博碩士論文 110827006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:18.225.34.193
姓名 陳采昕(Cai-Sin Chen)  查詢紙本館藏   畢業系所 生醫科學與工程學系
論文名稱 開發癌細胞膜包覆的靛氰綠-喜樹鹼-全氟化奈米乳劑用於皮膚黑色素癌光化學治療
(Development of Cancerous Membrane-Covered Indocyanine Green-Camptothecin-Loaded Perfluorinated Emulsions for Photochemotherapy of Melanoma)
相關論文
★ 研究探討層流剪應力於高糖環境下對膀胱癌細胞遷移與侵襲行為之影響★ 研究探討層流剪應力對泌尿上皮細胞癌於細胞週期運作之影響與機轉
★ 設計並建構一全氟碳光生物反應器組用於分離混合氣體中之二氧化碳並同時提升微藻養殖及其經濟產物生成之效能★ Synthesis, Spectral Characterization and Evaluation of Quercetin-Zinc Complex for Tumoricidal and Anti-metastasis of Human Bladder Cancer Cell
★ 包覆靛氰綠與喜樹鹼之標靶全氟碳奈米乳劑 研製於強化乳癌螢光擴散光學影像暨 光/化學治療之研究★ 研製包覆靛氰綠與絲裂黴素C之標靶全氟碳奈米乳劑應用於膀胱癌光-化學治療之研究
★ 研製包覆靛氰綠及利福平之聚乳酸-聚甘醇酸奈米粒子用於破壞生物膜之抗菌治療★ Deposition of Photoactive Layer on Thermoplastic Polyurethane Tubes for Photo-grafting poly(2-methacryloyloxyethyl phosphorylcholine)
★ Preparation of lubricant and antifouling medical coating on thermalplastic polyurethane★ 開發可生物降解的完全磷酸膽鹼水凝膠
★ Development of Functional Biointerface by Mixed Oligomeric Silatranes★ Biodegradable and pH-Responsive Nanoparticles for the Triggered Release of Antibiotics to Infected Wounds
★ In situ gelation using amine-containing copolymer and dialkyne crosslinker via amino-yne click chemistry★ Disulfide-based cross-linkers for functional polymeric networks
★ 建立雙離子高分子修飾蛋白質技術與分析★ DEVELOPMENT AND APPLICATIONS OF CATECHOL-FUNCTIONALIZED ZWITTERIONIC POLYMER
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-7-1以後開放)
摘要(中) 細胞膜包覆奈米粒子(或奈米乳劑)的技術正越來越多地被提及,而塗有細胞膜的奈米乳劑被預期會有一些優勢,首先利用細胞膜的外塗層作為天然靶點,可以解決外源性物質容易被免疫系統清除的問題,其次利用細胞膜偽裝奈米乳劑的目的是欺騙癌細胞,使其認為同樣是癌細胞,如此一來包裹在癌細胞膜中的奈米乳劑就可以聚集在癌細胞中,實現天然藥物靶向的功能。
首先合成靛氰綠(Indocyanine green, ICG)-喜樹鹼(Camptothecin, CPT)-負載的全氟化奈米乳劑(Indocyanine green-camptothecin-loaded perfluorinated emulsions, ICPEs),結合化療和光療的協同治療,此外細胞膜是從小鼠黑色素瘤(B16F10)細胞中提取出來,再利用共擠壓的方式將ICPEs和癌細胞膜(Cancerous membranes, CMs)結合,最後形成外層癌細胞膜包覆內核奈米乳劑(Cancerous membrane-covered indocyanine green-camptothecin-loaded perfluorinated emulsions, CMICPEs)。
ICPEs的尺寸和電位測量值為230.43 ± 2.96 nm和-22.24 ± 1.48 mV,CMICPEs的尺寸和電位測量值為248.41 ± 8.33 nm和-32.78 ± 0.29 mV,結果顯示包覆細胞膜後尺寸增大。ICG和CPT在奈米乳劑中的包覆率分別為96.64 ± 2.81%和61.11 ± 11.86%。藥物釋放的評估試驗中可見CMICPEs在照射近紅外光(808 nm,6 W cm-2)下快速釋放藥物。ICPEs和CMICPEs在37℃下的ICG穩定性比游離的ICG提升了約1.5倍。在近紅外光(808 nm,6 W cm-2)照射下可以觀察到CMICPEs的光熱效應,並且CMICPEs的光動力效應優於游離的ICG。體外細胞毒性試驗結果可見CMICPEs照射NIR與相同藥量的free CPT相比更具細胞毒性,存活率分別為6.06%和64.70%,有顯著差異,在體內的腫瘤療效試驗中,證實CMICPEs有抑制腫瘤的效果,並且在體內螢光成像試驗中,觀察到CMICPEs具有良好腫瘤滯留效果與腫瘤的靶向能力。從以上的實驗評估中,我們可以期望這項技術的發展,並且預期它作為一種新興的癌症治療材料的潛力。
摘要(英) Cell membrane-encapsulated nanoparticle (or nanoemulsion) technology has attracted significant attention in recent times. Nanoemulsions coated with cell membranes exhibit some advantages. First, using the outer coating of the cell membrane as a natural target may solve the problem of exogenous material being targeted and cleared by the immune system. Second, the nanoemulsions disguised by cell membranes can be misrecognized by cancer cells as their own; hence, nanoemulsions encased in cancer-cell membranes can reach other cancer cells and achieve natural drug targeting.
Herein, indocyanine green (ICG)-camptothecin (CPT)-loaded perfluorinated emulsions (ICPEs) were synthesized. Cell membranes were extracted from melanoma (B16F10), and coextrusion was employed to combine the ICPEs with cancerous membranes (CMs). Finally, CM-covered ICPEs (CMICPEs) were formed.
The size and potential measurements of the ICPEs and CMICPEs were 230.43±2.96 nm and –22.24±1.48 mV and 248.41±8.33 nm and –32.78±0.29 mV, respectively. The sizes increased after coating the cell membrane. The encapsulation rates of the ICG and CPT in the nanoemulsions were 96.64±2.81 and 61.11±11.86%, respectively. CMICPEs can achieve rapid drug release under near-infrared irradiation (NIR, 808 nm, 6 W cm-2). The ICG stability of the ICPEs and CMICPEs at 37 °C increased by approximately 1.5 times the stability exhibited by free ICG. The photothermal effect of the CMICPEs was observed under NIR irradiation (808 nm, 6 W cm-2). The photodynamic effect of the CMICPEs was determined to be better than that of the free ICG. In vitro cytotoxicity test results indicated that the CMICPEs under NIR were more cytotoxic than free CPT at the same dose, with significant differences in their survival rates (6.06 and 64.70%, respectively). In an in vivo tumor therapy test, CMICPEs were shown to have tumor suppressive effects, and good tumor retention and tumor targeting ability were observed in an in vivo fluorescence imaging test. We expect this technology to be further developed using these experimental results, and we anticipate its potential as an emerging material for cancer therapy.
關鍵字(中) ★ 黑色素瘤
★ 仿生奈米乳劑
★ 靛氰綠
★ 免疫逃逸
★ 同源靶向
★ 光熱療法
★ 光動力療法
關鍵字(英) ★ melanoma
★ biomimetic nanoemulsions
★ indocyanine green
★ immune escape
★ homologous targeting
★ photothermal therapy
★ photodynamic therapy
論文目次 摘要 i
Abstract iii
致謝 v
目錄 vi
圖目錄 xi
表目錄 xiv
縮寫符號說明 xv
第一章 緒論 1
1-1 研究動機 1
1-2 研究目的 2
第二章 文獻回顧 3
2-1 皮膚癌 3
2-1-1 皮膚癌綜述 3
2-1-2 黑色素瘤(Melanoma) 4
2-1-3 黑色素瘤分期 6
2-1-4 黑色素瘤發展進程 10
2-1-5 黑色素瘤致病因素 11
2-1-6 黑色素瘤治療方法 13
2-2 奈米粒子 15
2-2-1 仿生奈米粒子的出現 15
2-2-2 癌細胞膜包覆奈米粒子 16
2-2-3 合成細胞膜包覆奈米粒子 19
2-3 光治療(Phototherapy) 21
2-3-1 光熱療法(Photothermal therapy, PTT) 21
2-3-2 光動力療法(Photodynamic therapy, PDT) 21
2-4 藥品 23
2-4-1 靛氰綠(Indocyanine green, ICG) 23
2-4-2 喜樹鹼(Camptothecin, CPT) 24
2-4-3 全氟碳化物(Perfluorocarbons, PFC) 25
第三章 實驗步驟及材料 26
3-1 實驗藥品及儀器設備 26
3-1-1 實驗藥品 26
3-1-2 儀器設備 29
3-2 實驗流程 30
3-3 製備包覆ICG及CPT全氟碳雙層奈米乳劑 31
3-4 癌細胞膜 33
3-4-1 細胞培養 33
3-4-2 癌細胞膜提取 34
3-4-3 擠壓癌細胞膜 35
3-5 合成癌細胞膜包覆全氟碳雙層奈米乳劑 36
3-6 物理性質分析 37
3-6-1 包覆率分析(Encapsulation Efficiency, EE) 37
3-6-2 載藥率分析(Loading Capacity, LC) 38
3-6-3 粒徑分析 39
3-6-4 表面電位分析 39
3-6-5 超高解析冷場發射掃描式電子顯微鏡 (CFE-SEM) 40
3-6-6 西方墨點法(Western Blotting) 40
3-7 ICPEs & CMICPEs 藥物釋放測定 45
3-7-1 ICPEs & CMICPEs 靜態下藥物累積釋放 45
3-7-2 CMICPEs 照光後藥物釋放 46
3-8 Free ICG & ICPEs & CMICPEs藥物熱穩定測試 46
3-9 Free ICG & ICPEs & CMICPEs光療效果試驗 47
3-9-1 光熱力效果試驗 47
3-9-2 光動力效果試驗 48
3-10 奈米乳劑進入細胞試驗 49
3-11 體外試驗 49
3-11-1 體外細胞毒性測試 49
3-11-2 螢光顯微鏡成像 51
3-12 動物試驗 52
3-12-1體內抗癌療效試驗 52
3-12-2 體內化療藥物殘留試驗 53
3-12-3 體內螢光成像 54
3-12-4 器官組織染色 55
3-13 統計分析 56
第四章 實驗結果與討論 57
4-1 基礎物理性質 57
4-1-1 ICPEs & CMICPEs 之外觀 57
4-1-2 ICPEs之包覆率及載藥率 57
4-1-3 ICPEs & CM & CMICPEs之粒徑與表面電位 58
4-1-4 表面型態分析 59
4-1-5 西方墨點法 60
4-2 ICPEs & CMICPEs 藥物釋放測定 61
4-2-1 ICPEs & CMICPEs 靜態下藥物累積釋放 61
4-2-2 CMICPEs 照光後藥物釋放 62
4-3 Free ICG & ICPEs & CMICPEs藥物熱穩定測試 63
4-4 Free ICG & ICPEs & CMICPEs光療效果試驗 65
4-4-1 光熱力效果試驗 65
4-4-2 光動力效果試驗 67
4-5 奈米乳劑進入細胞試驗評估 69
4-6 體外試驗 70
4-6-1體外細胞毒性測試 70
4-6-2 螢光顯微鏡成像 71
4-7 動物試驗 73
4-7-1體內腫瘤治療效果 73
4-7-2 化療藥物體內分佈 76
4-7-3 生化及血球數分析 77
4-7-4 體內螢光成像圖 79
4-7-5 器官組織學分析 81
第五章 結論與未來展望 85
參考文獻 86
參考文獻 1. Switzer, B., I. Puzanov, J.J. Skitzki, L. Hamad, and M.S. Ernstoff, Managing Metastatic Melanoma in 2022: A Clinical Review. Jco Oncology Practice, 2022. 18(5): p. 335-+.
2. Margolis, N., E. Markovits, and G. Markel, Reprogramming lymphocytes for the treatment of melanoma: From biology to therapy. Advanced Drug Delivery Reviews, 2019. 141: p. 104-124.
3. Arnold, M., D. Singh, M. Laversanne, J. Vignat, S. Vaccarella, F. Meheus, A.E. Cust, E. de Vries, D.C. Whiteman, and F. Bray, Global Burden of Cutaneous Melanoma in 2020 and Projections to 2040. Jama Dermatology, 2022. 158(5): p. 495-503.
4. Bombelli, F.B., C.A. Webster, M. Moncrieff, and V. Sherwood, The scope of nanoparticle therapies for future metastatic melanoma treatment. Lancet Oncology, 2014. 15(1): p. E22-E32.
5. Monge-Fuentes, V., L.A. Muehlmann, J.P.F. Longo, J.R. Silva, M.L. Fascineli, P. de Souza, F. Faria, I.A. Degterev, A. Rodriguez, F.P. Carneiro, C.M. Lucci, P. Escobar, R.F.B. Amorim, and R.B. Azevedo, Photodynamic therapy mediated by acai oil (Euterpe oleracea Martius) in nanoemulsion: A potential treatment for melanoma. Journal of Photochemistry and Photobiology B-Biology, 2017. 166: p. 301-310.
6. Vosoughi, E., J.M. Lee, J.R. Miller, M. Nosrati, D.R. Minor, R. Abendroth, J.W. Lee, B.T. Andrews, L.Z. Leng, M. Wu, S.P. Leong, M. Kashani-Sabet, and K.B. Kim, Survival and clinical outcomes of patients with melanoma brain metastasis in the era of checkpoint inhibitors and targeted therapies. Bmc Cancer, 2018. 18: p. 7.
7. Kahlon, N., S. Doddi, R. Yousif, S. Najib, T. Sheikh, Z. Abuhelwa, C. Burmeister, and D.M. Hamouda, Melanoma Treatments and Mortality Rate Trends in the US, 1975 to 2019. Jama Network Open, 2022. 5(12): p. 12.
8. Cancer Stat Facts: Melanoma of the Skin. [cited 2023 4/12]; Available from: https://seer.cancer.gov/statfacts/html/melan.html.
9. Gordon, R., Skin Cancer: An Overview of Epidemiology and Risk Factors. Seminars in Oncology Nursing, 2013: p. 160-169.
10. Hu, W., L.L. Fang, R.Y. Ni, H.C. Zhang, and G.X. Pan, Changing trends in the disease burden of non-melanoma skin cancer globally from 1990 to 2019 and its predicted level in 25 years. Bmc Cancer, 2022. 22(1): p. 11.
11. Perez, M., J.A. Abisaad, K.D. Rojas, M.A. Marchetti, and N. Jaimes, Skin cancer: Primary, secondary, and tertiary prevention. Part I. Journal of the American Academy of Dermatology, 2022. 87(2): p. 255-268.
12. Leiter, U., U. Keim, and C. Garbe, Epidemiology of Skin Cancer: Update 2019, in Sunlight, Vitamin D and Skin Cancer, 3rd Edition, J. Reichrath, Editor. 2020, Springer International Publishing Ag: Cham. p. 123-139.
13. Lomas, A., J. Leonardi-Bee, and F. Bath-Hextall, A systematic review of worldwide incidence of nonmelanoma skin cancer. British Journal of Dermatology, 2012. 166(5): p. 1069-1080.
14. Lopes, J., C.M.P. Rodrigues, M.M. Gaspar, and C.P. Reis, Melanoma Management: From Epidemiology to Treatment and Latest Advances. Cancers, 2022. 14(19): p. 24.
15. Dimitriou, F., R. Krattinger, E. Ramelyte, M.J. Barysch, S. Micaletto, R. Dummer, and S.M. Goldinger, The World of Melanoma: Epidemiologic, Genetic, and Anatomic Differences of Melanoma Across the Globe. Current Oncology Reports, 2018. 20(11): p. 9.
16. Millet, A., A.R. Martin, C. Ronco, S. Rocchi, and R. Benhida, Metastatic Melanoma: Insights Into the Evolution of the Treatments and Future Challenges. Medicinal Research Reviews, 2017. 37(1): p. 98-148.
17. Bandarchi, B., C.A. Jabbari, A. Vedadi, and R. Navab, Molecular biology of normal melanocytes and melanoma cells. Journal of Clinical Pathology, 2013. 66(8): p. 644-648.
18. Balzer, D. What you need to know about skin cancer. 2020 [cited 2023 4/27]; Available from: https://newsnetwork.mayoclinic.org/discussion/5-27-what-you-need-to-know-about-skin-cancer/.
19. Khan, N.H., M. Mir, L. Qian, M. Baloch, M.F.A. Khan, R. Asim ur, E.E. Ngowi, D.D. Wu, and X.Y. Ji, Skin cancer biology and barriers to treatment: Recent applications of polymeric micro/nanostructures. Journal of Advanced Research, 2022. 36: p. 223-247.
20. Guo, W.N., H.N. Wang, and C.Y. Li, Signal pathways of melanoma and targeted therapy. Signal Transduction and Targeted Therapy, 2021. 6(1): p. 39.
21. Lo, J.A. and D.E. Fisher, The melanoma revolution: From UV carcinogenesis to a new era in therapeutics. Science, 2014. 346(6212): p. 945-949.
22. Lin, J.Y. and D.E. Fisher, Melanocyte biology and skin pigmentation. Nature, 2007. 445(7130): p. 843-850.
23. Gray-Schopfer, V., C. Wellbrock, and R. Marais, Melanoma biology and new targeted therapy. Nature, 2007. 445(7130): p. 851-857.
24. Haass, N.K., K.S.M. Smalley, and M. Herlyn, The role of altered cell-cell communication in melanoma progression. Journal of Molecular Histology, 2004. 35(3): p. 309-318.
25. Liu, V. and M.C. Mihm, Pathology of malignant melanoma. Surgical Clinics of North America, 2003. 83(1): p. 31-+.
26. Rastrelli, M., S. Tropea, C.R. Rossi, and M. Alaibac, Melanoma: Epidemiology, Risk Factors, Pathogenesis, Diagnosis and Classification. In Vivo, 2014. 28(6): p. 1005-1011.
27. Chopra, A., R. Sharma, and U.N.M. Rao, Pathology of Melanoma. Surgical Clinics of North America, 2020. 100(1): p. 43-+.
28. Greenwald, H.S., E.B. Friedman, and I. Osman, Superficial spreading and nodular melanoma are distinct biological entities: a challenge to the linear progression model. Melanoma Research, 2012. 22(1): p. 1-8.
29. Scolyer, R.A., G.V. Long, and J.F. Thompson, Evolving concepts in melanoma classification and their relevance to multidisciplinary melanoma patient care. Molecular Oncology, 2011. 5(2): p. 124-136.
30. Duncan, L.M., The Classification of Cutaneous Melanoma. Hematology-Oncology Clinics of North America, 2009. 23(3): p. 501-+.
31. Pollack, L.A., J. Li, Z. Berkowitz, H.K. Weir, X.C. Wu, U.A. Ajani, D.U. Ekwueme, C.Y. Li, and B.P. Pollack, Melanoma survival in the United States, 1992 to 2005. Journal of the American Academy of Dermatology, 2011. 65(5): p. S78-S86.
32. Slominski, A., J. Wortsman, A.J. Carlson, L.Y. Matsuoka, C.M. Balch, and M.C. Mihm, Malignant melanoma - An update. Archives of Pathology & Laboratory Medicine, 2001. 125(10): p. 1295-1306.
33. Splane, B. What Is Melanoma? 2022 [cited 2023 5/15]; Available from: https://www.verywellhealth.com/what-is-melanoma-514215.
34. Emily Z. Keung, C.M.B., Jeffrey E. Gershenwald,Allan C. Halpern. Key Changes in the AJCC Eighth Edition Melanoma Staging System. 2018 [cited 2023; Available from: https://provider.skincancer.org/the-melanoma-letter/2018-vol-36-no-1/key-changes-ajcc-eighth-edition-melanoma-staging-system/.
35. Gershenwald, J.E. and R.A. Scolyer, Melanoma Staging: American Joint Committee on Cancer (AJCC) 8th Edition and Beyond. Annals of Surgical Oncology, 2018. 25(8): p. 2105-2110.
36. Gershenwald, J.E., R.A. Scolyer, K.R. Hess, V.K. Sondak, G.V. Long, M.I. Ross, A.J. Lazar, M.B. Faries, J.M. Kirkwood, G.A. McArthur, L.E. Haydu, A.M.M. Eggermont, K.T. Flaherty, C.M. Balch, J.F. Thompson, M. American Joint Comm Canc, and D. Int Melanoma Database, Melanoma staging: Evidence-based changes in the American Joint Committee on Cancer eighth edition cancer staging manual. Ca-a Cancer Journal for Clinicians, 2017. 67(6): p. 472-492.
37. Keung, E.Z. and J.E. Gershenwald, The eighth edition American Joint Committee on Cancer (AJCC) melanoma staging system: implications for melanoma treatment and care. Expert Review of Anticancer Therapy, 2018. 18(8): p. 775-784.
38. Unger, J.M., L.E. Flaherty, P.Y. Liu, K.S. Albain, and V.K. Sondak, Gender and other survival predictors in patients with metastatic melanoma on southwest oncology group trials. Cancer, 2001. 91(6): p. 1148-1155.
39. Gershenwald, J.E., R.A. Scolyer, K.R. Hess, J.F. Thompson, G.V. Long, M.I. Ross, A.J. Lazar, M.B. Atkins, C.M. Balch, and R.L. Barnhill, Melanoma of the skin. AJCC cancer staging manual, 2017. 8: p. 563-585.
40. Staging Melanoma. [cited 2023 5/17]; Available from: https://www.sitcancer.org/connectedold/p/patient/resources/melanoma-guide/staging.
41. Puglisi, R., M. Bellenghi, G. Pontecorvi, G. Pallante, A. Care, and G. Mattia, Biomarkers for Diagnosis, Prognosis and Response to Immunotherapy in Melanoma. Cancers, 2021. 13(12): p. 15.
42. Rahmati, M., S. Ebrahim, S. Hashemi, M. Motamedi, and M.A. Moosavi, New insights on the role of autophagy in the pathogenesis and treatment of melanoma. Molecular Biology Reports, 2020. 47(11): p. 9021-9032.
43. Miller, A.J. and M.C. Mihm Jr, Melanoma. New England Journal of Medicine, 2006. 355(1): p. 51-65.
44. Djavid, A.R., C. Stonesifer, B.T. Fullerton, S.W. Wang, M.A. Tartaro, B.D. Kwinta, J.M. Grimes, L.J. Geskin, and Y.M. Saenger, Etiologies of Melanoma Development and Prevention Measures: A Review of the Current Evidence. Cancers, 2021. 13(19): p. 27.
45. Dzwierzynski, W.W., Melanoma risk factors and prevention. Clinics in plastic surgery, 2021. 48(4): p. 543-550.
46. Jhappan, C., F.P. Noonan, and G. Merlino, Ultraviolet radiation and cutaneous malignant melanoma. Oncogene, 2003. 22(20): p. 3099-3112.
47. Matsumura, Y. and H.N. Ananthaswamy, Molecular mechanisms of photocarcinogenesis. Frontiers in Bioscience-Landmark, 2002. 7: p. D765-D783.
48. Djavid, A.R., C. Stonesifer, B.T. Fullerton, S.W. Wang, M.A. Tartaro, B.D. Kwinta, J.M. Grimes, L.J. Geskin, and Y.M. Saenger, Etiologies of melanoma development and prevention measures: A review of the current evidence. Cancers, 2021. 13(19): p. 4914.
49. Markovic, S.N., L.A. Erickson, R.D. Rao, R.R. McWilliams, L.A. Kottschade, E.T. Creagan, R.H. Weenig, J.L. Hand, M.R. Pittelkow, and B.A. Pockaj. Malignant melanoma in the 21st century, part 1: epidemiology, risk factors, screening, prevention, and diagnosis. in Mayo Clinic Proceedings. 2007. Elsevier.
50. Tucker, M.A. and A.M. Goldstein, Melanoma etiology: where are we? Oncogene, 2003. 22(20): p. 3042-3052.
51. Hollenbeak, C.S., M.M. Todd, E.M. Billingsley, G. Harper, A.M. Dyer, and E.J. Lengerich, Increased incidence of melanoma in renal transplantation recipients. Cancer, 2005. 104(9): p. 1962-1967.
52. Dreno, B., Skin cancers after transplantation. Nephrology Dialysis Transplantation, 2003. 18(6): p. 1052-1058.
53. Davis, L.E., S.C. Shalin, and A.J. Tackett, Current state of melanoma diagnosis and treatment. Cancer Biology & Therapy, 2019. 20(11): p. 1366-1379.
54. Pinho, J.O., M. Matias, and M.M. Gaspar, Emergent Nanotechnological Strategies for Systemic Chemotherapy against Melanoma. Nanomaterials, 2019. 9(10): p. 35.
55. Wilson, M.A. and L.M. Schuchter, Chemotherapy for melanoma. Melanoma, 2016: p. 209-229.
56. Luke, J.J., K.T. Flaherty, A. Ribas, and G.V. Long, Targeted agents and immunotherapies: optimizing outcomes in melanoma. Nature reviews Clinical oncology, 2017. 14(8): p. 463-482.
57. Czarnecka, A.M., E. Bartnik, M. Fiedorowicz, and P. Rutkowski, Targeted therapy in melanoma and mechanisms of resistance. International journal of molecular sciences, 2020. 21(13): p. 4576.
58. Kozar, I., C. Margue, S. Rothengatter, C. Haan, and S. Kreis, Many ways to resistance: How melanoma cells evade targeted therapies. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 2019. 1871(2): p. 313-322.
59. Kuryk, L., A.-S.W. Møller, and M. Jaderberg, Combination of immunogenic oncolytic adenovirus ONCOS-102 with anti-PD-1 pembrolizumab exhibits synergistic antitumor effect in humanized A2058 melanoma huNOG mouse model. Oncoimmunology, 2019. 8(2): p. e1532763.
60. Hodi, F.S., S.J. O′day, D.F. McDermott, R.W. Weber, J.A. Sosman, J.B. Haanen, R. Gonzalez, C. Robert, D. Schadendorf, and J.C. Hassel, Improved survival with ipilimumab in patients with metastatic melanoma. New England Journal of Medicine, 2010. 363(8): p. 711-723.
61. Allen, T.M. and P.R. Cullis, Drug delivery systems: Entering the mainstream. Science, 2004. 303(5665): p. 1818-1822.
62. Yoo, J.W., E. Chambers, and S. Mitragotri, Factors that Control the Circulation Time of Nanoparticles in Blood: Challenges, Solutions and Future Prospects. Current Pharmaceutical Design, 2010. 16(21): p. 2298-2307.
63. Moghimi, S.M., A.C. Hunter, and J.C. Murray, Long-circulating and target-specific nanoparticles: Theory to practice. Pharmacological Reviews, 2001. 53(2): p. 283-318.
64. Naahidi, S., M. Jafari, F. Edalat, K. Raymond, A. Khademhosseini, and P. Chen, Biocompatibility of engineered nanoparticles for drug delivery. Journal of Controlled Release, 2013. 166(2): p. 182-194.
65. Schlenoff, J.B., Zwitteration: Coating Surfaces with Zwitterionic Functionality to Reduce Nonspecific Adsorption. Langmuir, 2014. 30(32): p. 9625-9636.
66. Gref, R., Y. Minamitake, M.T. Peracchia, V. Trubetskoy, V. Torchilin, and R. Langer, BIODEGRADABLE LONG-CIRCULATING POLYMERIC NANOSPHERES. Science, 1994. 263(5153): p. 1600-1603.
67. Mitra, S., U. Gaur, P.C. Ghosh, and A.N. Maitra, Tumour targeted delivery of encapsulated dextran-doxorubicin conjugate using chitosan nanoparticles as carrier. Journal of Controlled Release, 2001. 74(1-3): p. 317-323.
68. Sapsford, K.E., W.R. Algar, L. Berti, K.B. Gemmill, B.J. Casey, E. Oh, M.H. Stewart, and I.L. Medintz, Functionalizing Nanoparticles with Biological Molecules: Developing Chemistries that Facilitate Nanotechnology. Chemical Reviews, 2013. 113(3): p. 1904-2074.
69. Marques, A.C., P.J. Costa, S. Velho, and M.H. Amaral, Functionalizing nanoparticles with cancer-targeting antibodies: A comparison of strategies. Journal of Controlled Release, 2020. 320: p. 180-200.
70. Crist, R.M., J.H. Grossman, A.K. Patri, S.T. Stern, M.A. Dobrovolskaia, P.P. Adiseshaiah, J.D. Clogston, and S.E. McNeil, Common pitfalls in nanotechnology: lessons learned from NCI′s Nanotechnology Characterization Laboratory. Integrative Biology, 2013. 5(1): p. 66-73.
71. Luk, B.T. and L.F. Zhang, Cell membrane-camouflaged nanoparticles for drug delivery. Journal of Controlled Release, 2015. 220: p. 600-607.
72. Du, F.X., L.C. Liu, L. Li, J.B. Huang, L.Y. Wang, Y.J. Tang, B.W. Ke, L. Song, C. Cheng, L. Ma, and L. Qiu, Conjugated Coordination Porphyrin-based Nanozymes for Photo-/Sono-Augmented Biocatalytic and Homologous Tumor Treatments. Acs Applied Materials & Interfaces, 2021. 13(35): p. 41485-41497.
73. Sushnitha, M., M. Evangelopoulos, E. Tasciotti, and F. Taraballi, Cell Membrane-Based Biomimetic Nanoparticles and the Immune System: Immunomodulatory Interactions to Therapeutic Applications. Frontiers in Bioengineering and Biotechnology, 2020. 8: p. 17.
74. Gao, W.W., C.M.J. Hu, R.H. Fang, B.T. Luk, J. Su, and L.F. Zhang, Surface Functionalization of Gold Nanoparticles with Red Blood Cell Membranes. Advanced Materials, 2013. 25(26): p. 3549-3553.
75. Ren, X.Q., R. Zheng, X.L. Fang, X.F. Wang, X.Y. Zhang, W.L. Yang, and X.Y. Sha, Red blood cell membrane camouflaged magnetic nanoclusters for imaging-guided photothermal therapy. Biomaterials, 2016. 92: p. 13-24.
76. Chen, Z., P.F. Zhao, Z.Y. Luo, M.B. Zheng, H. Tian, P. Gong, G.H. Gao, H. Pan, L.L. Liu, A.Q. Ma, H.D. Cui, Y.F. Ma, and L.T. Cai, Cancer Cell Membrane-Biomimetic Nanoparticles for Homologous-Targeting Dual-Modal Imaging and Photothermal Therapy. Acs Nano, 2016. 10(11): p. 10049-10057.
77. Zhu, J.Y., D.W. Zheng, M.K. Zhang, W.Y. Yu, W.X. Qiu, J.J. Hu, J. Feng, and X.Z. Zhang, Preferential Cancer Cell Self-Recognition and Tumor Self-Targeting by Coating Nanoparticles with Homotypic Cancer Cell Membranes. Nano Letters, 2016. 16(9): p. 5895-5901.
78. Hu, C.M.J., R.H. Fang, K.C. Wang, B.T. Luk, S. Thamphiwatana, D. Dehaini, P. Nguyen, P. Angsantikul, C.H. Wen, A.V. Kroll, C. Carpenter, M. Ramesh, V. Qu, S.H. Patel, J. Zhu, W. Shi, F.M. Hofman, T.C. Chen, W.W. Gao, K. Zhang, S. Chien, and L.F. Zhang, Nanoparticle biointerfacing by platelet membrane cloaking. Nature, 2015. 526(7571): p. 118-+.
79. Zhen, X., P. Cheng, and K. Pu, Recent advances in cell membrane–camouflaged nanoparticles for cancer phototherapy. Small, 2019. 15(1): p. 1804105.
80. Rao, L., L.L. Bu, B. Cai, J.H. Xu, A. Li, W.F. Zhang, Z.J. Sun, S.S. Guo, W. Liu, and T.H. Wang, Cancer cell membrane‐coated upconversion nanoprobes for highly specific tumor imaging. Advanced Materials, 2016. 28(18): p. 3460-3466.
81. Fang, R.H., C.M.J. Hu, B.T. Luk, W.W. Gao, J.A. Copp, Y.Y. Tai, D.E. O′Connor, and L.F. Zhang, Cancer Cell Membrane-Coated Nanoparticles for Anticancer Vaccination and Drug Delivery. Nano Letters, 2014. 14(4): p. 2181-2188.
82. Yue, X.S., Y. Murakami, T. Tamai, M. Nagaoka, C.S. Cho, Y. Ito, and T. Akaike, A fusion protein N-cadherin-Fc as an artificial extracellular matrix surface for maintenance of stem cell features. Biomaterials, 2010. 31(20): p. 5287-5296.
83. Weinberg, R.A., The biology of cancer. 2013: Garland science.
84. Ingram, J.R., O.S. Blomberg, J.T. Sockolosky, L. Ali, F.I. Schmidt, N. Pishesha, C. Espinosa, S.K. Dougan, K.C. Garcia, H.L. Ploegh, and M. Dougan, Localized CD47 blockade enhances immunotherapy for murine melanoma. Proceedings of the National Academy of Sciences of the United States of America, 2017. 114(38): p. 10184-10189.
85. Lu, Q., X. Chen, S. Wang, Y. Lu, C. Yang, and G. Jiang, Potential new cancer immunotherapy: anti-CD47-SIRPα antibodies. OncoTargets and therapy, 2020. 13: p. 9323.
86. Liu, Y., J.S. Luo, X.J. Chen, W. Liu, and T.K. Chen, Cell Membrane Coating Technology: A Promising Strategy for Biomedical Applications. Nano-Micro Letters, 2019. 11(1): p. 46.
87. Xu, C.H., P.J. Ye, Y.C. Zhou, D.X. He, H. Wei, and C.Y. Yu, Cell membrane-camouflaged nanoparticles as drug carriers for cancer therapy. Acta Biomaterialia, 2020. 105: p. 1-14.
88. Sheng, Z., D. Hu, M. Zheng, P. Zhao, H. Liu, D. Gao, P. Gong, G. Gao, P. Zhang, and Y. Ma, Smart human serum albumin-indocyanine green nanoparticles generated by programmed assembly for dual-modal imaging-guided cancer synergistic phototherapy. ACS nano, 2014. 8(12): p. 12310-12322.
89. Huang, P., J. Lin, X. Wang, Z. Wang, C. Zhang, M. He, K. Wang, F. Chen, Z. Li, and G. Shen, Light‐triggered theranostics based on photosensitizer‐conjugated carbon dots for simultaneous enhanced‐fluorescence imaging and photodynamic therapy. Advanced Materials, 2012. 24(37): p. 5104-5110.
90. Kobayashi, H., M. Ogawa, R. Alford, P.L. Choyke, and Y. Urano, New strategies for fluorescent probe design in medical diagnostic imaging. Chemical reviews, 2010. 110(5): p. 2620-2640.
91. Tan, X., S. Luo, L. Long, Y. Wang, D. Wang, S. Fang, Q. Ouyang, Y. Su, T. Cheng, and C. Shi, Structure‐guided design and synthesis of a mitochondria‐targeting near‐infrared fluorophore with multimodal therapeutic activities. Advanced Materials, 2017. 29(43): p. 1704196.
92. Sevick-Muraca, E., Translation of near-infrared fluorescence imaging technologies: emerging clinical applications. Annual review of medicine, 2012. 63: p. 217-231.
93. Cai, X., B. Liu, M. Pang, and J. Lin, Interfacially synthesized Fe-soc-MOF nanoparticles combined with ICG for photothermal/photodynamic therapy. Dalton Transactions, 2018. 47(45): p. 16329-16336.
94. Han, H.S. and K.Y. Choi, Advances in Nanomaterial-Mediated Photothermal Cancer Therapies: Toward Clinical Applications. Biomedicines, 2021. 9(3): p. 15.
95. Sheng, W., S. He, W.J. Seare, and A. Almutairi, Review of the progress toward achieving heat confinement—the holy grail of photothermal therapy. Journal of biomedical optics, 2017. 22(8): p. 080901-080901.
96. Golstein, P. and G. Kroemer, Cell death by necrosis: towards a molecular definition. Trends in Biochemical Sciences, 2007. 32(1): p. 37-43.
97. Dolmans, D.E., D. Fukumura, and R.K. Jain, Photodynamic therapy for cancer. Nature reviews cancer, 2003. 3(5): p. 380-387.
98. Agostinis, P., K. Berg, K.A. Cengel, T.H. Foster, A.W. Girotti, S.O. Gollnick, S.M. Hahn, M.R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B.C. Wilson, and J. Golab, Photodynamic Therapy of Cancer: An Update. Ca-a Cancer Journal for Clinicians, 2011. 61(4): p. 250-281.
99. Sai, D.L., J. Lee, D.L. Nguyen, and Y.-P. Kim, Tailoring photosensitive ROS for advanced photodynamic therapy. Experimental & Molecular Medicine, 2021. 53(4): p. 495-504.
100. Kharkwal, G.B., S.K. Sharma, Y.Y. Huang, T. Dai, and M.R. Hamblin, Photodynamic therapy for infections: clinical applications. Lasers in surgery and medicine, 2011. 43(7): p. 755-767.
101. Gowsalya, K., V. Yasothamani, and R. Vivek, Emerging indocyanine green-integrated nanocarriers for multimodal cancer therapy: a review. Nanoscale Advances, 2021. 3(12): p. 3332-3352.
102. Kuo, W.S., Y.T. Chang, K.C. Cho, K.C. Chiu, C.H. Lien, C.S. Yeh, and S.J. Chen, Gold nanomaterials conjugated with indocyanine green for dual-modality photodynamic and photothermal therapy. Biomaterials, 2012. 33(11): p. 3270-3278.
103. Carr, J.A., D. Franke, J.R. Caram, C.F. Perkinson, M. Saif, V. Askoxylakis, M. Datta, D. Fukumura, R.K. Jain, M.G. Bawendi, and O.T. Bruns, Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green. Proceedings of the National Academy of Sciences of the United States of America, 2018. 115(17): p. 4465-4470.
104. Wu, M.L., T.X. Mei, C.Y. Lin, Y.C. Wang, J.Y. Chen, W.J. Le, M.Y. Sun, J.G. Xu, H.Y. Dai, Y.F. Zhang, C.Y. Xue, Z.M. Liu, and B.D. Chen, Melanoma Cell Membrane Biomimetic Versatile CuS Nanoprobes for Homologous Targeting Photoacoustic Imaging and Photothermal Chemotherapy. Acs Applied Materials & Interfaces, 2020. 12(14): p. 16031-16039.
105. Barth, B.M., E.I. Altinoglu, S.S. Shanmugavelandy, J.M. Kaiser, D. Crespo-Gonzalez, N.A. DiVittore, C. McGovern, T.M. Goff, N.R. Keasey, J.H. Adair, T.P. Loughran, D.F. Claxton, and M. Kester, Targeted Indocyanine-Green-Loaded Calcium Phosphosilicate Nanoparticles for In Vivo Photodynamic Therapy of Leukemia. Acs Nano, 2011. 5(7): p. 5325-5337.
106. West, W. and S. Pearce, The dimeric state of cyanine dyes. The Journal of Physical Chemistry, 1965. 69(6): p. 1894-1903.
107. Saxena, V., M. Sadoqi, and J. Shao, Enhanced photo-stability, thermal-stability and aqueous-stability of indocyanine green in polymeric nanoparticulate systems. Journal of Photochemistry and Photobiology B: Biology, 2004. 74(1): p. 29-38.
108. Gomes, A.J., L.O. Lunardi, J.M. Marchetti, C.N. Lunardi, and A.C. Tedesco, Indocyanine green nanoparticles useful for photomedicine. Photomedicine and Laser Therapy, 2006. 24(4): p. 514-521.
109. Sheng, Z.H., D.H. Hu, M.M. Xue, M. He, P. Gong, and L.T. Cai, Indocyanine Green Nanoparticles for Theranostic Applications. Nano-Micro Letters, 2013. 5(3): p. 145-150.
110. Martino, E., S. Della Volpe, E. Terribile, E. Benetti, M. Sakaj, A. Centamore, A. Sala, and S. Collina, The long story of camptothecin: From traditional medicine to drugs. Bioorganic & Medicinal Chemistry Letters, 2017. 27(4): p. 701-707.
111. Kacprzak, K.M., Chemistry and biology of camptothecin and its derivatives. Natural Products (643–682) Heidelberg, Berlin: Springer, 2013.
112. Hatefi, A. and B. Amsden, Camptothecin delivery methods. Pharmaceutical Research, 2002. 19(10): p. 1389-1399.
113. Wen, Y., Y.Z. Wang, X.L. Liu, W. Zhang, X.H. Xiong, Z.X. Han, and X.J. Liang, Camptothecin-based nanodrug delivery systems. Cancer Biology & Medicine, 2017. 14(4): p. 363-370.
114. Buzun, K., A. Bielawska, K. Bielawski, and A. Gornowicz, DNA topoisomerases as molecular targets for anticancer drugs. Journal of Enzyme Inhibition and Medicinal Chemistry, 2020. 35(1): p. 1781-1799.
115. Li, F., T. Jiang, Q. Li, and X. Ling, Camptothecin (CPT) and its derivatives are known to target topoisomerase I (Top1) as their mechanism of action: did we miss something in CPT analogue molecular targets for treating human disease such as cancer? American journal of cancer research, 2017. 7(12): p. 2350.
116. Muz, B., P. de la Puente, F. Azab, and A.K. Azab, The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia, 2015. 3: p. 83.
117. Jägers, J., A. Wrobeln, and K.B. Ferenz, Perfluorocarbon-based oxygen carriers: from physics to physiology. Pflügers Archiv-European Journal of Physiology, 2021. 473: p. 139-150.
118. Riess, J.G., Understanding the fundamentals of perfluorocarbons and perfluorocarbon emulsions relevant to in vivo oxygen delivery. Artificial cells, blood substitutes, and biotechnology, 2005. 33(1): p. 47-63.
119. Kim, M.A. and C.M. Lee, NIR-Mediated drug release and tumor theranostics using melanin-loaded liposomes. Biomaterials Research, 2022. 26(1): p. 13.
120. Sun, H.P., J.H. Su, Q.S. Meng, Q. Yin, L.L. Chen, W.W. Gu, Z.W. Zhang, H.J. Yu, P.C. Zhang, S.L. Wang, and Y.P. Li, Cancer Cell Membrane-Coated Gold Nanocages with Hyperthermia-Triggered Drug Release and Homotypic Target Inhibit Growth and Metastasis of Breast Cancer. Advanced Functional Materials, 2017. 27(3): p. 9.
121. Tsilimigras, D.I., P. Brodt, P.-A. Clavien, R.J. Muschel, M.I. D’Angelica, I. Endo, R.W. Parks, M. Doyle, E. de Santibañes, and T.M. Pawlik, Liver metastases. Nature reviews Disease primers, 2021. 7(1): p. 27.
122. Tas, F. and K. Erturk, Anemia in cutaneous malignant melanoma: low blood hemoglobin level is associated with nodal involvement, metastatic disease, and worse survival. Nutrition and cancer, 2018. 70(2): p. 236-240.
123. El Halal Schuch, L., M.M. Azevedo, R. Furian, P. Rigon, K. Cristine Reiter, I. Crivelatti, F. Riccardi, and C. Giuliano Bica, Evaluation of Kindlin-1 and Ki-67 immunohistochemical expression in primary cutaneous malignant melanoma: a clinical series. Applied Cancer Research, 2019. 39: p. 1-8.
指導教授 李宇翔 審核日期 2023-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明