參考文獻 |
[1] Gusev, V. V. (2020). The vertex cover game: Application to transport networks. Omega, 97, 102102.
[2] Our quantum computing journey.[Online]. Available:
https://quantumai.google/learn/map
[3] Scheidsteger, T., Haunschild, R., Bornmann, L., & Ettl, C. (2021). Bibliometric analysis in the field of quantum technology. Quantum Reports, 3(3), 549-575.
[4] Shor, P. W. (1999). Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM review, 41(2), 303-332.
[5] Grover, L. K. (1998, May). A framework for fast quantum mechanical algorithms. In Proceedings of the thirtieth annual ACM symposium on Theory of computing (pp. 53-62).
[6] Karp, R. M. (1972). Reducibility among combinatorial problems. In Complexity of computer computations (pp. 85-103). Springer, Boston, MA.
[7] Vertex Cover Examples. url : https://commons.wikimedia.org/wiki/File:Minimum-vertex-cover.svg,
Miym, CC BY-SA 3.0 <https://creativecommons.org/licenses/by-sa/3.0>, via Wikimedia Commons.
[8] Cook, S. A. (1971, May). The complexity of theorem-proving procedures. In Proceedings of the third annual ACM symposium on Theory of computing (pp. 151-158).
[9] Relative NPC chart. url :
https://commons.wikimedia.org/wiki/File:Relative_NPC_chart.svg, Gian Luca RuggeroActam, Public domain, via Wikimedia Commons.
[10] Grover, L. K. (1996, July). A fast quantum mechanical algorithm for database search. In Proceedings of the twenty-eighth annual ACM symposium on Theory of computing (pp. 212-219).
[11] Brassard, G., Høyer, P., & Tapp, A. (1998). Quantum counting. In Automata, Languages and Programming: 25th International Colloquium, ICALP′98 Aalborg, Denmark, July 13–17, 1998 Proceedings 25 (pp. 820-831). Springer Berlin Heidelberg.
[12] Chen, G., Fulling, S. A., Lee, H., & Scully, M. O. (2001). Grover’s algorithm for multiobject search in quantum computing. In Directions in Quantum Optics (pp. 165-175). Springer, Berlin, Heidelberg.
[13] Nielsen, M.A. and Chuang, I.L. Quantum computation and quantum information. Cambridge University Press, 2000. Chapter 6.
[14] Boyer, M., Brassard, G., Høyer, P., & Tapp, A. (1998). Tight bounds on quantum searching. Fortschritte der Physik: Progress of Physics, 46(4‐5), 493-505.
[15] Dirac, P. A. M. (1939, July). A new notation for quantum mechanics. In Mathematical Proceedings of the Cambridge Philosophical Society (Vol. 35, No. 3, pp. 416-418). Cambridge University Press.
[16] Ezratty, O. (2021). Understanding Quantum Technologies. le lab quantique.
[17] Kockum, A. F. (2014). Quantum optics with artificial atoms. Chalmers Tekniska Hogskola (Sweden).
[18] 江振瑞, 輕鬆學量子程式設計--從量子位元到量子演算法, 碁峰資
訊出版, ISBN: 786263242715, 2022.
[19] API Reference,Qiskit. [Online]. Available:
https://qiskit.org/documentation/apidoc/transpiler.html#scheduling-stage
[20] Simulators overview,Qiskit. [Online]. Available:
https://quantum-computing.ibm.com/lab/docs/iql/manage/simulator
[21] Fake Provider,Qiskit. [Online]. Available:
https://qiskit.org/documentation/apidoc/providers_fake_provider.html
[22] Cross, A. W., Bishop, L. S., Smolin, J. A., & Gambetta, J. M. (2017). Open quantum assembly language. arXiv preprint arXiv:1707.03429.
[23] Zhang, Y., Deng, H., Li, Q., Song, H., & Nie, L. (2019, July). Optimizing quantum programs against decoherence: Delaying qubits into quantum superposition. In 2019 International Symposium on Theoretical Aspects of Software Engineering (TASE) (pp. 184-191). IEEE.
[24] Tu, J. (2022). A Survey on the k-Path Vertex Cover Problem.
[25]Biggs, N., Lloyd, E. K., & Wilson, R. J. (1986). Graph Theory, 1736-1936. Oxford University Press.pp. 203–207
[26] Koenigs theorem graph. url :
https://commons.wikimedia.org/wiki/File:Koenigs-theorem-graph.svg, David Eppstein, Public domain, via Wikimedia Commons,access
[27] Hopcroft, J. E., & Karp, R. M. (1973). An n^5/2 algorithm for maximum matchings in bipartite graphs. SIAM Journal on computing, 2(4), 225-231.
[28] Introduction to Algorithms Lecture 21: Dynamic Programming IV. Available:
http://courses.csail.mit.edu/6.006/spring11/lectures/lec21.pdf
[29] Downey, R. G., Fellows, M. R., & Stege, U. (1999). Parameterized complexity: A framework for systematically confronting computational intractability. In Contemporary trends in discrete mathematics: From DIMACS and DIMATIA to the future (Vol. 49, pp. 49-99).
[30] Chen, J., Kanj, I. A., & Xia, G. (2010). Improved upper bounds for vertex cover. Theoretical Computer Science, 411(40-42), 3736-3756.
[31] Hüffner, F., Niedermeier, R., & Wernicke, S. (2008). Techniques for practical fixed-parameter algorithms. The Computer Journal, 51(1), 7-25.
[32] Saha, A., Saha, D., & Chakrabarti, A. (2020, December). Circuit design for k-coloring problem and its implementation on near-term quantum devices. In 2020 IEEE International Symposium on Smart Electronic Systems (iSES)(Formerly iNiS) (pp. 17-22). IEEE.
[33] Graph with all three colourings. url :
https://commons.wikimedia.org/wiki/File:Graph_with_all_three-colourings_2.svg, Arbor at English Wikipedia (PNG file), Booyabazooka at English Wikipedia (corrections + SVG conversion), CC BY-SA 3.0
[34] Lutze, D. (2021). Solving Chromatic Number with Quantum Search and Quantum Counting.
[35] Mukherjee, S. (2022). A grover search-based algorithm for the list coloring problem. IEEE Transactions on Quantum Engineering, 3, 1-8.
[36] Roch, C., Castillo, S. L., & Linnhoff-Popien, C. (2022, March). A Grover based Quantum Algorithm for Finding Pure Nash Equilibria in Graphical Games. In 2022 IEEE 19th International Conference on Software Architecture Companion (ICSA-C) (pp. 147-151). IEEE.
[37] Graphical Game Example. url :
https://commons.wikimedia.org/wiki/File:GraphicalGameExample.png , shiraabr, CC BY-SA 3.0 <https://creativecommons.org/licenses/by-sa/3.0>, via Wikimedia Commons
[38] H. Abraham, AduOffei, R. Agarwal, I. Y. Akhalwaya, G. Aleksandrowicz, T. Alexander, M. Amy, E. Arbel, Arijit02, A. Asfaw, A. Avkhadiev, C. Azaustre, AzizNgoueya, A. Banerjee, A. Bansal, P. Barkoutsos, A. Barnawal, G. Barron, G. S. Barron, ..., and M. Cepulkovskis, “Qiskit: ˇ An open-source framework for quantum computing,” 2019.
[39] Alasow, A., & Perkowski, M. (2022, May). Quantum Algorithm for Maximum Satisfiability. In 2022 IEEE 52nd International Symposium on Multiple-Valued Logic (ISMVL) (pp. 27-34). IEEE.
[40] Haverly, A., & López, S. (2021, July). Implementation of Grover’s Algorithm to Solve the Maximum Clique Problem. In 2021 IEEE Computer Society Annual Symposium on VLSI (ISVLSI) (pp. 441-446). IEEE.
[41] Complete Subgraph. url :
https://web.ntnu.edu.tw/~algo/CompleteGraph.html
[42] Jehn-Ruey Jiang, "Quantum Circuit Based on Grover Algorithm to Solve Hamiltonian Cycle Problem," accepted to present at IEEE Eurasia Conference on IOT, Communication and Engineering (IEEE ECICE 2022), 2022.
[43] Hamiltonian path. url :
https://commons.wikimedia.org/wiki/File:Hamiltonian_path.svg,Christoph Sommer, CC BY-SA 3.0 <http://creativecommons.org/licenses/by-sa/3.0/>, via Wikimedia Commons.
[44] Wang, P. H., Chen, J. H., & Tseng, Y. J. (2022). Intelligent pharmaceutical patent search on a near-term gate-based quantum computer. Scientific Reports, 12(1), 175.
[45] Salman, T., & Baram, Y. (2012). Quantum set intersection and its application to associative memory. The Journal of Machine Learning Research, 13(1), 3177-3206.
[46] Draper, T. G. (2000). Addition on a quantum computer. arXiv preprint quant-ph/0008033.
[47] Jakhodia, S., Singh, D., & Jajodia, B. (2022). Experimental Evaluation of QFT Adders on IBM QX Hardware. In Emerging Technologies for Computing, Communication and Smart Cities: Proceedings of ETCCS 2021 (pp. 419-435). Singapore: Springer Nature Singapore.
[48] Heidari, S., & Farzadnia, E. (2017). A novel quantum LSB-based steganography method using the Gray code for colored quantum images. Quantum Information Processing, 16(10), 1-28.
[49] Dijkstra, E. W. (2002). Cooperating sequential processes (pp. 65-138). Springer New York.
[50] Kaye, P., Laflamme, R., & Mosca, M. (2006). An introduction to quantum computing. OUP Oxford.
[51] Release Notes,Version History. [Online]. Available: https://qiskit.org/documentation/release_notes.html
[52] Cross, A. W., Bishop, L. S., Sheldon, S., Nation, P. D., & Gambetta, J. M. (2019). Validating quantum computers using randomized model circuits. Physical Review A, 100(3), 032328.
[53] Measuring Quantum Volume. [Online]. Available:
https://learn.qiskit.org/course/quantum-hardware/measuring-quantum-volume
[54] Quantum volume. [Online]. Available:
https://pennylane.ai/qml/demos/quantum_volume#cross
[55] Bennett, C. H., Bernstein, E., Brassard, G., & Vazirani, U. (1997). Strengths and weaknesses of quantum computing. SIAM journal on Computing, 26(5), 1510-1523. |