博碩士論文 110327016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:23 、訪客IP:52.14.186.84
姓名 陳尚宏(Shang-Hong Chen)  查詢紙本館藏   畢業系所 光機電工程研究所
論文名稱 整合光源控制與深度學習辨識之平放膠體散料夾取系統開發
(Development of a flat lying plastic micro connector component picking system integrating light control and deep learning recognition)
相關論文
★ 光學遮斷式晶圓定位系統與半導體製程設備之整合★ 應用於太陽能聚光器之等光路型與金字塔型二次光學元件的分析與比較
★ 口徑550 mm反射鏡減重與撓性支撐結構最佳化設計★ 光機整合分析應用於620mm反射鏡變形分析與八吋反射鏡彈性膠緊固設計
★ 具線性齒頂修整之螺旋齒輪接觸特性研究★ 應用投射疊紋技術於齒輪精度量測
★ 反射鏡減重與撓性支撐結構最佳化★ 曲面反射鏡減重與背向支撐撓性機構最佳化
★ 建構拉焊機感測系統之人機介面與機器學習★ 考量成像品質之最佳化塑膠透鏡結構設計
★ 離軸矩形反射鏡輕量化與撓性支撐結構最佳化★ 電路板拉焊製程參數優化與 烙鐵頭剩餘使用壽命預測之研究
★ ZK型雙包絡蝸桿蝸輪組接觸分析★ 整合深度學習與立體視覺之六軸機械手臂夾取系統開發
★ 整合視覺及力量控制之六軸機械手臂系統開發★ 整合視覺、力量感測與模糊控制技術之新穎機械手臂組裝系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 少量多樣的電子連接器產品製造和裝配需要大量的人力資源,但廠商面臨嚴重的缺工問題。因此,本研究開發一套取放料系統,使用六軸機械手臂進行膠體零件散料夾取,此系統結合機械手臂、光源控制、機器視覺以及深度學習等技術,分別使用兩種不同作業系統來實現系統的開發,使用 Windows 作業系統來完成環狀光源與控制器的整合,且基於 Linux Ubuntu18.04 版本的作業系統環境,透過機器人作業系統(Robot Operating System,ROS)開發軟體系統,經由 ROS 分散式的架構將實驗用電腦、六軸機械手臂、工業相機及自適應夾爪與深度學習、機器視覺進行軟硬體的整合,以達到散料辨識夾取系統的開發。
本論文首先透過基因演算法於調整光源參數,進而增強 YOLOv4 模型辨識膠體正反面的效果,並有效地解決了由於環境因素導致辨識率降低的問題,接著使用六軸機械手臂,將散料膠體依照其正反面準確的夾取至指定的治具上,目前此系統的成功率為94%,成果顯示本論文能夠成功克服原先合作廠商須採用在少量多樣或試產時尚未投入成本建置振動盤進行料件取料問題。
摘要(英) Manufacturing and assembling a variety of electronic connector products in small quantities require a significant amount of human resources, yet manufacturers are grappling
with severe labor shortages. Hence, this research presents the development of an electronic connector materials handling system that employs a six-axis robotic arm for the precise retrieval of adhesive components. This study utilized two different operating systems for system
development. Windows operating system was employed for integrating the light source and controller, while the Linux Ubuntu 18.04 version operating system environment was used to develop the software system through the Robot Operating System (ROS). The computer, sixaxis robot arm, industrial camera adaptive gripper, and deep learning and machine vision technologies were integrated by ROS distributed architecture, ultimately achieving the development of a system for picking micro connector component.
This research employs genetic algorithm to optimize the parameters of the light source, followed by utilizing the YOLOv4 deep learning model to identify the front sides or back sides of the plastic component. Then use six-axis robotic arm to handle these materials with precision,
placing them onto designated fixtures. Currently, this system boasts a success rate of 94%. The results highlight the successful resolution of the challenge faced by collaborating manufacturers, eliminating the need to invest in vibration feeders for scenarios involving smallscale, diverse, or trial production.
關鍵字(中) ★ 微小電子零件辨識
★ 光源參數調整
★ YOLOv4
★ 基因演算法
★ 機器視覺
★ 六軸機械手臂
★ ROS
關鍵字(英) ★ Recognition of Tiny Electronic Components
★ Light source parameter tuning
★ YOLOv4
★ Genetic algorithm
★ Machine vision
★ Six-axis robot arm
★ Robot Operating System
論文目次 摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VII
表目錄 XI
符號對照表 XII
第1章 緒論 1
1.1 研究背景 1
1.2 文獻回顧 1
1.2.1 機器視覺 1
1.2.2 物件夾取系統 5
1.3 研究動機與目的 6
1.4 論文架構 7
第2章 系統架構 8
2.1硬體規格介紹 8
2.1.1 六軸協作型機械手臂 8
2.1.2 自適應夾爪 9
2.1.3 電腦規格 10
2.1.4 相機鏡頭設備 11
2.1.5 環狀光源與控制器 12
2.2 軟體介紹 14
2.2.1 機器人作業系統(Robot Operating System, ROS) 14
2.2.2 基因演算法 16
2.2.3 YOLO演算法 18
第3章 研究方法 25
3.1 影像處理系統架構 25
3.1.1 影像灰階化與二值化 25
3.1.2 雜訊濾波 26
3.1.3 邊緣檢測 27
3.1.4 最小外接矩形 28
3.1.5 霍夫圓檢測 29
3.2光源參數調整系統架構 29
3.2.1 影像對比度檢測 30
3.2.2 光源控制器整合 31
3.2.3 基因演算法調整光源參數 32
3.3 膠體散料偵測與夾取點辨識 35
3.3.1 資料集與標註 36
3.3.2 模型訓練參數設定 38
3.3.3 YOLOv4模型訓練 40
3.3.4 夾取點辨識 42
3.4機械手臂運動系統 43
3.4.1 D-H參數 44
3.4.2 手臂運動學 45
3.4.3 手眼校正 48
3.4.4 ROS節點功能介紹 56
第4章 實驗結果與討論 59
4.1光源參數調整實驗 59
4.1.1 對比度與深度學習模型關係 60
4.1.2 基因演算法參數調整實驗 61
4.2物件辨識夾取實驗 65
4.2.1 YOLOv4模型參數訓練 66
4.2.2 機械手臂放置膠體姿態實驗 68
4.2.3 膠體辨識取放成功率評估 71
第5章 結論與未來工作 74
5.1 論文結論 74
5.2 未來展望 74
參考文獻 76
參考文獻 [1] H. Kim, S. Kim, and Y. Cho, “Quick and Efficient Light Control for Conventional Automatic Optical Inspection (AOI) Systems,” International Journal of Precision Engineering and Manufacturing, vol. 16, no. 2, pp. 46-54, February 2015.
[2] S. Kinney, “Intelligent Lighting Brings Machine Vision to New Heights,” available at:
https://www.photonics.com/Articles/.
[3] J. Uusitalo, and R. Tuokko, “Setting up Task-Optimal Illumination Automatically for Inspection Purposes,” International Society for Optics and Photonics, vol. 6503, 2007.
[4] F. Chang, Y. Duan, M. Liu, and M. Dong, “Coarse-to-Fine Adaptive Illumination HardAdjustment for Vision Inspection System Under Uncertain Imaging Conditions,” IEEE SENSORS, October, 2019.
[5] Y. Y. Schechner, S. K. Nayar, and P. N. Belhumeur, “Multiplexing for Optimal Lighting,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29,
no. 8, pp. 1339-1354, 2007.
[6] C. K. Cheng, and H. Y. Tsai, “Enhanced Detection of Diverse Defects by Developing Lighting Strategies using Multiple Light Sources Based on Reinforcement Learning,”
Journal of Intelligent Manufacturing, June, 2021.
[7] H. Wang, J. Wang, W. Chen, and L. Xu, “Automatic Illumination Planning for Robot Vision Inspection System,” Neurocomputing, February, 2017.
[8] S. Dodge, and L. Karam, “Understanding how Image Quality Affects Deep Neural Networks, Arizona State University,” IEEE Xplore in the Proceedings of the Conference on the Quality of Multimedia Experience, June, 2016.
[9] H. Sun, C. Sun, and Y. Liao, “The Quality Detection Method of Connectors Based on Region Form Characteristics,” International Conference on Intelligent System Design
and Engineering Application, January, 2012.
[10] E. Sipos, A. Ones, and L. N. Ivanciu, “PCB Quality Check: Optical Inspection Using Color Mask and hresholding,” IEEE International Conference on Automation, Quality and Testing, Robotics, May, 2022.
[11] U. J. Botero R. Wilson, H. Lu, M. T. Rahman, and M. A. Mallaiyan, “Hardware Trust and Assurance through Reverse Engineering: A Tutorial and Outlook from Image Analysis and Machine Learning Perspectives,” Association for Computing Machinery Journal on Emerging Technologies in Computing Systems, vol. 17, no. 4, 2021.
[12] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Implementation of Object Detection and Recognition Algorithms on a Robotic Arm Platform Using Raspberry Pi,” IEEE Conference on Computer Vision and Pattern Recognition, pp. 580-587, 2014.
[13] A. Bochkovskiy, C. Y. Wang, and H. Y. M. Liao, “YOLOv4: Optimal Speed and Accuracy of Object Detection,” arXiv preprint arXiv: 2004.10934, 2020.
[14] T. Shiina, Y. Iwahori, and B. Kijsirikul, “Defect Classification of Electronic Circuit Board Using Multi-Input Convolutional Neural Network,” International Journal of
Computer & Software Engineering, vol. 3, no. 2, 2018.
[15] C. Guo, X. L. Lv, Y. Zhang, and M. L. Zhang, “Improved YOLOv4-Tiny Network for Real-Time Electronic Component Detection,” Scientific Reports, 23 November, 2021.
[16] 蔡秉庭,「整合影像處理於六軸機械手臂之控制與應用」,碩士論文,機械工程系,明志科技大學,2021。
[17] C. Kaymak, and A. Ucar, “Implementation of Object Detection and Recognition Algorithms on a Robotic Arm Platform Using Raspberry Pi,” International Conference
on Artificial Intelligence and Data Processing (IDAP), September, 2018.
[18] 陳守猷,「雙重影像與機械手臂定位控制應用於微小螺絲自動鎖附之設計與實現」。碩士論文,機械工程學系,國立中央大學,2017。
[19] Y. Huang, W. Hao, Z. Wang, and H. Wu, “Engineering Applications based on Industrial Robots and Machine Vision,” International Conference on Image Processing, Computer
Vision and Machine Learning (ICICML), October, 2022.
[20] 達明機器人股份有限公司
https://www.tm-robot.com/zh-hant/tm5-900/,2023 年 7 月
[21] Robotiq
https://robotiq.com/,2023 年 7 月
[22] Basler
https://www.baslerweb.com/zh-tw/products/cameras/area-scan-cameras/ace/aca2500-14uc/,2023 年 7 月
[23] 中和碁電
https://www.jidien.com/zh_tw/product/ins.php?index_m1_id=0&index_id=894,2023年 7 月
[24] TMS-LITE
https://www.tms-lite.com/hpd2-rgbw-beleuchtungen.html&search=HPD2-00-100-1-78RGBW,2023 年 7 月
[25] ROS
http://wiki.ros.org/ROS/Tutorials,2023 年 6 月
[26] Moveit
https://ros-planning.github.io/moveit_tutorials/,2023 年 6 月
[27] Moveit-Concepts
https://moveit.ros.org/documentation/concepts/,2023 年 6 月
[28] A. Lambora, K. Gupta, and K. Chopra, “Genetic Algorithm- A Literature Review,”International Conference on Machine Learning, Big Data, Cloud and Parallel Computing, February 2019.
[29] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look Once: Unified, Real-Time Object Detection,” IEEE Conference on Computer Vision and Pattern Recognition, 2016.
[30] J. R. Terven, and D. M. Cordova-Esparza, “A comprehensive review of YOLO: From YOLOv1 to YOLOv8 and beyond,” arXiv: 2304.00501, 2023.
[31] C. Y. Wang, H. Y. M. Liao, Y. H. Wu, P. Y. Chen, J. W. Hsieh, and I. H. Yeh, “CSPNet: A New Backbone that can Enhance Learning Capability of CNN,” IEEE Conference on
Computer Vision and Pattern Recognition Workshops, 2020.
[32] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 37, no. 9, September 2015.
[33] S. Liu, L. Qi, H. Qin, J. Shi, and J. Jia, “Path Aggregation Network for Instance Segmentation,” IEEE Conference on Computer Vision and Pattern Recognition, pp.
8759-8768, 2018.
[34] Z. Zheng, P. Wang, W. Liu, J. Li, R. Ye, and D. Ren, “Distance-IoU Loss: Faster and Better Learning for Bounding Box Regression,” arXiv preprint arXiv:1911.08287, 2020.
[35] Otsu Nobuyuki, “A Threshold Selection Method from Gray-Level Histograms” vol. 9, no. 1, pp. 62-66, 1979.
[36] J. Canny, “A Computational Approach To Edge Detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, December, 1986.
[37] PyGAD
https://pygad.readthedocs.io/en/latest/,2023 年 6 月
[38] YOLOv4 Darknet
https://github.com/AlexeyAB/darknet,2023 年 6 月
[39] LabelImg
https://github.com/heartexlabs/labelImg,2023 年 6 月
[40] 陳亞伶,「基於電腦視覺與深度增強式學習之工業用機械手臂物件取放任務研究」。碩士論文,電機工程學系,國立成功大學,2021。
[41] C. Joochim, S. Kaewkorn, and A. Kunapinun, “The 9 Points Calibration Using SCARA Robot,” Research, Invention, and Innovation Congress (RI2C), December, 2019
指導教授 陳怡呈(Yi-Cheng Chen) 審核日期 2023-10-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明