnik, J. Renewable energy sources and the realities of setting an energy agenda. Science 2007, 315 (5813), 810-811.
(3) https://www.nrel.gov/pv/cell-efficiency.html. (accessed.
(4) Louwen, A.; Van Sark, W.; Schropp, R.; Faaij, A. A cost roadmap for silicon heterojunction solar cells. Solar Energy Materials and Solar Cells 2016, 147, 295-314.
(5) Kayes, B. M.; Zhang, L.; Twist, R.; Ding, I.-K.; Higashi, G. S. Flexible thin-film tandem solar cells with> 30% efficiency. IEEE Journal of Photovoltaics 2014, 4 (2), 729-733.
(6) Lee, T. D.; Ebong, A. U. A review of thin film solar cell technologies and challenges. Renewable and Sustainable Energy Reviews 2017, 70, 1286-1297.
(7) Krebs, F. C.; Espinosa, N.; Hösel, M.; Søndergaard, R. R.; Jørgensen, M. 25th anniversary article: rise to power–OPV‐based solar parks. Advanced Materials 2014, 26 (1), 29-39.
(8) Gong, J.; Liang, J.; Sumathy, K. Review on dye-sensitized solar cells (DSSCs): Fundamental concepts and novel materials. Renewable and Sustainable Energy Reviews 2012, 16 (8), 5848-5860.
(9) Green, M. A.; Ho-Baillie, A.; Snaith, H. J. The emergence of perovskite solar cells. Nature photonics 2014, 8 (7), 506-514.
(10) Katz, E. A. Perovskite: name puzzle and German‐Russian odyssey of discovery. Helvetica Chimica Acta 2020, 103 (6), e2000061.
(11) Kim, J. Y.; Lee, J.-W.; Jung, H. S.; Shin, H.; Park, N.-G. High-efficiency perovskite solar cells. Chemical Reviews 2020, 120 (15), 7867-7918.
(12) Rong, Y.; Hu, Y.; Mei, A.; Tan, H.; Saidaminov, M. I.; Seok, S. I.; McGehee, M. D.; Sargent, E. H.; Han, H. Challenges for commercializing perovskite solar cells. Science 2018, 361 (6408), eaat8235.
(13) Roy, P.; Sinha, N. K.; Tiwari, S.; Khare, A. A review on perovskite solar cells: Evolution of architecture, fabrication techniques, commercialization issues and status. Solar Energy 2020, 198, 665-688.
(14) Chen, W.; Shi, Y.; Wang, Y.; Feng, X.; Djurišić, A. B.; Woo, H. Y.; Guo, X.; He, Z. N-type conjugated polymer as efficient electron transport layer for planar inverted perovskite solar cells with power conversion efficiency of 20.86%. Nano Energy 2020, 68, 104363.
(15) Noel, N. K.; Abate, A.; Stranks, S. D.; Parrott, E. S.; Burlakov, V. M.; Goriely, A.; Snaith, H. J. Enhanced photoluminescence and solar cell performance via Lewis base passivation of organic–inorganic lead halide perovskites. ACS nano 2014, 8 (10), 9815-9821.
(16) Gao, F.; Zhao, Y.; Zhang, X.; You, J. Recent progresses on defect passivation toward efficient perovskite solar cells. Advanced Energy Materials 2020, 10 (13), 1902650.
(17) Shi, Y.; Guo, H.; Qin, M.; Zhao, J.; Wang, Y.; Wang, H.; Wang, Y.; Facchetti, A.; Lu, X.; Guo, X. Thiazole imide‐based all‐acceptor homopolymer: achieving high‐performance unipolar electron transport in organic thin‐film transistors. Advanced Materials 2018, 30 (10), 1705745.
(18) Huang, J.; Ge, C.; Qin, F.; Zhang, J.; Yang, X.; Zou, Y.; Zhou, Y.; Li, W.-S.; Gao, X. A dithieno [3, 2-a: 3′, 2′-j][5, 6, 11, 12] chrysene diimide based polymer as an electron transport layer for efficient inverted perovskite solar cells. Journal of Materials Chemistry C 2022, 10 (7), 2703-2710.
(19) Jung, S. K.; Lee, D. S.; Ann, M. H.; Im, S. H.; Kim, J. H.; Kwon, O. P. Non‐Fullerene Organic Electron‐Transporting Materials for Perovskite Solar Cells. ChemSusChem 2018, 11 (22), 3882-3892.
(20) Shao, Y.; Yuan, Y.; Huang, J. Correlation of energy disorder and open-circuit voltage in hybrid perovskite solar cells. Nature Energy 2016, 1 (1), 1-6.
(21) Park, J.-S.; Choi, S.; Yan, Y.; Yang, Y.; Luther, J. M.; Wei, S.-H.; Parilla, P.; Zhu, K. Electronic structure and optical properties of α-CH3NH3PbBr3 perovskite single crystal. The journal of physical chemistry letters 2015, 6 (21), 4304-4308.
(22) Liu, H.; Huang, Z.; Wei, S.; Zheng, L.; Xiao, L.; Gong, Q. Nano-structured electron transporting materials for perovskite solar cells. Nanoscale 2016, 8 (12), 6209-6221.
(23) Jiang, K.; Wu, F.; Yu, H.; Yao, Y.; Zhang, G.; Zhu, L.; Yan, H. A perylene diimide-based electron transport layer enabling efficient inverted perovskite solar cells. Journal of Materials Chemistry A 2018, 6 (35), 16868-16873.
(24) Huang, J.; Tan, S.; Lund, P. D.; Zhou, H. Impact of H 2 O on organic–inorganic hybrid perovskite solar cells. Energy & Environmental Science 2017, 10 (11), 2284-2311.
(25) Sun, H.; Guo, X.; Facchetti, A. High-performance n-type polymer semiconductors: applications, recent development, and challenges. Chem 2020, 6 (6), 1310-1326.
(26) Wang, W.; Yuan, J.; Shi, G.; Zhu, X.; Shi, S.; Liu, Z.; Han, L.; Wang, H.-Q.; Ma, W. Inverted planar heterojunction perovskite solar cells employing polymer as the electron conductor. ACS Applied Materials & Interfaces 2015, 7 (7), 3994-3999.
(27) Onwubiko, A.; Yue, W.; Jellett, C.; Xiao, M.; Chen, H.-Y.; Ravva, M. K.; Hanifi, D. A.; Knall, A.-C.; Purushothaman, B.; Nikolka, M. Fused electron deficient semiconducting polymers for air stable electron transport. Nature communications 2018, 9 (1), 416.
(28) Dou, C.; Long, X.; Ding, Z.; Xie, Z.; Liu, J.; Wang, L. An Electron‐Deficient Building Block Based on the B← N Unit: An Electron Acceptor for All‐Polymer Solar Cells. Angewandte Chemie International Edition 2016, 55 (4), 1436-1440.
(29) Kim, H. I.; Kim, M. J.; Choi, K.; Lim, C.; Kim, Y. H.; Kwon, S. K.; Park, T. Improving the performance and stability of inverted planar flexible perovskite solar cells employing a novel NDI‐based polymer as the electron transport layer. Advanced Energy Materials 2018, 8 (16), 1702872.
(30) Liu, X.; Li, X.; Zou, Y.; Liu, H.; Wang, L.; Fang, J.; Yang, C. Energy level-modulated non-fullerene small molecule acceptors for improved V OC and efficiency of inverted perovskite solar cells. Journal of Materials Chemistry A 2019, 7 (7), 3336-3343.
(31) Shi, Y.; Chen, W.; Wu, Z.; Wang, Y.; Sun, W.; Yang, K.; Tang, Y.; Woo, H. Y.; Zhou, M.; Djurišić, A. B. Imide-functionalized acceptor–acceptor copolymers as efficient electron transport layers for high-performance perovskite solar cells. Journal of Materials Chemistry A 2020, 8 (27), 13754-13762.
(32) Wang, N.; Zhao, K.; Ding, T.; Liu, W.; Ahmed, A. S.; Wang, Z.; Tian, M.; Sun, X. W.; Zhang, Q. Improving interfacial charge recombination in planar heterojunction perovskite photovoltaics with small molecule as electron transport layer. Advanced Energy Materials 2017, 7 (18), 1700522.
(33) Jung, S. K.; Heo, J. H.; Lee, D. W.; Lee, S. C.; Lee, S. H.; Yoon, W.; Yun, H.; Im, S. H.; Kim, J. H.; Kwon, O. P. Nonfullerene electron transporting material based on naphthalene diimide small molecule for highly stable perovskite solar cells with efficiency exceeding 20%. Advanced Functional Materials 2018, 28 (20), 1800346.
(34) Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. Gaussian 09 (Gaussian, Inc., Wallingford, CT, 2009). Google Scholar There is no corresponding record for this reference 2020.
(35) Frisch, M.; Clemente, F. Gaussian 09, revision a. 01, mj frisch, gw trucks, hb schlegel, ge scuseria, ma robb, jr cheeseman, g. Scalmani, V. Barone, B. Mennucci, GA Petersson, H. Nakatsuji, M. Caricato, X. Li, HP Hratchian, AF Izmaylov, J. Bloino, G. Zhe 2009, 20-44.
(36) Dong, C.; Deng, S.; Meng, B.; Liu, J.; Wang, L. A Distannylated Monomer of a Strong Electron‐Accepting Organoboron Building Block: Enabling Acceptor–Acceptor‐Type Conjugated Polymers for n‐Type Thermoelectric Applications. Angewandte Chemie 2021, 133 (29), 16320-16326.
(37) Douglas, J. D.; Griffini, G.; Holcombe, T. W.; Young, E. P.; Lee, O. P.; Chen, M. S.; Fréchet, J. M. Functionalized isothianaphthene monomers that promote quinoidal character in donor–acceptor copolymers for organic photovoltaics. Macromolecules 2012, 45 (10), 4069-4074.
(38) Yang, J.; Cao, Q.; He, Z.; Pu, X.; Li, T.; Gao, B.; Li, X. The poly (styrene-co-acrylonitrile) polymer assisted preparation of high-performance inverted perovskite solar cells with efficiency exceeding 22%. Nano Energy 2021, 82, 105731.
(39) Zhang, B.; Yu, Y.; Zhou, J.; Wang, Z.; Tang, H.; Xie, S.; Xie, Z.; Hu, L.; Yip, H. L.; Ye, L. 3, 4‐Dicyanothiophene—a Versatile Building Block for Efficient Nonfullerene Polymer Solar Cells. Advanced Energy Materials 2020, 10 (12), 1904247.
(40) Simas, A. B.; Pereira, V. L.; Barreto Jr, C. B.; Sales, D. L. d.; Carvalho, L. L. d. An expeditious and consistent procedure for tetrahydrofuran (THF) drying and deoxygenation by the still apparatus. Química Nova 2009, 32, 2473-2475.
(41) Wisser, F. M.; Berruyer, P.; Cardenas, L.; Mohr, Y.; Quadrelli, E. A.; Lesage, A.; Farrusseng, D.; Canivet, J. Hammett parameter in microporous solids as macroligands for heterogenized photocatalysts. ACS Catalysis 2018, 8 (3), 1653-1661.
(42) Rice, C. R.; Onions, S.; Vidal, N.; Wallis, J. D.; Senna, M. C.; Pilkington, M.; Stoeckli‐Evans, H. The Coordination Chemistry of 3, 3′‐Diamino‐2, 2′‐bipyridine and Its Dication: Exploring the Role of the Amino Groups by X‐ray Crystallography. European Journal of Inorganic Chemistry 2002, 2002 (8), 1985-1997.
(43) Yoon, S. E.; Shin, S. J.; Lee, S. Y.; Jeon, G. G.; Kang, H.; Seo, H.; Zheng, J.; Kim, J. H. Strategic Side-Chain Engineering Approach for Optimizing Thermoelectric Properties of Isoindigo-Based Conjugated Polymers. ACS Applied Polymer Materials 2020, 2 (7), 2729-2735.
(44) Wang, M.; Wang, B.; Song, W.; Wang, X.; Peng, X.; Long, X.; Xia, Y. Oxygen Reduction Activity of B← N‐Containing Organic Molecule Affected by Asymmetric Regulation. Small 2022, 18 (3), 2105524.
(45) Seo, U. R.; Chung, Y. K.; Lee, C. Base‐Catalyzed One‐Pot Synthesis of Unsymmetrical Fluorenes from Aromatic ortho‐Dialdehydes and 1, 3‐Dicarbonyl Compounds. ChemCatChem 2016, 8 (6), 1051-1054.
(46) Montavon, T. J.; Türkmen, Y. E.; Shamsi, N. A.; Miller, C.; Sumaria, C. S.; Rawal, V. H.; Kozmin, S. A. [2+ 2+ 2] Cycloadditions of Siloxy Alkynes with 1, 2‐Diazines: From Reaction Discovery to Identification of an Antiglycolytic Chemotype. Angewandte Chemie International Edition 2013, 52 (51), 13576-13579.
(47) Balandier, J.-Y.; Quist, F.; Amato, C.; Bouzakraoui, S.; Cornil, J.; Sergeyev, S.; Geerts, Y. Synthesis of soluble oligothiophenes bearing cyano groups, their optical and electrochemical properties. Tetrahedron 2010, 66 (49), 9560-9572.
(48) Yang, L.; Zhu, Y.; Liu, J.; Chen, Y.; Wu, J.; Pang, Z.; Lu, Z.; Zhao, S.; Huang, Y. Marked effects of azulenyl vs. naphthyl groups on donor-π-acceptor-π-donor small molecules for organic photovoltaic cells. Dyes and Pigments 2021, 187, 109079.
(49) De Castro, M. L.; Priego-Capote, F. Soxhlet extraction: Past and present panacea. Journal of chromatography A 2010, 1217 (16), 2383-2389.
(50) Lee, J.; Kim, G. W.; Kim, M.; Park, S. A.; Park, T. Nonaromatic green‐solvent‐processable, dopant‐free, and lead‐capturable hole transport polymers in perovskite solar cells with high efficiency. Advanced Energy Materials 2020, 10 (8), 1902662.
(51) Kranthiraja, K.; Gunasekar, K.; Kim, H.; Cho, A. N.; Park, N. G.; Kim, S.; Kim, B. J.; Nishikubo, R.; Saeki, A.; Song, M. High‐performance long‐term‐stable dopant‐free perovskite solar cells and additive‐free organic solar cells by employing newly designed multirole π‐conjugated polymers. Advanced Materials 2017, 29 (23), 1700183.
(52) Wang, K.; Liu, J.; Yin, J.; Aydin, E.; Harrison, G. T.; Liu, W.; Chen, S.; Mohammed, O. F.; De Wolf, S. Defect passivation in perovskite solar cells by cyano‐based π‐conjugated molecules for improved performance and stability. Advanced Functional Materials 2020, 30 (35), 2002861.
指導教授 吳春桂(Chun-Guey Wu) 審核日期 2024-1-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明