參考文獻 |
[1] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettlemoyer, “Deep Contextualized Word Representations,” in Proceedings of the 2018
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long Papers), (New Orleans, Louisiana), pp. 2227–2237, Association for Computational Linguistics, June
2018.
[2] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving Language
Understanding by Generative Pre-Training,”
[3] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding,” May 2019.
arXiv:1810.04805 [cs].
[4] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger,
T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse,
M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei, “Language Models are Few-Shot
Learners,” July 2020. arXiv:2005.14165 [cs].
[5] J. Wei, M. Bosma, V. Y. Zhao, K. Guu, A. W. Yu, B. Lester, N. Du, A. M. Dai,
and Q. V. Le, “Finetuned Language Models Are Zero-Shot Learners,” Feb. 2022.
arXiv:2109.01652 [cs].
48
[6] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin, C. Zhang,
S. Agarwal, K. Slama, A. Ray, J. Schulman, J. Hilton, F. Kelton, L. Miller,
M. Simens, A. Askell, P. Welinder, P. Christiano, J. Leike, and R. Lowe, “Training language models to follow instructions with human feedback,” Mar. 2022.
arXiv:2203.02155 [cs].
[7] S. Mishra, D. Khashabi, C. Baral, and H. Hajishirzi, “Cross-Task Generalization via
Natural Language Crowdsourcing Instructions,” Mar. 2022. arXiv:2104.08773 [cs].
[8] Y. Wang, S. Mishra, P. Alipoormolabashi, Y. Kordi, A. Mirzaei, A. Arunkumar,
A. Ashok, A. S. Dhanasekaran, A. Naik, D. Stap, E. Pathak, G. Karamanolakis,
H. G. Lai, I. Purohit, I. Mondal, J. Anderson, K. Kuznia, K. Doshi, M. Patel, K. K.
Pal, M. Moradshahi, M. Parmar, M. Purohit, N. Varshney, P. R. Kaza, P. Verma,
R. S. Puri, R. Karia, S. K. Sampat, S. Doshi, S. Mishra, S. Reddy, S. Patro,
T. Dixit, X. Shen, C. Baral, Y. Choi, N. A. Smith, H. Hajishirzi, and D. Khashabi,
“Super-NaturalInstructions: Generalization via Declarative Instructions on 1600+
NLP Tasks,” Oct. 2022. arXiv:2204.07705 [cs].
[9] Y. Wang, Y. Kordi, S. Mishra, A. Liu, N. A. Smith, D. Khashabi, and H. Hajishirzi,
“Self-Instruct: Aligning Language Model with Self Generated Instructions,” Dec.
2022. arXiv:2212.10560 [cs].
[10] O. Honovich, T. Scialom, O. Levy, and T. Schick, “Unnatural Instructions: Tuning
Language Models with (Almost) No Human Labor,” Dec. 2022. arXiv:2212.09689
[cs].
[11] OpenAI, “GPT-4 Technical Report,” Mar. 2023. arXiv:2303.08774 [cs].
[12] Y. Liu, D. Iter, Y. Xu, S. Wang, R. Xu, and C. Zhu, “G-Eval: NLG Evaluation using
GPT-4 with Better Human Alignment,” Apr. 2023. arXiv:2303.16634 [cs].
[13] “Stanford CRFM.”
[14] “Introducing ChatGPT.”
49
[15] B. Peng, C. Li, P. He, M. Galley, and J. Gao, “Instruction Tuning with GPT-4,” Apr.
2023. arXiv:2304.03277 [cs].
[16] T. Schick and H. Schütze, “Generating Datasets with Pretrained Language Models,”
in Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, (Online and Punta Cana, Dominican Republic), pp. 6943–6951, Association for Computational Linguistics, Nov. 2021.
[17] O. Weller, N. Lourie, M. Gardner, and M. E. Peters, “Learning from Task Descriptions,” in Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), (Online), pp. 1361–1375, Association for Computational Linguistics, Nov. 2020.
[18] V. Sanh, A. Webson, C. Raffel, S. H. Bach, L. Sutawika, Z. Alyafeai, A. Chaffin,
A. Stiegler, T. L. Scao, A. Raja, M. Dey, M. S. Bari, C. Xu, U. Thakker, S. S.
Sharma, E. Szczechla, T. Kim, G. Chhablani, N. Nayak, D. Datta, J. Chang, M. T.-J.
Jiang, H. Wang, M. Manica, S. Shen, Z. X. Yong, H. Pandey, R. Bawden, T. Wang,
T. Neeraj, J. Rozen, A. Sharma, A. Santilli, T. Fevry, J. A. Fries, R. Teehan, T. Bers,
S. Biderman, L. Gao, T. Wolf, and A. M. Rush, “Multitask Prompted Training Enables Zero-Shot Task Generalization,” Mar. 2022. arXiv:2110.08207 [cs].
[19] S. H. Bach, V. Sanh, Z.-X. Yong, A. Webson, C. Raffel, N. V. Nayak, A. Sharma,
T. Kim, M. S. Bari, T. Fevry, Z. Alyafeai, M. Dey, A. Santilli, Z. Sun, S. BenDavid, C. Xu, G. Chhablani, H. Wang, J. A. Fries, M. S. Al-shaibani, S. Sharma,
U. Thakker, K. Almubarak, X. Tang, D. Radev, M. T.-J. Jiang, and A. M. Rush,
“PromptSource: An Integrated Development Environment and Repository for Natural Language Prompts,” Mar. 2022. arXiv:2202.01279 [cs].
[20] H. W. Chung, L. Hou, S. Longpre, B. Zoph, Y. Tay, W. Fedus, Y. Li, X. Wang,
M. Dehghani, S. Brahma, A. Webson, S. S. Gu, Z. Dai, M. Suzgun, X. Chen,
A. Chowdhery, A. Castro-Ros, M. Pellat, K. Robinson, D. Valter, S. Narang,
G. Mishra, A. Yu, V. Zhao, Y. Huang, A. Dai, H. Yu, S. Petrov, E. H. Chi, J. Dean,
50
J. Devlin, A. Roberts, D. Zhou, Q. V. Le, and J. Wei, “Scaling Instruction-Finetuned
Language Models,” Dec. 2022. arXiv:2210.11416 [cs].
[21] J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia, E. Chi, Q. Le, and
D. Zhou, “Chain-of-Thought Prompting Elicits Reasoning in Large Language Models,” Jan. 2023. arXiv:2201.11903 [cs].
[22] Y. Bai, A. Jones, K. Ndousse, A. Askell, A. Chen, N. DasSarma, D. Drain,
S. Fort, D. Ganguli, T. Henighan, N. Joseph, S. Kadavath, J. Kernion, T. Conerly, S. El-Showk, N. Elhage, Z. Hatfield-Dodds, D. Hernandez, T. Hume, S. Johnston, S. Kravec, L. Lovitt, N. Nanda, C. Olsson, D. Amodei, T. Brown, J. Clark,
S. McCandlish, C. Olah, B. Mann, and J. Kaplan, “Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback,” Apr. 2022.
arXiv:2204.05862 [cs]. |