博碩士論文 109226063 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:18.188.93.255
姓名 王奕辰(Yi-Chen Wang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 光聲壓縮感知顯微影像系統改善與以加熱樣品提升光聲訊號強度之研究
相關論文
★ 以體積全像布拉格光柵為反射鏡之單縱模波長可調式V型共振腔鈦藍寶石固態雷射研究★ 以體積全像布拉格光柵為反射鏡之外腔式半導體雷射研究
★ 已體積布拉格光柵為可調反射率輸出雷射鏡研究★ 以錐形半導體放大器為增益介質、外腔VBG回饋半導體雷射研究
★ 利用楔形稜鏡與繞射光柵設計非光線追跡薄型太陽能集光器★ 以體積布拉格光柵為共振腔反射鏡之有效腔長研究
★ 穩態紅外線LED封裝熱阻量測★ 以體積布拉格光柵作為雷射共振腔內反射鏡之縱向模態研究
★ 以光激發螢光影像量測矽太陽能電池額外載子生命期及串聯電阻分佈之研究★ 以體積布拉格光柵作為雷射共振腔反射鏡之橫模行為研究
★ 鎖相熱影像檢測法用以檢測材料內部缺陷★ 光聲影像顯微術之研究
★ 光激發額外載子於太陽能電池內空間分佈之二維軸對稱與二維線對稱物理參數模擬★ 基於純量繞射理論以遠場聲場重建光聲影像之研究
★ 基於光聲訊號之三維資訊重建★ 以動態模型分析PQ:PMMA作為體積布拉格光柵之繞射效率研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文闡述如何以光聲量測系統為基礎建立由微型鏡片陣列裝置(DMD)作為架構主要核心的光聲壓縮感知鬼影成像系統,並針對DMD微鏡片結構造成的能量丟失導致的光聲量測低訊雜比問題提出解決方案。首先藉由光聲效應與溫度的關聯設計實驗,並透過分析實驗結果配合熱傳方程式與光致聲波方程式的學理證實熱致光聲增強現象可以應用於提升光聲訊號訊雜比。隨後透過調整系統相關軟硬體,有效改良並簡化光聲壓縮感知鬼影成像系統的還原流程,最後證實雷射作為非接觸式熱源與光聲壓縮感知鬼影成像系統結合可以成功重建光聲影像。
摘要(英) A photoacoustic compressive sensing ghost imaging system based on the photoacoustic measurement system with a digital micro-mirror array device (DMD) is proposed and realized. To overcome the bottleneck in low signal-to-noise ratio, the solution based on the thermo-induced photoacoustic enhancement effect has been introduced. By adjusting the relevant software and hardware of the system, the restoration process of the photoacoustic compressed sensing ghost imaging system was effectively improved and simplified. Finally, it was confirmed that the combination of the laser as a non-invasive heat source and the photoacoustic compressed sensing ghost imaging system can successfully reconstruct the photoacoustic image.
關鍵字(中) ★ 光聲效應
★ 顯微影像系統
★ 壓縮感知
★ 訊雜比
★ 鬼影成像
關鍵字(英) ★ photoacoustic effect
★ microscopy
★ compressive sensing
★ SNR
★ Ghost imaging
論文目次 目錄
中文摘要 VII
Abstract VIII
致謝 IX
目錄 X
圖目錄 XII
第一章 緒論 1
1.1 前言 1
1.2 研究動機 3
1.3 論文架構 3
第二章 背景知識 4
2.1 光聲效應原理與機制 4
2.1.1光致聲波產生之原理與流程 4
2.1.2光聲效應與溫度之關係 6
2.2光致聲波動方程式 7
2.2.1光致聲波動方程式 7
2.2.2 求解光致聲波動方程式 8
2.3 計算鬼影成像與單像素成像系統 9
2.3.1鬼影成像系統 9
2.3.2單像素成像系統 10
2.4 壓縮感知(Compressive sensing) 12
2.4.1 壓縮感知單像素成像系統 12
2.4.2 壓縮感知影像還原演算法 13
2.5 光聲顯微影像系統 15
2.5.1 光聲顯微影還原方法與重建速度 15
2.5.2光聲壓縮感知鬼影顯微成像系統 16
2.6訊號擷取與紀錄 17
第三章 前導實驗 19
3.1 光聲激發與量測實驗 19
3.1.1 光聲激發與量測系統 19
3.1.2 實驗樣品 21
3.1.3 儀控與訊號擷取 23
3.1.4 光聲激發與量測系統之架設方法與與實驗步驟 24
3.2外部熱源調制光聲訊號實驗 27
3.2.1 外部熱源雷射調制模組與光聲量測系統 27
3.2.2 儀控與訊號擷取 29
第四章 光聲壓縮感知鬼影成像實驗 30
4.1 光聲壓縮感知鬼影成像系統 30
4.1.1光聲壓縮感知鬼影成像系統 30
4.1.2基底播放時脈驗證子系統 32
4.1.3 光聲壓縮感知鬼影成像系統架設方法與細節 33
4.2儀控與訊號擷取 35
4.3訊號處理與影像還原流程 37
第五章 實驗結果與討論 39
5.1 儀器參數設定與系統架設對光聲訊號量測之影響 39
5.1.1 脈衝雷射參數設定對光聲訊號之影響 39
5.1.2光聲激發與量測系統架設對光聲訊號之影響 50
5.1.3 外部熱源雷射光路架設對光聲訊號之影響 53
5.2 壓縮感知鬼影成像系統之光聲影像還原結果 56
5.2.1 以壓縮感知鬼影成像系統重建之光聲影像結果 56
5.2.2光聲壓縮感知鬼影成像系統還原時間與系統改善細節 59
第六章 總結與未來展望 61
參考文獻 62
附錄 65
附錄一 惠斯登電橋與溫度驗證實驗 65
A.1.1電阻率與電阻溫度係數之定義 65
A.1.2 惠斯登電橋 65
A.1.3 惠斯登電橋與碳纖維樣品製備 66
A.1.4 惠斯登電橋與溫度驗證實驗 67
附錄二 環境溫度對光聲訊號量測影響 68

參考文獻 參考文獻
[1] J. Yao and L. V. Wang, "Sensitivity of photoacoustic microscopy," Photoacoustics, vol. 2, no. 2, pp. 87-101, 2014.
[2] A. G. Bell, "On the production and reproduction of sound by light," in Proc. Am. Assoc. Adv. Sci., 1881, vol. 29, pp. 115-136.
[3] E. M. Strohm, M. J. Moore, and M. C. Kolios, "Single cell photoacoustic microscopy: a review," IEEE Journal of Selected Topics in Quantum Electronics, vol. 22, no. 3, pp. 137-151, 2015.
[4] S. Jeon, J. Kim, D. Lee, J. W. Baik, and C. Kim, "Review on practical photoacoustic microscopy," Photoacoustics, vol. 15, p. 100141, 2019.
[5] K. Wang, C. Li, R. Chen, and J. Shi, "Recent advances in high-speed photoacoustic microscopy," Photoacoustics, vol. 24, p. 100294, 2021.
[6] E. J. Candès, "Compressive sampling," in Proceedings of the international congress of mathematicians, 2006, vol. 3: Citeseer, pp. 1433-1452.
[7] E. J. Candès and M. B. Wakin, "An introduction to compressive sampling," IEEE signal processing magazine, vol. 25, no. 2, pp. 21-30, 2008.
[8] D. Liang, H. F. Zhang, and L. Ying, "Compressed-sensing photoacoustic imaging based on random optical illumination," International Journal of Functional Informatics and Personalised Medicine, vol. 2, no. 4, pp. 394-406, 2009.
[9] M. Xu and L. V. Wang, "Photoacoustic imaging in biomedicine," Review of scientific instruments, vol. 77, no. 4, p. 041101, 2006.
[10] C. Tian et al., "Dual-pulse nonlinear photoacoustic technique: a practical investigation," Biomedical optics express, vol. 6, no. 8, pp. 2923-2933, 2015.
[11] D. Hutchins, "Mechanisms of pulsed photoacoustic generation," Canadian Journal of Physics, vol. 64, no. 9, pp. 1247-1264, 1986.
[12] J. Xia, J. Yao, and L. V. Wang, "Photoacoustic tomography: principles and advances," Electromagnetic waves (Cambridge, Mass.), vol. 147, p. 1, 2014.
[13] H. D. e. I. Brewster, Heat and thermodynamics. Jaipur, India: Oxford Book Co. (in English), 2009.
[14] H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, "Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging," Nature biotechnology, vol. 24, no. 7, pp. 848-851, 2006.
[15] C. Pradere and C. Sauder, "Transverse and longitudinal coefficient of thermal expansion of carbon fibers at high temperatures (300–2500 K)," Carbon, vol. 46, no. 14, pp. 1874-1884, 2008.
[16] R. Gao, Z. Xu, Y. Ren, L. Song, and C. Liu, "Nonlinear mechanisms in photoacoustics—Powerful tools in photoacoustic imaging," Photoacoustics, vol. 22, p. 100243, 2021.
[17] A. F. C. C. F. M. Mills, Heat transfer. (in English), 2016.
[18] P. M. I. K. U. Morse, Theoretical acoustics. Princeton: Princeton University Press (in English), 1986.
[19] Z. Bozóki, A. Miklós, and D. Bicanic, "Photothermoelastic transfer matrix," Applied physics letters, vol. 64, no. 11, pp. 1362-1364, 1994.
[20] J. H. Shapiro and R. W. Boyd, "The physics of ghost imaging," Quantum Information Processing, vol. 11, no. 4, pp. 949-993, 2012.
[21] A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, "Ghost imaging with thermal light: comparing entanglement and classicalcorrelation," Physical review letters, vol. 93, no. 9, p. 093602, 2004.
[22] Y. Bromberg, O. Katz, and Y. Silberberg, "Ghost imaging with a single detector," Physical Review A, vol. 79, no. 5, p. 053840, 2009.
[23] J. H. Shapiro, "Computational ghost imaging," Physical Review A, vol. 78, no. 6, p. 061802, 2008.
[24] F. Ferri, D. Magatti, L. Lugiato, and A. Gatti, "Differential ghost imaging," Physical review letters, vol. 104, no. 25, p. 253603, 2010.
[25] M. F. Duarte et al., "Single-pixel imaging via compressive sampling," IEEE signal processing magazine, vol. 25, no. 2, pp. 83-91, 2008.
[26] M. P. Edgar, G. M. Gibson, and M. J. Padgett, "Principles and prospects for single-pixel imaging," Nature photonics, vol. 13, no. 1, pp. 13-20, 2019.
[27] L. Bian, J. Suo, Q. Dai, and F. Chen, "Experimental comparison of single-pixel imaging algorithms," JOSA A, vol. 35, no. 1, pp. 78-87, 2018.
[28] E. J. Candes, "The restricted isometry property and its implications for compressed sensing," Comptes rendus mathematique, vol. 346, no. 9-10, pp. 589-592, 2008.
[29] M. Rani, S. B. Dhok, and R. B. Deshmukh, "A systematic review of compressive sensing: Concepts, implementations and applications," IEEE Access, vol. 6, pp. 4875-4894, 2018.
[30] T. Peters, "Data-driven science and engineering: machine learning, dynamical systems, and control: by SL Brunton and JN Kutz, 2019, Cambridge, Cambridge University Press, 472 pp.,£ 49.99 (hardback), ISBN 9781108422093. Level: postgraduate. Scope: textbook," ed: Taylor & Francis, 2019.
[31] E. Candes and J. Romberg, "Sparsity and incoherence in compressive sampling," Inverse problems, vol. 23, no. 3, p. 969, 2007.
[32] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex optimization. Cambridge university press, 2004.
[33] L. I. Rudin, S. Osher, and E. Fatemi, "Nonlinear total variation based noise removal algorithms," Physica D: nonlinear phenomena, vol. 60, no. 1-4, pp. 259-268, 1992.
[34] Y. Xiao, Q. Wang, and Q. Hu, "Non-smooth equations based method for ℓ1-norm problems with applications to compressed sensing," Nonlinear Analysis: Theory, Methods & Applications, vol. 74, no. 11, pp. 3570-3577, 2011.
[35] C. Li, An efficient algorithm for total variation regularization with applications to the single pixel camera and compressive sensing. Rice University, 2010.
[36] Z. Xie, S. Jiao, H. F. Zhang, and C. A. Puliafito, "Laser-scanning optical-resolution photoacoustic microscopy," Optics letters, vol. 34, no. 12, pp. 1771-1773, 2009.
[37] J. W. Goodman, Introduction to Fourier optics. New York, N.Y: W.H. Freeman (in English), 2017.
[38] V. Katkovnik and J. Astola, "Compressive sensing computational ghost imaging," JOSA A, vol. 29, no. 8, pp. 1556-1567, 2012.
[39] A. Diaspro, G. Chirico, C. Usai, P. Ramoino, and J. Dobrucki, "Photobleaching," in Handbook of biological confocal microscopy: Springer, 2006, pp. 690-702.
[40] "<Carbon fiber specification.pdf>."
[41] "<基於鬼影成像之光聲顯微鏡.pdf>."
[42] "<TI DLP® LightCrafterTM 4500 Evaluation Module User′s Guide.pdf>."
[43] R. Weber et al., "Heat accumulation during pulsed laser materials processing," Optics express, vol. 22, no. 9, pp. 11312-11324, 2014.
[44] Y. Xu, R. Wang, S. Ma, L. Zhou, Y. R. Shen, and C. Tian, "Theoretical analysis and simulation of pulsed laser heating at interface," Journal of Applied Physics, vol. 123, no. 2, p. 025301, 2018.

指導教授 鍾德元(Te-Yuan Chung) 審核日期 2022-12-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明