博碩士論文 110226060 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:18.221.54.244
姓名 周明澔(Ming-Hao Zhou)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 表面電漿效應於紫外光發光二極體的應用
(Applying Surface Plasmon Resonance to Ultraviolet LEDs)
相關論文
★ 影像式外差干涉術之建立★ 陶瓷基板上的高壓薄膜氮化鎵發光二極體之設計、製作與分析
★ 光譜解析單像素重建顯微術於雙光子激發螢光與拉曼造影之研究★ 矽基板上的氮化鎵異質磊晶術
★ 矽基板上的氮化物太陽能電池★ 矽摻雜氮化鎵之光伏特性:中間能帶太陽能電池的潛力評估
★ 以氧化鋅薄膜輔助成長於矽基板上的氮化鎵磊晶層★ 氮化物光伏元件之製程優化及硒化鎘量子點的應用
★ 矽基板上的氮化鎵磊晶術:以氧化鎵為緩衝★ 具穿隧結構之反向極化電場氮化銦鎵發光二極體
★ 強度敏感式影像橢圓儀及應用★ 成長於同調性基板的氮化鎵及氮化鋁磊晶層
★ 以奈米異質磊晶術在矽基板上成長的半極性氮化銦鎵量子井★ 以漸變銦含量的主動層增加氮化銦鎵光伏元件的載子收集率
★ 氧化鋅的熱分解對矽基板上氮化鎵奈米異質磊晶的影響★ 溫度效應對矽基板上的氮化鎵有機金屬氣相沉積法之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 相較於可見光LEDLED,紫外光LED 因波長更短能量更強,可以殺菌,在生醫領域有很大的應用價值。但是紫外光LED 的發光效率很低,尚未完全商業化。為了提升紫外光LED 的效率,我們希望利用表面電漿效應增加LED 的量子效率。我們在藍寶石基板上成長發光波長為( 的AlGaN 量子阱(Qu antum Well, QW) QW),再用鋁作p 型電極,並分析量子阱和Al 之間的距離對發光效率及電性的影響。我們發現當量子阱和Al 之間的距離為50 nm p 型GaN 磊晶時間 5 分鐘 時,元件有較明顯的表面電漿效應,但是接觸電阻太大。如果將Al
下方的Ni 厚度從5 nm 增加到10 nm nm,可以降低接觸電阻、並維持表面電漿的效果。
摘要(英) Comparing to the LEDs with visible emission waveleng
th s , ultraviolet
(UV LEDs have higher photonic energy, which is promising for the
disinfection in bio chemical applications. However, UV LED is of low
quantum efficiencies, impeding its commercialization. In this study, we
aims to improve the efficiency of UV LED by surface plasmon resonance
(SPR) effect. The UV with the wavelength of 355 nm was grown on
a sapphire substrate, and aluminum ( was used as the p type electrode.
It is found that when the Al electrode and AlGaN quantum wells are
separated by the 50 nm p GaN (growth time: 5 min), the device exhibits
SPR effect but with unsatisfactory contact resistance. Increasing the nickel
(Ni) thickness under Al from 5 nm to 10 nm can reduce the contact
resistance on p GaN.
關鍵字(中) ★ 表面電漿共振增強
★ 紫外光發光二極體
關鍵字(英) ★ SPRi
★ UV-LED
論文目次 第1章、 緒論 .............................................1
紫外光LED的發展現況 .......................................1
表面電漿效應的原理及應用 ...................................2
紫外光LED的技術瓶頸 .......................................5
第2章、 製作原理以及儀器 ...................................7
2.1結構 ..................................................7
2.2儀器 ..................................................7
2-2-1 MOCVD(有機化學氣象沉積) .............................7
2-2-2 Mask Aligner (MA6) ................................9
2-2-3 ICP/RIE System(感應耦合式蝕刻機) .................. 10
2-2-4 E-gun/thermal Evaporator (電子束/熱阻式蒸鍍機) .... 11
2-2-5 爐管 ..............................................12
2.3實驗製程 .............................................13
2-3-1 樣品清洗..........................................13
2-3-2 定義所需蝕刻區域 ..................................14
2-3-3 蝕刻至N-type結構 ..................................14
2-3-4 定義所需P型電極 ...................................15
2-3-5 蒸鍍所需P型電極 ...................................16
2-3-6 定義所需N型電極 ...................................17
2-3-7 蒸鍍所需N型電極 ..................................18
第3章、 結果與討論 .....................................20
3.1改變參雜濃度對PL光譜的影響 .........................20
3.2改變p-GaN層厚度對PL光譜的影響........................22
3.3改變p-GaN層厚度的光電特性 ...........................27
3.3.1改變p-GaN層厚度的IV曲線 .......................27
3.3.2改變p-GaN層厚度的EL光譜 ..........................29
3.4改變電極(鎳)厚度的的光電特性 ........................32
3.4.1改變電極(鎳)厚度的IV曲線 ........................ 33
3.4.2改變電極(鎳)厚度的EL光譜 ..........................36
第44章、未來與展望......................................39
參考文獻................................................40
參考文獻 [1] https://zh.wikipedia.org/zh-tw/%E7%B4%AB%E5%A4%96%E7%BA%BFhttps://blog.ntsec.edu.tw/index.php?tid=531&id=248
[2] https://rimotec.nl/uv-led/
[3] Jana. J, Ganguly. M, & Pal. T. Enlightening surface plasmon resonance effect of metal nanoparticles for practical spectroscopic application RSC Advances, 6(89), 86174–86211 (2016)
[4] Saleem. M. F, Peng. Y, Xiao. K, Yao. H. Wang. Y, & Sun. W. Factors Affecting Surface Plasmon Coupling of Quantum Wells in Nitride-Based LEDs: A Review of the Recent Advances Nanomaterials, 11(5), 1132 (2021)
[5] Xuefeng Gu, Teng Qiu, Wenjun Zhang & Paul K Chu.Light-emitting diodes enhanced by localized surface plasmon resonance. Nanoscale Research Letters6, 10.1186/1556-276X-6-199 (2011)
[6] Na Gao, Kai Huang, Jinchai Li, Shuping Li, Xu Yang & Junyong Kang. Surface-plasmon-enhanced deep-UV light emitting diodes based on AlGaN multi-quantum wells. Scientific Reports volume 2, 816 (2012)
[75]https://w3.sipa.gov.tw/SPANEWS/newsletter/download.jsp?FileName=1567492185945.pdf
[8]https://zh.wikipedia.org/zh-tw/%E6%9C%89%E6%9C%BA%E9%87%91%E5%B1%9E%E5%8C%96%E5%AD%A6%E6%B0%94%E7%9B%B8%E6%B2%89%E7%A7%AF%E6%B3%95#
[9] https://semi.tcfst.org.tw/semi/pdf/Litho%20Technology.pdf
[10]https://www.syskey.com.tw/index_cn.php?action=product&title=%E6%84%9F%E6%87%89%E8%80%A6%E5%90%88%E9%9B%BB%E6%BC%BF%E8%9D%95%E5%88%BB
[11]https://cmnst-cfc.ncku.edu.tw/var/file/197/1197/img/137/ELIONIXEIS-700SOP.pdf
[6]https://cmnst-cfc.ncku.edu.tw/var/file/197/1197/img/137/ELIONIXEIS-700SOP.pdf
[12]
http://mems.mt.ntnu.edu.tw/document/%E8%92%B8%E9%8D%8D%E6%8A%80%E8%A1%93.pdf
[13]https://web.tnu.edu.tw/me/me-htdocs/study/proj/proj90/90-14%E7%86%B1%E8%92%B8%E9%8D%8D%E6%A9%9F%E8%88%87%E9%AB%98%E6%BA%AB%E7%88%90%E7%AE%A1.pdf
[14] Jong Won Lee, Gyeongwon Ha, Jeonghyeon Park, Hyun Gyu Song, Jae Yong Park, Jaeyong Lee, Yong-Hoon Cho, Jong-Lam Lee, Jin Kon Kim*, and Jong Kyu Kim*.AlGaN Deep-Ultraviolet Light-Emitting Diodes with Localized Surface Plasmon Resonance by a High-Density Array of 40 nm Al Nanoparticles. ACS Appl,10.1021/acsami.0c08916(2020)
指導教授 賴昆佑(Kun-Yu Lai) 審核日期 2023-11-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明