參考文獻 |
1. Switzer, B., I. Puzanov, J.J. Skitzki, L. Hamad, and M.S. Ernstoff, Managing Metastatic Melanoma in 2022: A Clinical Review. Jco Oncology Practice, 2022. 18(5): p. 335-+.
2. Margolis, N., E. Markovits, and G. Markel, Reprogramming lymphocytes for the treatment of melanoma: From biology to therapy. Advanced Drug Delivery Reviews, 2019. 141: p. 104-124.
3. Arnold, M., D. Singh, M. Laversanne, J. Vignat, S. Vaccarella, F. Meheus, A.E. Cust, E. de Vries, D.C. Whiteman, and F. Bray, Global Burden of Cutaneous Melanoma in 2020 and Projections to 2040. Jama Dermatology, 2022. 158(5): p. 495-503.
4. Bombelli, F.B., C.A. Webster, M. Moncrieff, and V. Sherwood, The scope of nanoparticle therapies for future metastatic melanoma treatment. Lancet Oncology, 2014. 15(1): p. E22-E32.
5. Monge-Fuentes, V., L.A. Muehlmann, J.P.F. Longo, J.R. Silva, M.L. Fascineli, P. de Souza, F. Faria, I.A. Degterev, A. Rodriguez, F.P. Carneiro, C.M. Lucci, P. Escobar, R.F.B. Amorim, and R.B. Azevedo, Photodynamic therapy mediated by acai oil (Euterpe oleracea Martius) in nanoemulsion: A potential treatment for melanoma. Journal of Photochemistry and Photobiology B-Biology, 2017. 166: p. 301-310.
6. Vosoughi, E., J.M. Lee, J.R. Miller, M. Nosrati, D.R. Minor, R. Abendroth, J.W. Lee, B.T. Andrews, L.Z. Leng, M. Wu, S.P. Leong, M. Kashani-Sabet, and K.B. Kim, Survival and clinical outcomes of patients with melanoma brain metastasis in the era of checkpoint inhibitors and targeted therapies. Bmc Cancer, 2018. 18: p. 7.
7. Kahlon, N., S. Doddi, R. Yousif, S. Najib, T. Sheikh, Z. Abuhelwa, C. Burmeister, and D.M. Hamouda, Melanoma Treatments and Mortality Rate Trends in the US, 1975 to 2019. Jama Network Open, 2022. 5(12): p. 12.
8. Cancer Stat Facts: Melanoma of the Skin. [cited 2023 4/12]; Available from: https://seer.cancer.gov/statfacts/html/melan.html.
9. Gordon, R., Skin Cancer: An Overview of Epidemiology and Risk Factors. Seminars in Oncology Nursing, 2013: p. 160-169.
10. Hu, W., L.L. Fang, R.Y. Ni, H.C. Zhang, and G.X. Pan, Changing trends in the disease burden of non-melanoma skin cancer globally from 1990 to 2019 and its predicted level in 25 years. Bmc Cancer, 2022. 22(1): p. 11.
11. Perez, M., J.A. Abisaad, K.D. Rojas, M.A. Marchetti, and N. Jaimes, Skin cancer: Primary, secondary, and tertiary prevention. Part I. Journal of the American Academy of Dermatology, 2022. 87(2): p. 255-268.
12. Leiter, U., U. Keim, and C. Garbe, Epidemiology of Skin Cancer: Update 2019, in Sunlight, Vitamin D and Skin Cancer, 3rd Edition, J. Reichrath, Editor. 2020, Springer International Publishing Ag: Cham. p. 123-139.
13. Lomas, A., J. Leonardi-Bee, and F. Bath-Hextall, A systematic review of worldwide incidence of nonmelanoma skin cancer. British Journal of Dermatology, 2012. 166(5): p. 1069-1080.
14. Lopes, J., C.M.P. Rodrigues, M.M. Gaspar, and C.P. Reis, Melanoma Management: From Epidemiology to Treatment and Latest Advances. Cancers, 2022. 14(19): p. 24.
15. Dimitriou, F., R. Krattinger, E. Ramelyte, M.J. Barysch, S. Micaletto, R. Dummer, and S.M. Goldinger, The World of Melanoma: Epidemiologic, Genetic, and Anatomic Differences of Melanoma Across the Globe. Current Oncology Reports, 2018. 20(11): p. 9.
16. Millet, A., A.R. Martin, C. Ronco, S. Rocchi, and R. Benhida, Metastatic Melanoma: Insights Into the Evolution of the Treatments and Future Challenges. Medicinal Research Reviews, 2017. 37(1): p. 98-148.
17. Bandarchi, B., C.A. Jabbari, A. Vedadi, and R. Navab, Molecular biology of normal melanocytes and melanoma cells. Journal of Clinical Pathology, 2013. 66(8): p. 644-648.
18. Balzer, D. What you need to know about skin cancer. 2020 [cited 2023 4/27]; Available from: https://newsnetwork.mayoclinic.org/discussion/5-27-what-you-need-to-know-about-skin-cancer/.
19. Khan, N.H., M. Mir, L. Qian, M. Baloch, M.F.A. Khan, R. Asim ur, E.E. Ngowi, D.D. Wu, and X.Y. Ji, Skin cancer biology and barriers to treatment: Recent applications of polymeric micro/nanostructures. Journal of Advanced Research, 2022. 36: p. 223-247.
20. Guo, W.N., H.N. Wang, and C.Y. Li, Signal pathways of melanoma and targeted therapy. Signal Transduction and Targeted Therapy, 2021. 6(1): p. 39.
21. Lo, J.A. and D.E. Fisher, The melanoma revolution: From UV carcinogenesis to a new era in therapeutics. Science, 2014. 346(6212): p. 945-949.
22. Lin, J.Y. and D.E. Fisher, Melanocyte biology and skin pigmentation. Nature, 2007. 445(7130): p. 843-850.
23. Gray-Schopfer, V., C. Wellbrock, and R. Marais, Melanoma biology and new targeted therapy. Nature, 2007. 445(7130): p. 851-857.
24. Haass, N.K., K.S.M. Smalley, and M. Herlyn, The role of altered cell-cell communication in melanoma progression. Journal of Molecular Histology, 2004. 35(3): p. 309-318.
25. Liu, V. and M.C. Mihm, Pathology of malignant melanoma. Surgical Clinics of North America, 2003. 83(1): p. 31-+.
26. Rastrelli, M., S. Tropea, C.R. Rossi, and M. Alaibac, Melanoma: Epidemiology, Risk Factors, Pathogenesis, Diagnosis and Classification. In Vivo, 2014. 28(6): p. 1005-1011.
27. Chopra, A., R. Sharma, and U.N.M. Rao, Pathology of Melanoma. Surgical Clinics of North America, 2020. 100(1): p. 43-+.
28. Greenwald, H.S., E.B. Friedman, and I. Osman, Superficial spreading and nodular melanoma are distinct biological entities: a challenge to the linear progression model. Melanoma Research, 2012. 22(1): p. 1-8.
29. Scolyer, R.A., G.V. Long, and J.F. Thompson, Evolving concepts in melanoma classification and their relevance to multidisciplinary melanoma patient care. Molecular Oncology, 2011. 5(2): p. 124-136.
30. Duncan, L.M., The Classification of Cutaneous Melanoma. Hematology-Oncology Clinics of North America, 2009. 23(3): p. 501-+.
31. Pollack, L.A., J. Li, Z. Berkowitz, H.K. Weir, X.C. Wu, U.A. Ajani, D.U. Ekwueme, C.Y. Li, and B.P. Pollack, Melanoma survival in the United States, 1992 to 2005. Journal of the American Academy of Dermatology, 2011. 65(5): p. S78-S86.
32. Slominski, A., J. Wortsman, A.J. Carlson, L.Y. Matsuoka, C.M. Balch, and M.C. Mihm, Malignant melanoma - An update. Archives of Pathology & Laboratory Medicine, 2001. 125(10): p. 1295-1306.
33. Splane, B. What Is Melanoma? 2022 [cited 2023 5/15]; Available from: https://www.verywellhealth.com/what-is-melanoma-514215.
34. Emily Z. Keung, C.M.B., Jeffrey E. Gershenwald,Allan C. Halpern. Key Changes in the AJCC Eighth Edition Melanoma Staging System. 2018 [cited 2023; Available from: https://provider.skincancer.org/the-melanoma-letter/2018-vol-36-no-1/key-changes-ajcc-eighth-edition-melanoma-staging-system/.
35. Gershenwald, J.E. and R.A. Scolyer, Melanoma Staging: American Joint Committee on Cancer (AJCC) 8th Edition and Beyond. Annals of Surgical Oncology, 2018. 25(8): p. 2105-2110.
36. Gershenwald, J.E., R.A. Scolyer, K.R. Hess, V.K. Sondak, G.V. Long, M.I. Ross, A.J. Lazar, M.B. Faries, J.M. Kirkwood, G.A. McArthur, L.E. Haydu, A.M.M. Eggermont, K.T. Flaherty, C.M. Balch, J.F. Thompson, M. American Joint Comm Canc, and D. Int Melanoma Database, Melanoma staging: Evidence-based changes in the American Joint Committee on Cancer eighth edition cancer staging manual. Ca-a Cancer Journal for Clinicians, 2017. 67(6): p. 472-492.
37. Keung, E.Z. and J.E. Gershenwald, The eighth edition American Joint Committee on Cancer (AJCC) melanoma staging system: implications for melanoma treatment and care. Expert Review of Anticancer Therapy, 2018. 18(8): p. 775-784.
38. Unger, J.M., L.E. Flaherty, P.Y. Liu, K.S. Albain, and V.K. Sondak, Gender and other survival predictors in patients with metastatic melanoma on southwest oncology group trials. Cancer, 2001. 91(6): p. 1148-1155.
39. Gershenwald, J.E., R.A. Scolyer, K.R. Hess, J.F. Thompson, G.V. Long, M.I. Ross, A.J. Lazar, M.B. Atkins, C.M. Balch, and R.L. Barnhill, Melanoma of the skin. AJCC cancer staging manual, 2017. 8: p. 563-585.
40. Staging Melanoma. [cited 2023 5/17]; Available from: https://www.sitcancer.org/connectedold/p/patient/resources/melanoma-guide/staging.
41. Puglisi, R., M. Bellenghi, G. Pontecorvi, G. Pallante, A. Care, and G. Mattia, Biomarkers for Diagnosis, Prognosis and Response to Immunotherapy in Melanoma. Cancers, 2021. 13(12): p. 15.
42. Rahmati, M., S. Ebrahim, S. Hashemi, M. Motamedi, and M.A. Moosavi, New insights on the role of autophagy in the pathogenesis and treatment of melanoma. Molecular Biology Reports, 2020. 47(11): p. 9021-9032.
43. Miller, A.J. and M.C. Mihm Jr, Melanoma. New England Journal of Medicine, 2006. 355(1): p. 51-65.
44. Djavid, A.R., C. Stonesifer, B.T. Fullerton, S.W. Wang, M.A. Tartaro, B.D. Kwinta, J.M. Grimes, L.J. Geskin, and Y.M. Saenger, Etiologies of Melanoma Development and Prevention Measures: A Review of the Current Evidence. Cancers, 2021. 13(19): p. 27.
45. Dzwierzynski, W.W., Melanoma risk factors and prevention. Clinics in plastic surgery, 2021. 48(4): p. 543-550.
46. Jhappan, C., F.P. Noonan, and G. Merlino, Ultraviolet radiation and cutaneous malignant melanoma. Oncogene, 2003. 22(20): p. 3099-3112.
47. Matsumura, Y. and H.N. Ananthaswamy, Molecular mechanisms of photocarcinogenesis. Frontiers in Bioscience-Landmark, 2002. 7: p. D765-D783.
48. Djavid, A.R., C. Stonesifer, B.T. Fullerton, S.W. Wang, M.A. Tartaro, B.D. Kwinta, J.M. Grimes, L.J. Geskin, and Y.M. Saenger, Etiologies of melanoma development and prevention measures: A review of the current evidence. Cancers, 2021. 13(19): p. 4914.
49. Markovic, S.N., L.A. Erickson, R.D. Rao, R.R. McWilliams, L.A. Kottschade, E.T. Creagan, R.H. Weenig, J.L. Hand, M.R. Pittelkow, and B.A. Pockaj. Malignant melanoma in the 21st century, part 1: epidemiology, risk factors, screening, prevention, and diagnosis. in Mayo Clinic Proceedings. 2007. Elsevier.
50. Tucker, M.A. and A.M. Goldstein, Melanoma etiology: where are we? Oncogene, 2003. 22(20): p. 3042-3052.
51. Hollenbeak, C.S., M.M. Todd, E.M. Billingsley, G. Harper, A.M. Dyer, and E.J. Lengerich, Increased incidence of melanoma in renal transplantation recipients. Cancer, 2005. 104(9): p. 1962-1967.
52. Dreno, B., Skin cancers after transplantation. Nephrology Dialysis Transplantation, 2003. 18(6): p. 1052-1058.
53. Davis, L.E., S.C. Shalin, and A.J. Tackett, Current state of melanoma diagnosis and treatment. Cancer Biology & Therapy, 2019. 20(11): p. 1366-1379.
54. Pinho, J.O., M. Matias, and M.M. Gaspar, Emergent Nanotechnological Strategies for Systemic Chemotherapy against Melanoma. Nanomaterials, 2019. 9(10): p. 35.
55. Wilson, M.A. and L.M. Schuchter, Chemotherapy for melanoma. Melanoma, 2016: p. 209-229.
56. Luke, J.J., K.T. Flaherty, A. Ribas, and G.V. Long, Targeted agents and immunotherapies: optimizing outcomes in melanoma. Nature reviews Clinical oncology, 2017. 14(8): p. 463-482.
57. Czarnecka, A.M., E. Bartnik, M. Fiedorowicz, and P. Rutkowski, Targeted therapy in melanoma and mechanisms of resistance. International journal of molecular sciences, 2020. 21(13): p. 4576.
58. Kozar, I., C. Margue, S. Rothengatter, C. Haan, and S. Kreis, Many ways to resistance: How melanoma cells evade targeted therapies. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 2019. 1871(2): p. 313-322.
59. Kuryk, L., A.-S.W. Møller, and M. Jaderberg, Combination of immunogenic oncolytic adenovirus ONCOS-102 with anti-PD-1 pembrolizumab exhibits synergistic antitumor effect in humanized A2058 melanoma huNOG mouse model. Oncoimmunology, 2019. 8(2): p. e1532763.
60. Hodi, F.S., S.J. O′day, D.F. McDermott, R.W. Weber, J.A. Sosman, J.B. Haanen, R. Gonzalez, C. Robert, D. Schadendorf, and J.C. Hassel, Improved survival with ipilimumab in patients with metastatic melanoma. New England Journal of Medicine, 2010. 363(8): p. 711-723.
61. Allen, T.M. and P.R. Cullis, Drug delivery systems: Entering the mainstream. Science, 2004. 303(5665): p. 1818-1822.
62. Yoo, J.W., E. Chambers, and S. Mitragotri, Factors that Control the Circulation Time of Nanoparticles in Blood: Challenges, Solutions and Future Prospects. Current Pharmaceutical Design, 2010. 16(21): p. 2298-2307.
63. Moghimi, S.M., A.C. Hunter, and J.C. Murray, Long-circulating and target-specific nanoparticles: Theory to practice. Pharmacological Reviews, 2001. 53(2): p. 283-318.
64. Naahidi, S., M. Jafari, F. Edalat, K. Raymond, A. Khademhosseini, and P. Chen, Biocompatibility of engineered nanoparticles for drug delivery. Journal of Controlled Release, 2013. 166(2): p. 182-194.
65. Schlenoff, J.B., Zwitteration: Coating Surfaces with Zwitterionic Functionality to Reduce Nonspecific Adsorption. Langmuir, 2014. 30(32): p. 9625-9636.
66. Gref, R., Y. Minamitake, M.T. Peracchia, V. Trubetskoy, V. Torchilin, and R. Langer, BIODEGRADABLE LONG-CIRCULATING POLYMERIC NANOSPHERES. Science, 1994. 263(5153): p. 1600-1603.
67. Mitra, S., U. Gaur, P.C. Ghosh, and A.N. Maitra, Tumour targeted delivery of encapsulated dextran-doxorubicin conjugate using chitosan nanoparticles as carrier. Journal of Controlled Release, 2001. 74(1-3): p. 317-323.
68. Sapsford, K.E., W.R. Algar, L. Berti, K.B. Gemmill, B.J. Casey, E. Oh, M.H. Stewart, and I.L. Medintz, Functionalizing Nanoparticles with Biological Molecules: Developing Chemistries that Facilitate Nanotechnology. Chemical Reviews, 2013. 113(3): p. 1904-2074.
69. Marques, A.C., P.J. Costa, S. Velho, and M.H. Amaral, Functionalizing nanoparticles with cancer-targeting antibodies: A comparison of strategies. Journal of Controlled Release, 2020. 320: p. 180-200.
70. Crist, R.M., J.H. Grossman, A.K. Patri, S.T. Stern, M.A. Dobrovolskaia, P.P. Adiseshaiah, J.D. Clogston, and S.E. McNeil, Common pitfalls in nanotechnology: lessons learned from NCI′s Nanotechnology Characterization Laboratory. Integrative Biology, 2013. 5(1): p. 66-73.
71. Luk, B.T. and L.F. Zhang, Cell membrane-camouflaged nanoparticles for drug delivery. Journal of Controlled Release, 2015. 220: p. 600-607.
72. Du, F.X., L.C. Liu, L. Li, J.B. Huang, L.Y. Wang, Y.J. Tang, B.W. Ke, L. Song, C. Cheng, L. Ma, and L. Qiu, Conjugated Coordination Porphyrin-based Nanozymes for Photo-/Sono-Augmented Biocatalytic and Homologous Tumor Treatments. Acs Applied Materials & Interfaces, 2021. 13(35): p. 41485-41497.
73. Sushnitha, M., M. Evangelopoulos, E. Tasciotti, and F. Taraballi, Cell Membrane-Based Biomimetic Nanoparticles and the Immune System: Immunomodulatory Interactions to Therapeutic Applications. Frontiers in Bioengineering and Biotechnology, 2020. 8: p. 17.
74. Gao, W.W., C.M.J. Hu, R.H. Fang, B.T. Luk, J. Su, and L.F. Zhang, Surface Functionalization of Gold Nanoparticles with Red Blood Cell Membranes. Advanced Materials, 2013. 25(26): p. 3549-3553.
75. Ren, X.Q., R. Zheng, X.L. Fang, X.F. Wang, X.Y. Zhang, W.L. Yang, and X.Y. Sha, Red blood cell membrane camouflaged magnetic nanoclusters for imaging-guided photothermal therapy. Biomaterials, 2016. 92: p. 13-24.
76. Chen, Z., P.F. Zhao, Z.Y. Luo, M.B. Zheng, H. Tian, P. Gong, G.H. Gao, H. Pan, L.L. Liu, A.Q. Ma, H.D. Cui, Y.F. Ma, and L.T. Cai, Cancer Cell Membrane-Biomimetic Nanoparticles for Homologous-Targeting Dual-Modal Imaging and Photothermal Therapy. Acs Nano, 2016. 10(11): p. 10049-10057.
77. Zhu, J.Y., D.W. Zheng, M.K. Zhang, W.Y. Yu, W.X. Qiu, J.J. Hu, J. Feng, and X.Z. Zhang, Preferential Cancer Cell Self-Recognition and Tumor Self-Targeting by Coating Nanoparticles with Homotypic Cancer Cell Membranes. Nano Letters, 2016. 16(9): p. 5895-5901.
78. Hu, C.M.J., R.H. Fang, K.C. Wang, B.T. Luk, S. Thamphiwatana, D. Dehaini, P. Nguyen, P. Angsantikul, C.H. Wen, A.V. Kroll, C. Carpenter, M. Ramesh, V. Qu, S.H. Patel, J. Zhu, W. Shi, F.M. Hofman, T.C. Chen, W.W. Gao, K. Zhang, S. Chien, and L.F. Zhang, Nanoparticle biointerfacing by platelet membrane cloaking. Nature, 2015. 526(7571): p. 118-+.
79. Zhen, X., P. Cheng, and K. Pu, Recent advances in cell membrane–camouflaged nanoparticles for cancer phototherapy. Small, 2019. 15(1): p. 1804105.
80. Rao, L., L.L. Bu, B. Cai, J.H. Xu, A. Li, W.F. Zhang, Z.J. Sun, S.S. Guo, W. Liu, and T.H. Wang, Cancer cell membrane‐coated upconversion nanoprobes for highly specific tumor imaging. Advanced Materials, 2016. 28(18): p. 3460-3466.
81. Fang, R.H., C.M.J. Hu, B.T. Luk, W.W. Gao, J.A. Copp, Y.Y. Tai, D.E. O′Connor, and L.F. Zhang, Cancer Cell Membrane-Coated Nanoparticles for Anticancer Vaccination and Drug Delivery. Nano Letters, 2014. 14(4): p. 2181-2188.
82. Yue, X.S., Y. Murakami, T. Tamai, M. Nagaoka, C.S. Cho, Y. Ito, and T. Akaike, A fusion protein N-cadherin-Fc as an artificial extracellular matrix surface for maintenance of stem cell features. Biomaterials, 2010. 31(20): p. 5287-5296.
83. Weinberg, R.A., The biology of cancer. 2013: Garland science.
84. Ingram, J.R., O.S. Blomberg, J.T. Sockolosky, L. Ali, F.I. Schmidt, N. Pishesha, C. Espinosa, S.K. Dougan, K.C. Garcia, H.L. Ploegh, and M. Dougan, Localized CD47 blockade enhances immunotherapy for murine melanoma. Proceedings of the National Academy of Sciences of the United States of America, 2017. 114(38): p. 10184-10189.
85. Lu, Q., X. Chen, S. Wang, Y. Lu, C. Yang, and G. Jiang, Potential new cancer immunotherapy: anti-CD47-SIRPα antibodies. OncoTargets and therapy, 2020. 13: p. 9323.
86. Liu, Y., J.S. Luo, X.J. Chen, W. Liu, and T.K. Chen, Cell Membrane Coating Technology: A Promising Strategy for Biomedical Applications. Nano-Micro Letters, 2019. 11(1): p. 46.
87. Xu, C.H., P.J. Ye, Y.C. Zhou, D.X. He, H. Wei, and C.Y. Yu, Cell membrane-camouflaged nanoparticles as drug carriers for cancer therapy. Acta Biomaterialia, 2020. 105: p. 1-14.
88. Sheng, Z., D. Hu, M. Zheng, P. Zhao, H. Liu, D. Gao, P. Gong, G. Gao, P. Zhang, and Y. Ma, Smart human serum albumin-indocyanine green nanoparticles generated by programmed assembly for dual-modal imaging-guided cancer synergistic phototherapy. ACS nano, 2014. 8(12): p. 12310-12322.
89. Huang, P., J. Lin, X. Wang, Z. Wang, C. Zhang, M. He, K. Wang, F. Chen, Z. Li, and G. Shen, Light‐triggered theranostics based on photosensitizer‐conjugated carbon dots for simultaneous enhanced‐fluorescence imaging and photodynamic therapy. Advanced Materials, 2012. 24(37): p. 5104-5110.
90. Kobayashi, H., M. Ogawa, R. Alford, P.L. Choyke, and Y. Urano, New strategies for fluorescent probe design in medical diagnostic imaging. Chemical reviews, 2010. 110(5): p. 2620-2640.
91. Tan, X., S. Luo, L. Long, Y. Wang, D. Wang, S. Fang, Q. Ouyang, Y. Su, T. Cheng, and C. Shi, Structure‐guided design and synthesis of a mitochondria‐targeting near‐infrared fluorophore with multimodal therapeutic activities. Advanced Materials, 2017. 29(43): p. 1704196.
92. Sevick-Muraca, E., Translation of near-infrared fluorescence imaging technologies: emerging clinical applications. Annual review of medicine, 2012. 63: p. 217-231.
93. Cai, X., B. Liu, M. Pang, and J. Lin, Interfacially synthesized Fe-soc-MOF nanoparticles combined with ICG for photothermal/photodynamic therapy. Dalton Transactions, 2018. 47(45): p. 16329-16336.
94. Han, H.S. and K.Y. Choi, Advances in Nanomaterial-Mediated Photothermal Cancer Therapies: Toward Clinical Applications. Biomedicines, 2021. 9(3): p. 15.
95. Sheng, W., S. He, W.J. Seare, and A. Almutairi, Review of the progress toward achieving heat confinement—the holy grail of photothermal therapy. Journal of biomedical optics, 2017. 22(8): p. 080901-080901.
96. Golstein, P. and G. Kroemer, Cell death by necrosis: towards a molecular definition. Trends in Biochemical Sciences, 2007. 32(1): p. 37-43.
97. Dolmans, D.E., D. Fukumura, and R.K. Jain, Photodynamic therapy for cancer. Nature reviews cancer, 2003. 3(5): p. 380-387.
98. Agostinis, P., K. Berg, K.A. Cengel, T.H. Foster, A.W. Girotti, S.O. Gollnick, S.M. Hahn, M.R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B.C. Wilson, and J. Golab, Photodynamic Therapy of Cancer: An Update. Ca-a Cancer Journal for Clinicians, 2011. 61(4): p. 250-281.
99. Sai, D.L., J. Lee, D.L. Nguyen, and Y.-P. Kim, Tailoring photosensitive ROS for advanced photodynamic therapy. Experimental & Molecular Medicine, 2021. 53(4): p. 495-504.
100. Kharkwal, G.B., S.K. Sharma, Y.Y. Huang, T. Dai, and M.R. Hamblin, Photodynamic therapy for infections: clinical applications. Lasers in surgery and medicine, 2011. 43(7): p. 755-767.
101. Gowsalya, K., V. Yasothamani, and R. Vivek, Emerging indocyanine green-integrated nanocarriers for multimodal cancer therapy: a review. Nanoscale Advances, 2021. 3(12): p. 3332-3352.
102. Kuo, W.S., Y.T. Chang, K.C. Cho, K.C. Chiu, C.H. Lien, C.S. Yeh, and S.J. Chen, Gold nanomaterials conjugated with indocyanine green for dual-modality photodynamic and photothermal therapy. Biomaterials, 2012. 33(11): p. 3270-3278.
103. Carr, J.A., D. Franke, J.R. Caram, C.F. Perkinson, M. Saif, V. Askoxylakis, M. Datta, D. Fukumura, R.K. Jain, M.G. Bawendi, and O.T. Bruns, Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green. Proceedings of the National Academy of Sciences of the United States of America, 2018. 115(17): p. 4465-4470.
104. Wu, M.L., T.X. Mei, C.Y. Lin, Y.C. Wang, J.Y. Chen, W.J. Le, M.Y. Sun, J.G. Xu, H.Y. Dai, Y.F. Zhang, C.Y. Xue, Z.M. Liu, and B.D. Chen, Melanoma Cell Membrane Biomimetic Versatile CuS Nanoprobes for Homologous Targeting Photoacoustic Imaging and Photothermal Chemotherapy. Acs Applied Materials & Interfaces, 2020. 12(14): p. 16031-16039.
105. Barth, B.M., E.I. Altinoglu, S.S. Shanmugavelandy, J.M. Kaiser, D. Crespo-Gonzalez, N.A. DiVittore, C. McGovern, T.M. Goff, N.R. Keasey, J.H. Adair, T.P. Loughran, D.F. Claxton, and M. Kester, Targeted Indocyanine-Green-Loaded Calcium Phosphosilicate Nanoparticles for In Vivo Photodynamic Therapy of Leukemia. Acs Nano, 2011. 5(7): p. 5325-5337.
106. West, W. and S. Pearce, The dimeric state of cyanine dyes. The Journal of Physical Chemistry, 1965. 69(6): p. 1894-1903.
107. Saxena, V., M. Sadoqi, and J. Shao, Enhanced photo-stability, thermal-stability and aqueous-stability of indocyanine green in polymeric nanoparticulate systems. Journal of Photochemistry and Photobiology B: Biology, 2004. 74(1): p. 29-38.
108. Gomes, A.J., L.O. Lunardi, J.M. Marchetti, C.N. Lunardi, and A.C. Tedesco, Indocyanine green nanoparticles useful for photomedicine. Photomedicine and Laser Therapy, 2006. 24(4): p. 514-521.
109. Sheng, Z.H., D.H. Hu, M.M. Xue, M. He, P. Gong, and L.T. Cai, Indocyanine Green Nanoparticles for Theranostic Applications. Nano-Micro Letters, 2013. 5(3): p. 145-150.
110. Martino, E., S. Della Volpe, E. Terribile, E. Benetti, M. Sakaj, A. Centamore, A. Sala, and S. Collina, The long story of camptothecin: From traditional medicine to drugs. Bioorganic & Medicinal Chemistry Letters, 2017. 27(4): p. 701-707.
111. Kacprzak, K.M., Chemistry and biology of camptothecin and its derivatives. Natural Products (643–682) Heidelberg, Berlin: Springer, 2013.
112. Hatefi, A. and B. Amsden, Camptothecin delivery methods. Pharmaceutical Research, 2002. 19(10): p. 1389-1399.
113. Wen, Y., Y.Z. Wang, X.L. Liu, W. Zhang, X.H. Xiong, Z.X. Han, and X.J. Liang, Camptothecin-based nanodrug delivery systems. Cancer Biology & Medicine, 2017. 14(4): p. 363-370.
114. Buzun, K., A. Bielawska, K. Bielawski, and A. Gornowicz, DNA topoisomerases as molecular targets for anticancer drugs. Journal of Enzyme Inhibition and Medicinal Chemistry, 2020. 35(1): p. 1781-1799.
115. Li, F., T. Jiang, Q. Li, and X. Ling, Camptothecin (CPT) and its derivatives are known to target topoisomerase I (Top1) as their mechanism of action: did we miss something in CPT analogue molecular targets for treating human disease such as cancer? American journal of cancer research, 2017. 7(12): p. 2350.
116. Muz, B., P. de la Puente, F. Azab, and A.K. Azab, The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia, 2015. 3: p. 83.
117. Jägers, J., A. Wrobeln, and K.B. Ferenz, Perfluorocarbon-based oxygen carriers: from physics to physiology. Pflügers Archiv-European Journal of Physiology, 2021. 473: p. 139-150.
118. Riess, J.G., Understanding the fundamentals of perfluorocarbons and perfluorocarbon emulsions relevant to in vivo oxygen delivery. Artificial cells, blood substitutes, and biotechnology, 2005. 33(1): p. 47-63.
119. Kim, M.A. and C.M. Lee, NIR-Mediated drug release and tumor theranostics using melanin-loaded liposomes. Biomaterials Research, 2022. 26(1): p. 13.
120. Sun, H.P., J.H. Su, Q.S. Meng, Q. Yin, L.L. Chen, W.W. Gu, Z.W. Zhang, H.J. Yu, P.C. Zhang, S.L. Wang, and Y.P. Li, Cancer Cell Membrane-Coated Gold Nanocages with Hyperthermia-Triggered Drug Release and Homotypic Target Inhibit Growth and Metastasis of Breast Cancer. Advanced Functional Materials, 2017. 27(3): p. 9.
121. Tsilimigras, D.I., P. Brodt, P.-A. Clavien, R.J. Muschel, M.I. D’Angelica, I. Endo, R.W. Parks, M. Doyle, E. de Santibañes, and T.M. Pawlik, Liver metastases. Nature reviews Disease primers, 2021. 7(1): p. 27.
122. Tas, F. and K. Erturk, Anemia in cutaneous malignant melanoma: low blood hemoglobin level is associated with nodal involvement, metastatic disease, and worse survival. Nutrition and cancer, 2018. 70(2): p. 236-240.
123. El Halal Schuch, L., M.M. Azevedo, R. Furian, P. Rigon, K. Cristine Reiter, I. Crivelatti, F. Riccardi, and C. Giuliano Bica, Evaluation of Kindlin-1 and Ki-67 immunohistochemical expression in primary cutaneous malignant melanoma: a clinical series. Applied Cancer Research, 2019. 39: p. 1-8. |