博碩士論文 110826006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:52.14.80.39
姓名 許偉恩(Wei-En Hsu)  查詢紙本館藏   畢業系所 系統生物與生物資訊研究所
論文名稱 肝纖維化細胞與動物模型以轉錄體資料分析比較
(Transcriptomic Data Analysis of Liver Fibrosis Cells and Animal Models)
相關論文
★ 整合深度學習方法預測年齡以及衰老基因之研究★ 運用深度學習方法預測阿茲海默症惡化與腦中風手術存活
★ 運用深度學習方法預測癌症種類及存活死亡與治癒復發★ 基於檢驗數值的糖尿病腎病變預測模型
★ 機械循環拉伸對肺癌細胞功能的影響之研究★ 整合多種基因組型態資料預測肺腺癌患者存活之研究
★ 以系統生物學策略探討臍帶血來源之造血幹細胞分子調控網路★ TP53突變對具有EGFR突變的非小細胞肺癌患者帶來的影響
★ 以系統生物學方法探討肺腺癌抗藥性成因★ 機械循環拉伸力對3D培養肺癌細胞之影響
★ PM2.5對人類心肺細胞的影響★ 尼曼匹克症轉錄體學研究
★ 體外仿生肺肝纖維化3D模型研究★ 基於深度學習之皮膚病兆切割之研究
★ 體外仿生心臟衰竭三維模型研究★ 在大腸桿菌與酵母菌蛋白質體晶片中量化其蛋白質的濃度
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 纖維化是一段組織修復的過程,會由於修復過程中的失調而導致難以逆轉,在肝組織中會受到慢性炎症影響而發展纖維化。而纖維化的過程相當複雜,牽涉許多化學因子、機械應力調控,並會與許多疾病同時發展。此篇研究使用藉由物理刺激和化學刺激的細胞、小鼠及大鼠模型轉錄組數據進行分析,經由免疫組成分析確認模型內的免疫特徵,將差異表現基因以| log2FC| > 1的條件進行篩選並用於路徑分析,發現了許多細胞週期調控、免疫調控、組織修復、ECM結構變化等與纖維化相關的路徑,同時也觀察到使用不同方法刺激的模型有明顯參與不同路徑結果。在各個模型中,所顯現的特徵有所不同,在各階段的分析中,也有提出可能參與調控的因子,這些數據可於不同纖維化模型的建立時,提出可參考的資訊來選擇較適合的方法。
摘要(英) Fibrosis is a process of tissue repair that can be difficult to reverse due to dysregulation during the repair process. It develops in liver tissue as a result of chronic inflammation. The process of fibrosis is highly complex, involving various chemical factors and mechanical stress regulation, and it often occurs concomitantly with many diseases. In this study, transcriptomic data from cell cultures, as well as mouse and rat models, stimulated by physical and chemical stimuli, were analyzed. In this study, transcriptomic data from cell cultures, as well as mouse and rat models, stimulated by physical and chemical stimuli, were analyzed. Immuno composition analysis was performed to confirm the immune characteristics within the models. Differential expression genes were filtered based on the condition of |log2FC| > 1 and used for pathway analysis. Many pathways related to fibrosis, such as cell cycle regulation, immune regulation, tissue repair, ECM structural changes, and others, were discovered. Additionally, it was observed that models stimulated using different methods significantly participated in different pathways. The features displayed in various models differ, and potential regulatory factors have been proposed in the analysis of different stages. These data can provide valuable information for selecting a suitable approach when constructing different fibrosis models.
關鍵字(中) ★ 纖維化
★ 轉錄體
★ 肝臟
關鍵字(英) ★ Fibrosis
★ Transcriptom
★ Liver
論文目次 中文摘要 i
Abstract ii
目錄 iii
圖目錄 vi
表目錄 viii
一、緒論 1
1-1. 纖維化 1
1-2. 纖維化模型 4
1-2-1. 細胞纖維化模型 4
1-2-1-1. 標準纖維化模型 4
1-2-1-2. 動態仿生模型 5
1-2-1-3. 三維培養模型 6
1-2-1-4. 四維培養模型 6
1-2-2. 動物纖維化模型 7
1-3. 次世代定序 8
1-4. 轉錄體學分析 8
1-5. 研究動機及目的 9
二、材料及方法 10
2-1. 纖維化模型建構 10
2-1-1. 細胞模型 10
2-1-1-1. 細胞培養 10
2-1-1-2. 標準纖維化細胞模型 10
2-1-1-3. 二維動態纖維化細胞模型 10
2-1-1-4. 三維動態纖維化細胞模型 11
2-1-2. 動物纖維化模型 11
2-1-2-1. 小鼠肝纖維化模型 11
2-1-2-2. 大鼠肝纖維化模型 12
2-2. RNA萃取 12
2-3. 核醣核酸定序 (RNA sequencing, RNA-seq) 13
2-4. 數據分析 14
2-4-1. 分析環境及套件 14
2-4-2. 數據來源 15
2-4-3. 數據處理 15
2-4-4. 免疫組成分分析 17
2-4-5. 轉錄體數據視覺化 18
2-4-5-1. 主成分分析 (Principal components analysis, PCA) 18
2-4-5-2. 相關係數矩陣 (Correlation matrix) 19
2-4-5-3. 聚類熱圖 (Heatmap) 20
2-4-5-4. 文氏圖 (Venn diagram) 20
2-4-5-5. 氣泡圖 (Bubble plot) 20
2-4-6. 路徑分析 21
2-4-6-1. 基因本體論 (GO) 21
2-4-6-2. 京都基因與基因組百科全書 (KEGG) 22
2-4-6-3. IPA 23
三、實驗流程 24
四、實驗結果 25
4-1. 各組模型的轉錄組數據處理 25
4-2. 各組模型的纖維化標誌物表現情況 26
4-3. 各組模型的免疫組成分分析結果 28
4-4. 各組模型的免疫因子表現情況 41
4-5. 各組模型的主成分分析結果 44
4-6. 各組模型的相關性矩陣結果 44
4-7. 各組模型的差異表現基因聚類熱圖 48
4-8. 各組模型中具有交集的差異表現基因 48
4-9. 各組模型的路徑分析結果 53
4-10. 各組模型的基質調節因子表現情況 57
五、討論與結論 61
5-1. 免疫組成分析 61
5-2. 差異表現基因篩選 63
5-3. GO-BP路徑分析結果 64
5-4. KEGG路徑分析結果 65
5-5. IPA路徑分析結果 66
5-6. 肝細胞株的差異 66
5-7. 結論 67
參考資料 68
參考文獻 1. Yazdani, S., R. Bansal, et al., “Drug targeting to myofibroblasts: Implications for fibrosis and cancer.” Adv Drug Deliv Rev,Vol 121, 2017. p. 101-116.
2. Henderson, N.C., F. Rieder, et al., “Fibrosis: from mechanisms to medicines.” Nature,Vol 587, 7835, 2020. p. 555-566.
3. Rockey, D.C., P.D. Bell, et al., “Fibrosis--a common pathway to organ injury and failure.” N Engl J Med,Vol 372, 12, 2015. p. 1138-49.
4. Wynn, T.A. and T.R. Ramalingam, “Mechanisms of fibrosis: therapeutic translation for fibrotic disease.” Nat Med,Vol 18, 7, 2012. p. 1028-40.
5. Dewidar, B., C. Meyer, et al., “TGF-beta in Hepatic Stellate Cell Activation and Liver Fibrogenesis-Updated 2019.” Cells,Vol 8, 11, 2019.
6. Baum, J. and H.S. Duffy, “Fibroblasts and myofibroblasts: what are we talking about?” J Cardiovasc Pharmacol,Vol 57, 4, 2011. p. 376-9.
7. Liu, T., X. Wang, et al., “Molecular serum markers of liver fibrosis.” Biomark Insights,Vol 7, 2012. p. 105-17.
8. Wynn, T.A., “Cellular and molecular mechanisms of fibrosis.” J Pathol,Vol 214, 2, 2008. p. 199-210.
9. Verrecchia, F. and A. Mauviel, “Transforming growth factor-beta and fibrosis.” World J Gastroenterol,Vol 13, 22, 2007. p. 3056-62.
10. Chen, G., B. Xia, et al., “Matrix Mechanics as Regulatory Factors and Therapeutic Targets in Hepatic Fibrosis.” Int J Biol Sci,Vol 15, 12, 2019. p. 2509-2521.
11. Farooqi, H.M.U., B. Kang, et al., “Real-time monitoring of liver fibrosis through embedded sensors in a microphysiological system.” Nano Converg,Vol 8, 1, 2021. p. 3.
12. Chiabotto, G., E. Ceccotti, et al., “Narrative review of in vitro experimental models of hepatic fibrogenesis.” Digestive Medicine Research,Vol 5, 2022. p. 33-33.
13. Schuppan, D., “Liver fibrosis: Common mechanisms and antifibrotic therapies.” Clin Res Hepatol Gastroenterol,Vol 39 Suppl 1, 2015. p. S51-9.
14. Bataller, R. and D.A. Brenner, “Liver fibrosis.” J Clin Invest,Vol 115, 2, 2005. p. 209-18.
15. Xu, X., K.L. Poulsen, et al., “Targeted therapeutics and novel signaling pathways in non-alcohol-associated fatty liver/steatohepatitis (NAFL/NASH).” Signal Transduct Target Ther,Vol 7, 1, 2022. p. 287.
16. Lee, U.E. and S.L. Friedman, “Mechanisms of hepatic fibrogenesis.” Best Pract Res Clin Gastroenterol,Vol 25, 2, 2011. p. 195-206.
17. Jiang, J.X. and N.J. Torok, “Liver Injury and the Activation of the Hepatic Myofibroblasts.” Curr Pathobiol Rep,Vol 1, 3, 2013. p. 215-223.
18. Arthur, M.J., “Reversibility of liver fibrosis and cirrhosis following treatment for hepatitis C.” Gastroenterology,Vol 122, 5, 2002. p. 1525-8.
19. Schuppan, D. and N.H. Afdhal, “Liver cirrhosis.” Lancet,Vol 371, 9615, 2008. p. 838-51.
20. Cox-North, P.P., “Evaluation and Staging of Liver Fibrosis.” Hepatitis C Online,Vol 2021.
21. Shi, N., Z. Wang, et al., “Research progress on drugs targeting the TGF-beta signaling pathway in fibrotic diseases.” Immunol Res,Vol 70, 3, 2022. p. 276-288.
22. Fabregat, I. and D. Caballero-Diaz, “Transforming Growth Factor-beta-Induced Cell Plasticity in Liver Fibrosis and Hepatocarcinogenesis.” Front Oncol,Vol 8, 2018. p. 357.
23. Fabregat, I., J. Moreno-Caceres, et al., “TGF-beta signalling and liver disease.” FEBS J,Vol 283, 12, 2016. p. 2219-32.
24. Wang, C. and J. Yang, “Mechanical forces: The missing link between idiopathic pulmonary fibrosis and lung cancer.” Eur J Cell Biol,Vol 101, 3, 2022. p. 151234.
25. Zhao, X., Y. Kong, et al., “Mechanosensitive Piezo1 channels mediate renal fibrosis.” JCI Insight,Vol 7, 7, 2022.
26. Kang, N., “Mechanotransduction in Liver Diseases.” Semin Liver Dis,Vol 40, 1, 2020. p. 84-90.
27. Dupont, S., L. Morsut, et al., “Role of YAP/TAZ in mechanotransduction.” Nature,Vol 474, 7350, 2011. p. 179-83.
28. Tschumperlin, D.J., G. Ligresti, et al., “Mechanosensing and fibrosis.” J Clin Invest,Vol 128, 1, 2018. p. 74-84.
29. Wu, Y., N. Li, et al., “Biomechanics in liver regeneration after partial hepatectomy.” Front Bioeng Biotechnol,Vol 11, 2023. p. 1165651.
30. Simonetto, D.A., H.Y. Yang, et al., “Chronic passive venous congestion drives hepatic fibrogenesis via sinusoidal thrombosis and mechanical forces.” Hepatology,Vol 61, 2, 2015. p. 648-59.
31. Olsen, A.L., S.A. Bloomer, et al., “Hepatic stellate cells require a stiff environment for myofibroblastic differentiation.” Am J Physiol Gastrointest Liver Physiol,Vol 301, 1, 2011. p. G110-8.
32. Picchio, V., E. Floris, et al., “Multicellular 3D Models for the Study of Cardiac Fibrosis.” Int J Mol Sci,Vol 23, 19, 2022.
33. Brovold, M., D. Keller, et al., “Biofabricated 3D in vitro model of fibrosis-induced abnormal hepatoblast/biliary progenitors′ expansion of the developing liver.” Bioeng Transl Med,Vol 6, 3, 2021. p. e10207.
34. Zhang, W., G. Huang, et al., “Engineering Biomaterials and Approaches for Mechanical Stretching of Cells in Three Dimensions.” Front Bioeng Biotechnol,Vol 8, 2020. p. 589590.
35. Yang, C., J. Luo, et al., “4D-Printed Transformable Tube Array for High-Throughput 3D Cell Culture and Histology.” Adv Mater,Vol 32, 40, 2020. p. e2004285.
36. Miao, S., H. Cui, et al., “4D Self-Morphing Culture Substrate for Modulating Cell Differentiation.” Adv Sci (Weinh),Vol 7, 6, 2020. p. 1902403.
37. Basu, S., “Carbon tetrachloride-induced lipid peroxidation: eicosanoid formation and their regulation by antioxidant nutrients.” Toxicology,Vol 189, 1-2, 2003. p. 113-27.
38. Thakur, V., M.R. McMullen, et al., “Regulation of macrophage activation in alcoholic liver disease.” J Gastroenterol Hepatol,Vol 22 Suppl 1, 2007. p. S53-6.
39. Inokuchi, S., H. Tsukamoto, et al., “Toll-like receptor 4 mediates alcohol-induced steatohepatitis through bone marrow-derived and endogenous liver cells in mice.” Alcohol Clin Exp Res,Vol 35, 8, 2011. p. 1509-18.
40. Iwaisako, K., C. Jiang, et al., “Origin of myofibroblasts in the fibrotic liver in mice.” Proc Natl Acad Sci U S A,Vol 111, 32, 2014. p. E3297-305.
41. Metzker, M.L., “Sequencing technologies - the next generation.” Nat Rev Genet,Vol 11, 1, 2010. p. 31-46.
42. Cao, Y., S. Fanning, et al., “A Review on the Applications of Next Generation Sequencing Technologies as Applied to Food-Related Microbiome Studies.” Front Microbiol,Vol 8, 2017. p. 1829.
43. Reuter, J.A., D.V. Spacek, et al., “High-throughput sequencing technologies.” Mol Cell,Vol 58, 4, 2015. p. 586-97.
44. Schena, M., D. Shalon, et al., “Quantitative monitoring of gene expression patterns with a complementary DNA microarray.” Science,Vol 270, 5235, 1995. p. 467-70.
45. Sanger, F., S. Nicklen, et al., “DNA sequencing with chain-terminating inhibitors.” Proc Natl Acad Sci U S A,Vol 74, 12, 1977. p. 5463-7.
46. Shendure, J. and H. Ji, “Next-generation DNA sequencing.” Nat Biotechnol,Vol 26, 10, 2008. p. 1135-45.
47. Mardis, E.R., “The impact of next-generation sequencing technology on genetics.” Trends Genet,Vol 24, 3, 2008. p. 133-41.
48. Goodwin, S., J.D. McPherson, et al., “Coming of age: ten years of next-generation sequencing technologies.” Nat Rev Genet,Vol 17, 6, 2016. p. 333-51.
49. Wang, Z., M. Gerstein, et al., “RNA-Seq: a revolutionary tool for transcriptomics.” Nat Rev Genet,Vol 10, 1, 2009. p. 57-63.
50. Ozsolak, F. and P.M. Milos, “RNA sequencing: advances, challenges and opportunities.” Nat Rev Genet,Vol 12, 2, 2011. p. 87-98.
51. Vishnubalaji, R., V. Sasidharan Nair, et al., “Integrated Transcriptome and Pathway Analyses Revealed Multiple Activated Pathways in Breast Cancer.” Front Oncol,Vol 9, 2019. p. 910.
52. Cheong, J.H., S.C. Wang, et al., “Development and validation of a prognostic and predictive 32-gene signature for gastric cancer.” Nat Commun,Vol 13, 1, 2022. p. 774.
53. 李奕鋆:〈體外仿生肺肝纖維化3D模型研究〉。碩士論文,國立中央大學,民國111年6月。
54. Yu, G., L.G. Wang, et al., “clusterProfiler: an R package for comparing biological themes among gene clusters.” OMICS,Vol 16, 5, 2012. p. 284-7.
55. Zhang, J., E.S. Muise, et al., “Molecular Profiling Reveals a Common Metabolic Signature of Tissue Fibrosis.” Cell Rep Med,Vol 1, 4, 2020. p. 100056.
56. Govaere, O., S. Cockell, et al., “Transcriptomic profiling across the nonalcoholic fatty liver disease spectrum reveals gene signatures for steatohepatitis and fibrosis.” Sci Transl Med,Vol 12, 572, 2020.
57. Newman, A.M., C.L. Liu, et al., “Robust enumeration of cell subsets from tissue expression profiles.” Nat Methods,Vol 12, 5, 2015. p. 453-7.
58. Craven, K.E., Y. Gokmen-Polar, et al., “CIBERSORT analysis of TCGA and METABRIC identifies subgroups with better outcomes in triple negative breast cancer.” Sci Rep,Vol 11, 1, 2021. p. 4691.
59. Steen, C.B., C.L. Liu, et al., “Profiling Cell Type Abundance and Expression in Bulk Tissues with CIBERSORTx.” Methods Mol Biol,Vol 2117, 2020. p. 135-157.
60. Chen, Z., A. Huang, et al., “Inference of immune cell composition on the expression profiles of mouse tissue.” Sci Rep,Vol 7, 2017. p. 40508.
61. Ashburner, M., C.A. Ball, et al., “Gene ontology: tool for the unification of biology. The Gene Ontology Consortium.” Nat Genet,Vol 25, 1, 2000. p. 25-9.
62. The Gene Ontology, C., “The Gene Ontology Resource: 20 years and still GOing strong.” Nucleic Acids Res,Vol 47, D1, 2019. p. D330-D338.
63. Kanehisa, M. and S. Goto, “KEGG: kyoto encyclopedia of genes and genomes.” Nucleic Acids Res,Vol 28, 1, 2000. p. 27-30.
64. Kanehisa, M., M. Furumichi, et al., “KEGG: integrating viruses and cellular organisms.” Nucleic Acids Res,Vol 49, D1, 2021. p. D545-D551.
65. Kramer, A., J. Green, et al., “Causal analysis approaches in Ingenuity Pathway Analysis.” Bioinformatics,Vol 30, 4, 2014. p. 523-30.
66. Prisco, S.Z., F. Kazmirczak, et al., “Ingenuity pathway analysis of the human cardiac cell Atlas identifies differences between right and left ventricular cardiomyocytes.” Pulm Circ,Vol 12, 1, 2022. p. e12011.
67. Chen, Y., Z. Zhang, et al., “Gene set enrichment analysis and ingenuity pathway analysis to verify the impact of Wnt signaling in psoriasis treated with Taodan granules.” Am J Transl Res,Vol 15, 1, 2023. p. 422-434.
68. Geng, X.D., W.W. Wang, et al., “Identification of key genes and pathways in diabetic nephropathy by bioinformatics analysis.” J Diabetes Investig,Vol 10, 4, 2019. p. 972-984.
69. Della-Torre, E., E. Rigamonti, et al., “B lymphocytes directly contribute to tissue fibrosis in patients with IgG(4)-related disease.” J Allergy Clin Immunol,Vol 145, 3, 2020. p. 968-981 e14.
70. Patel, A.M., Y.S. Liu, et al., “The Role of B Cells in Adult and Paediatric Liver Injury.” Front Immunol,Vol 12, 2021. p. 729143.
71. Duval, F., J.E. Moreno-Cuevas, et al., “Liver fibrosis and mechanisms of the protective action of medicinal plants targeting inflammation and the immune response.” Int J Inflam,Vol 2015, 2015. p. 943497.
72. Xu, R., Z. Zhang, et al., “Liver fibrosis: mechanisms of immune-mediated liver injury.” Cell Mol Immunol,Vol 9, 4, 2012. p. 296-301.
73. Ferlazzo, G., M.L. Tsang, et al., “Human dendritic cells activate resting natural killer (NK) cells and are recognized via the NKp30 receptor by activated NK cells.” J Exp Med,Vol 195, 3, 2002. p. 343-51.
74. Zhang, Y., Y. Wu, et al., “Crosstalk between NK cells and hepatic stellate cells in liver fibrosis (Review).” Mol Med Rep,Vol 25, 6, 2022.
75. Zhou, Y., H. Zhang, et al., “CD4(+) T cell activation and inflammation in NASH-related fibrosis.” Front Immunol,Vol 13, 2022. p. 967410.
76. Sun, R., Z. Xiang, et al., “T cells and liver fibrosis.” Portal Hypertension & Cirrhosis,Vol 1, 2, 2022. p. 125-132.
77. Baiocchini, A., C. Montaldo, et al., “Extracellular Matrix Molecular Remodeling in Human Liver Fibrosis Evolution.” PLoS One,Vol 11, 3, 2016. p. e0151736.
78. Foglia, B., S. Cannito, et al., “ERK Pathway in Activated, Myofibroblast-Like, Hepatic Stellate Cells: A Critical Signaling Crossroad Sustaining Liver Fibrosis.” Int J Mol Sci,Vol 20, 11, 2019.
79. Hilbi, H. and A. Kortholt, “Role of the small GTPase Rap1 in signal transduction, cell dynamics and bacterial infection.” Small GTPases,Vol 10, 5, 2019. p. 336-342.
80. Kershenobich Stalnikowitz, D. and A.B. Weissbrod, “Liver fibrosis and inflammation. A review.” Ann Hepatol,Vol 2, 4, 2003. p. 159-63.
81. Zhang, S., P. Zhu, et al., “Non-alcoholic fatty liver disease combined with rheumatoid arthritis exacerbates liver fibrosis by stimulating co-localization of PTRF and TLR4 in rats.” Frontiers in Pharmacology,Vol 14, 2023.
82. Saeed, A., P. Bartuzi, et al., “Impaired Hepatic Vitamin A Metabolism in NAFLD Mice Leading to Vitamin A Accumulation in Hepatocytes.” Cell Mol Gastroenterol Hepatol,Vol 11, 1, 2021. p. 309-325 e3.
83. Carroll, J. Liver changes in Huntington′s disease patients suggest more ′whole body′ research needed. 2013/03/06; Available from: https://en.hdbuzz.net/117.
84. Kikuchi, A., T. Pradhan-Sundd, et al., “Platelet-Derived Growth Factor Receptor alpha Contributes to Human Hepatic Stellate Cell Proliferation and Migration.” Am J Pathol,Vol 187, 10, 2017. p. 2273-2287.
指導教授 許藝瓊(Yi-Chiung Hsu) 審核日期 2023-8-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明