參考文獻 |
1. Yazdani, S., R. Bansal, et al., “Drug targeting to myofibroblasts: Implications for fibrosis and cancer.” Adv Drug Deliv Rev,Vol 121, 2017. p. 101-116.
2. Henderson, N.C., F. Rieder, et al., “Fibrosis: from mechanisms to medicines.” Nature,Vol 587, 7835, 2020. p. 555-566.
3. Rockey, D.C., P.D. Bell, et al., “Fibrosis--a common pathway to organ injury and failure.” N Engl J Med,Vol 372, 12, 2015. p. 1138-49.
4. Wynn, T.A. and T.R. Ramalingam, “Mechanisms of fibrosis: therapeutic translation for fibrotic disease.” Nat Med,Vol 18, 7, 2012. p. 1028-40.
5. Dewidar, B., C. Meyer, et al., “TGF-beta in Hepatic Stellate Cell Activation and Liver Fibrogenesis-Updated 2019.” Cells,Vol 8, 11, 2019.
6. Baum, J. and H.S. Duffy, “Fibroblasts and myofibroblasts: what are we talking about?” J Cardiovasc Pharmacol,Vol 57, 4, 2011. p. 376-9.
7. Liu, T., X. Wang, et al., “Molecular serum markers of liver fibrosis.” Biomark Insights,Vol 7, 2012. p. 105-17.
8. Wynn, T.A., “Cellular and molecular mechanisms of fibrosis.” J Pathol,Vol 214, 2, 2008. p. 199-210.
9. Verrecchia, F. and A. Mauviel, “Transforming growth factor-beta and fibrosis.” World J Gastroenterol,Vol 13, 22, 2007. p. 3056-62.
10. Chen, G., B. Xia, et al., “Matrix Mechanics as Regulatory Factors and Therapeutic Targets in Hepatic Fibrosis.” Int J Biol Sci,Vol 15, 12, 2019. p. 2509-2521.
11. Farooqi, H.M.U., B. Kang, et al., “Real-time monitoring of liver fibrosis through embedded sensors in a microphysiological system.” Nano Converg,Vol 8, 1, 2021. p. 3.
12. Chiabotto, G., E. Ceccotti, et al., “Narrative review of in vitro experimental models of hepatic fibrogenesis.” Digestive Medicine Research,Vol 5, 2022. p. 33-33.
13. Schuppan, D., “Liver fibrosis: Common mechanisms and antifibrotic therapies.” Clin Res Hepatol Gastroenterol,Vol 39 Suppl 1, 2015. p. S51-9.
14. Bataller, R. and D.A. Brenner, “Liver fibrosis.” J Clin Invest,Vol 115, 2, 2005. p. 209-18.
15. Xu, X., K.L. Poulsen, et al., “Targeted therapeutics and novel signaling pathways in non-alcohol-associated fatty liver/steatohepatitis (NAFL/NASH).” Signal Transduct Target Ther,Vol 7, 1, 2022. p. 287.
16. Lee, U.E. and S.L. Friedman, “Mechanisms of hepatic fibrogenesis.” Best Pract Res Clin Gastroenterol,Vol 25, 2, 2011. p. 195-206.
17. Jiang, J.X. and N.J. Torok, “Liver Injury and the Activation of the Hepatic Myofibroblasts.” Curr Pathobiol Rep,Vol 1, 3, 2013. p. 215-223.
18. Arthur, M.J., “Reversibility of liver fibrosis and cirrhosis following treatment for hepatitis C.” Gastroenterology,Vol 122, 5, 2002. p. 1525-8.
19. Schuppan, D. and N.H. Afdhal, “Liver cirrhosis.” Lancet,Vol 371, 9615, 2008. p. 838-51.
20. Cox-North, P.P., “Evaluation and Staging of Liver Fibrosis.” Hepatitis C Online,Vol 2021.
21. Shi, N., Z. Wang, et al., “Research progress on drugs targeting the TGF-beta signaling pathway in fibrotic diseases.” Immunol Res,Vol 70, 3, 2022. p. 276-288.
22. Fabregat, I. and D. Caballero-Diaz, “Transforming Growth Factor-beta-Induced Cell Plasticity in Liver Fibrosis and Hepatocarcinogenesis.” Front Oncol,Vol 8, 2018. p. 357.
23. Fabregat, I., J. Moreno-Caceres, et al., “TGF-beta signalling and liver disease.” FEBS J,Vol 283, 12, 2016. p. 2219-32.
24. Wang, C. and J. Yang, “Mechanical forces: The missing link between idiopathic pulmonary fibrosis and lung cancer.” Eur J Cell Biol,Vol 101, 3, 2022. p. 151234.
25. Zhao, X., Y. Kong, et al., “Mechanosensitive Piezo1 channels mediate renal fibrosis.” JCI Insight,Vol 7, 7, 2022.
26. Kang, N., “Mechanotransduction in Liver Diseases.” Semin Liver Dis,Vol 40, 1, 2020. p. 84-90.
27. Dupont, S., L. Morsut, et al., “Role of YAP/TAZ in mechanotransduction.” Nature,Vol 474, 7350, 2011. p. 179-83.
28. Tschumperlin, D.J., G. Ligresti, et al., “Mechanosensing and fibrosis.” J Clin Invest,Vol 128, 1, 2018. p. 74-84.
29. Wu, Y., N. Li, et al., “Biomechanics in liver regeneration after partial hepatectomy.” Front Bioeng Biotechnol,Vol 11, 2023. p. 1165651.
30. Simonetto, D.A., H.Y. Yang, et al., “Chronic passive venous congestion drives hepatic fibrogenesis via sinusoidal thrombosis and mechanical forces.” Hepatology,Vol 61, 2, 2015. p. 648-59.
31. Olsen, A.L., S.A. Bloomer, et al., “Hepatic stellate cells require a stiff environment for myofibroblastic differentiation.” Am J Physiol Gastrointest Liver Physiol,Vol 301, 1, 2011. p. G110-8.
32. Picchio, V., E. Floris, et al., “Multicellular 3D Models for the Study of Cardiac Fibrosis.” Int J Mol Sci,Vol 23, 19, 2022.
33. Brovold, M., D. Keller, et al., “Biofabricated 3D in vitro model of fibrosis-induced abnormal hepatoblast/biliary progenitors′ expansion of the developing liver.” Bioeng Transl Med,Vol 6, 3, 2021. p. e10207.
34. Zhang, W., G. Huang, et al., “Engineering Biomaterials and Approaches for Mechanical Stretching of Cells in Three Dimensions.” Front Bioeng Biotechnol,Vol 8, 2020. p. 589590.
35. Yang, C., J. Luo, et al., “4D-Printed Transformable Tube Array for High-Throughput 3D Cell Culture and Histology.” Adv Mater,Vol 32, 40, 2020. p. e2004285.
36. Miao, S., H. Cui, et al., “4D Self-Morphing Culture Substrate for Modulating Cell Differentiation.” Adv Sci (Weinh),Vol 7, 6, 2020. p. 1902403.
37. Basu, S., “Carbon tetrachloride-induced lipid peroxidation: eicosanoid formation and their regulation by antioxidant nutrients.” Toxicology,Vol 189, 1-2, 2003. p. 113-27.
38. Thakur, V., M.R. McMullen, et al., “Regulation of macrophage activation in alcoholic liver disease.” J Gastroenterol Hepatol,Vol 22 Suppl 1, 2007. p. S53-6.
39. Inokuchi, S., H. Tsukamoto, et al., “Toll-like receptor 4 mediates alcohol-induced steatohepatitis through bone marrow-derived and endogenous liver cells in mice.” Alcohol Clin Exp Res,Vol 35, 8, 2011. p. 1509-18.
40. Iwaisako, K., C. Jiang, et al., “Origin of myofibroblasts in the fibrotic liver in mice.” Proc Natl Acad Sci U S A,Vol 111, 32, 2014. p. E3297-305.
41. Metzker, M.L., “Sequencing technologies - the next generation.” Nat Rev Genet,Vol 11, 1, 2010. p. 31-46.
42. Cao, Y., S. Fanning, et al., “A Review on the Applications of Next Generation Sequencing Technologies as Applied to Food-Related Microbiome Studies.” Front Microbiol,Vol 8, 2017. p. 1829.
43. Reuter, J.A., D.V. Spacek, et al., “High-throughput sequencing technologies.” Mol Cell,Vol 58, 4, 2015. p. 586-97.
44. Schena, M., D. Shalon, et al., “Quantitative monitoring of gene expression patterns with a complementary DNA microarray.” Science,Vol 270, 5235, 1995. p. 467-70.
45. Sanger, F., S. Nicklen, et al., “DNA sequencing with chain-terminating inhibitors.” Proc Natl Acad Sci U S A,Vol 74, 12, 1977. p. 5463-7.
46. Shendure, J. and H. Ji, “Next-generation DNA sequencing.” Nat Biotechnol,Vol 26, 10, 2008. p. 1135-45.
47. Mardis, E.R., “The impact of next-generation sequencing technology on genetics.” Trends Genet,Vol 24, 3, 2008. p. 133-41.
48. Goodwin, S., J.D. McPherson, et al., “Coming of age: ten years of next-generation sequencing technologies.” Nat Rev Genet,Vol 17, 6, 2016. p. 333-51.
49. Wang, Z., M. Gerstein, et al., “RNA-Seq: a revolutionary tool for transcriptomics.” Nat Rev Genet,Vol 10, 1, 2009. p. 57-63.
50. Ozsolak, F. and P.M. Milos, “RNA sequencing: advances, challenges and opportunities.” Nat Rev Genet,Vol 12, 2, 2011. p. 87-98.
51. Vishnubalaji, R., V. Sasidharan Nair, et al., “Integrated Transcriptome and Pathway Analyses Revealed Multiple Activated Pathways in Breast Cancer.” Front Oncol,Vol 9, 2019. p. 910.
52. Cheong, J.H., S.C. Wang, et al., “Development and validation of a prognostic and predictive 32-gene signature for gastric cancer.” Nat Commun,Vol 13, 1, 2022. p. 774.
53. 李奕鋆:〈體外仿生肺肝纖維化3D模型研究〉。碩士論文,國立中央大學,民國111年6月。
54. Yu, G., L.G. Wang, et al., “clusterProfiler: an R package for comparing biological themes among gene clusters.” OMICS,Vol 16, 5, 2012. p. 284-7.
55. Zhang, J., E.S. Muise, et al., “Molecular Profiling Reveals a Common Metabolic Signature of Tissue Fibrosis.” Cell Rep Med,Vol 1, 4, 2020. p. 100056.
56. Govaere, O., S. Cockell, et al., “Transcriptomic profiling across the nonalcoholic fatty liver disease spectrum reveals gene signatures for steatohepatitis and fibrosis.” Sci Transl Med,Vol 12, 572, 2020.
57. Newman, A.M., C.L. Liu, et al., “Robust enumeration of cell subsets from tissue expression profiles.” Nat Methods,Vol 12, 5, 2015. p. 453-7.
58. Craven, K.E., Y. Gokmen-Polar, et al., “CIBERSORT analysis of TCGA and METABRIC identifies subgroups with better outcomes in triple negative breast cancer.” Sci Rep,Vol 11, 1, 2021. p. 4691.
59. Steen, C.B., C.L. Liu, et al., “Profiling Cell Type Abundance and Expression in Bulk Tissues with CIBERSORTx.” Methods Mol Biol,Vol 2117, 2020. p. 135-157.
60. Chen, Z., A. Huang, et al., “Inference of immune cell composition on the expression profiles of mouse tissue.” Sci Rep,Vol 7, 2017. p. 40508.
61. Ashburner, M., C.A. Ball, et al., “Gene ontology: tool for the unification of biology. The Gene Ontology Consortium.” Nat Genet,Vol 25, 1, 2000. p. 25-9.
62. The Gene Ontology, C., “The Gene Ontology Resource: 20 years and still GOing strong.” Nucleic Acids Res,Vol 47, D1, 2019. p. D330-D338.
63. Kanehisa, M. and S. Goto, “KEGG: kyoto encyclopedia of genes and genomes.” Nucleic Acids Res,Vol 28, 1, 2000. p. 27-30.
64. Kanehisa, M., M. Furumichi, et al., “KEGG: integrating viruses and cellular organisms.” Nucleic Acids Res,Vol 49, D1, 2021. p. D545-D551.
65. Kramer, A., J. Green, et al., “Causal analysis approaches in Ingenuity Pathway Analysis.” Bioinformatics,Vol 30, 4, 2014. p. 523-30.
66. Prisco, S.Z., F. Kazmirczak, et al., “Ingenuity pathway analysis of the human cardiac cell Atlas identifies differences between right and left ventricular cardiomyocytes.” Pulm Circ,Vol 12, 1, 2022. p. e12011.
67. Chen, Y., Z. Zhang, et al., “Gene set enrichment analysis and ingenuity pathway analysis to verify the impact of Wnt signaling in psoriasis treated with Taodan granules.” Am J Transl Res,Vol 15, 1, 2023. p. 422-434.
68. Geng, X.D., W.W. Wang, et al., “Identification of key genes and pathways in diabetic nephropathy by bioinformatics analysis.” J Diabetes Investig,Vol 10, 4, 2019. p. 972-984.
69. Della-Torre, E., E. Rigamonti, et al., “B lymphocytes directly contribute to tissue fibrosis in patients with IgG(4)-related disease.” J Allergy Clin Immunol,Vol 145, 3, 2020. p. 968-981 e14.
70. Patel, A.M., Y.S. Liu, et al., “The Role of B Cells in Adult and Paediatric Liver Injury.” Front Immunol,Vol 12, 2021. p. 729143.
71. Duval, F., J.E. Moreno-Cuevas, et al., “Liver fibrosis and mechanisms of the protective action of medicinal plants targeting inflammation and the immune response.” Int J Inflam,Vol 2015, 2015. p. 943497.
72. Xu, R., Z. Zhang, et al., “Liver fibrosis: mechanisms of immune-mediated liver injury.” Cell Mol Immunol,Vol 9, 4, 2012. p. 296-301.
73. Ferlazzo, G., M.L. Tsang, et al., “Human dendritic cells activate resting natural killer (NK) cells and are recognized via the NKp30 receptor by activated NK cells.” J Exp Med,Vol 195, 3, 2002. p. 343-51.
74. Zhang, Y., Y. Wu, et al., “Crosstalk between NK cells and hepatic stellate cells in liver fibrosis (Review).” Mol Med Rep,Vol 25, 6, 2022.
75. Zhou, Y., H. Zhang, et al., “CD4(+) T cell activation and inflammation in NASH-related fibrosis.” Front Immunol,Vol 13, 2022. p. 967410.
76. Sun, R., Z. Xiang, et al., “T cells and liver fibrosis.” Portal Hypertension & Cirrhosis,Vol 1, 2, 2022. p. 125-132.
77. Baiocchini, A., C. Montaldo, et al., “Extracellular Matrix Molecular Remodeling in Human Liver Fibrosis Evolution.” PLoS One,Vol 11, 3, 2016. p. e0151736.
78. Foglia, B., S. Cannito, et al., “ERK Pathway in Activated, Myofibroblast-Like, Hepatic Stellate Cells: A Critical Signaling Crossroad Sustaining Liver Fibrosis.” Int J Mol Sci,Vol 20, 11, 2019.
79. Hilbi, H. and A. Kortholt, “Role of the small GTPase Rap1 in signal transduction, cell dynamics and bacterial infection.” Small GTPases,Vol 10, 5, 2019. p. 336-342.
80. Kershenobich Stalnikowitz, D. and A.B. Weissbrod, “Liver fibrosis and inflammation. A review.” Ann Hepatol,Vol 2, 4, 2003. p. 159-63.
81. Zhang, S., P. Zhu, et al., “Non-alcoholic fatty liver disease combined with rheumatoid arthritis exacerbates liver fibrosis by stimulating co-localization of PTRF and TLR4 in rats.” Frontiers in Pharmacology,Vol 14, 2023.
82. Saeed, A., P. Bartuzi, et al., “Impaired Hepatic Vitamin A Metabolism in NAFLD Mice Leading to Vitamin A Accumulation in Hepatocytes.” Cell Mol Gastroenterol Hepatol,Vol 11, 1, 2021. p. 309-325 e3.
83. Carroll, J. Liver changes in Huntington′s disease patients suggest more ′whole body′ research needed. 2013/03/06; Available from: https://en.hdbuzz.net/117.
84. Kikuchi, A., T. Pradhan-Sundd, et al., “Platelet-Derived Growth Factor Receptor alpha Contributes to Human Hepatic Stellate Cell Proliferation and Migration.” Am J Pathol,Vol 187, 10, 2017. p. 2273-2287. |