參考文獻 |
Bennett, S. (1983). Analysis of Survival Data by the Proportional Odds Model. Statistics in Medicine, 2, 273–277.
Box, G., and Cox, D. (1964). An Analysis of Transformations. Journal of the Royal Statistical Society Series B, 26, 211-252.
Cheng, F. (2017). Asymptotic Properties of Hazard Rate Estimator in Censored Linear Regression. Sankhya A, 79, 1–12.
Chiou, S. H., Kang, S. and Yan, J. (2014). Fitting Accelerated Failure Time Models in Routine Survival Analysis with R Package aftgee. Journal of Statistical Software, 61, 1–23.
Cox, D. R. (1972). Regression models and life-tables. Journal of the Royal Statistics Society series B, 34, 187-220
Cox, D. R. (1975). Partial likelihood. Biometrics, 62, 269-276
Heagerty, P. J., Saha-Chaudhuri, P. and Saha-Chaudhuri, M. P. (2012). Package ‘risksetROC’: riskset ROC curve estimation from censored survival data.
Heagerty, P.J. and Zheng, Y. (2005). Survival Model Predictive Accuracy and ROC Curves. Biometrika, 61, 92-105.
Hsieh, F, Tseng, Y.K. and Wang, (2006). Joint Modeling of Survival and Longitudinal Data: Likelihood Approach Revisited. Biometrics, 62, 1037–1043.
James, M.R. and Dianne, M.f. (2000). Correcting for Noncompliance and Dependent Censoring in an AIDS Clinical Trial with Inverse Probability of Censoring Weighted (IPCW) Log-Rank Tests. Biometrics, 56, 779–788.
Jones, M. C. (1990). The performance of kernel density functions in kernel distribution function estimation. Statistics and Probability Letter, 9, 129–132.
Jones, M. C. and Sheather, S. J. (1991). Using non-statistic terms to advantage in kernel-based estimation of integrated squared density derivatives. Statistics and Probability Letter, 11, 511–514.
Kamarudin, A. N., Cox, T. and Kolamunnage-Dona, R. (2017). Time-dependent ROC curve analysis in medical research: current methods and applications. BMC Medical Research Methodology, 17, 53.
Lin, Y. H. (2017). Model-base Time dependent AUC and Predictive Accuracy. Graduate Institute of Statistics, National Central University, 桃園.
Martinussen, T. and Scheike, T. H. (2006). Dynamic Regression Models for Survival Data, New York: Springer.
MuKller, H. G. and Wang, J. L. (1994). Hazard rate estimation under random censoring with varying kernels and bandwidths. Biometrics, 50, 61–76.
Thomas, A, Gerds and Michael, W. K. (2012). Estimating a time-dependent concordance index for survival prediction models with covariate dependent censoring. Statistics in Medicine, 116, 2173-2184.
Tseng, Y. K., Wang, J. L. and Hsieh, F. (2005). Joint modeling of accelerated failure time and longitudinal data. Biometrika, 92, 587-603.
Tseng, Y. K. and Shu, K. N. (2011). Efficient Estimation for a Semiparametric Extended Hazards Model. Communications in Statistics—Simulation and Computation, 40, 258-273.
Tseng, Y. K., Wang, J. L., Su, Y. R., and Mao, M. (2015). An extended hazard model with longitudinal covariates. Biometrika, 102, 135-150.
Tsiatis, A. A. and Davidian, M. (2001). A semiparametric estimator for the proportional hazards model with longitudinal covariates measured with error. Biometrika, 88, 447-458.
Wei, L. J. (1992). The accelerated failure time model: A useful alternative to the cox regression model in survival analysis. Statistics in Medicine, 11, 1871–1879.
Wulfsohn, M. S. and Tsiatis, A. A. (1997). A joint model for survival and longitudinal data measured with error. Biometrics, 53, 330-339.
Xu, C., Hadjipantelis, P. Z. and Wang, J. L. (2020). Semi-parametric joint modeling of survival and longitudinal data: The R Package JSM. Journal of Statistical Software, 93, 1-29.
Zeng, D. and Lin, D. Y. (2007). Efficient estimation for the accelerated failure time model. Journal of American Statistical Association, 102, 1387–1396.
林威廷(2021)。風險回歸模型下時間相依ROC曲線。國立中央大學統計研究所碩士論文。 |