博碩士論文 110522091 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:3.145.75.74
姓名 羅捷(Jie Luo)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 使用距離度量學習的狗鼻紋識別系統設計與實作
(Design & Implementation of Dog Nose Print Recognition System Using Deep Metric Learning)
相關論文
★ 整合GRAFCET虛擬機器的智慧型控制器開發平台★ 分散式工業電子看板網路系統設計與實作
★ 設計與實作一個基於雙攝影機視覺系統的雙點觸控螢幕★ 智慧型機器人的嵌入式計算平台
★ 一個即時移動物偵測與追蹤的嵌入式系統★ 一個固態硬碟的多處理器架構與分散式控制演算法
★ 基於立體視覺手勢辨識的人機互動系統★ 整合仿生智慧行為控制的機器人系統晶片設計
★ 嵌入式無線影像感測網路的設計與實作★ 以雙核心處理器為基礎之車牌辨識系統
★ 基於立體視覺的連續三維手勢辨識★ 微型、超低功耗無線感測網路控制器設計與硬體實作
★ 串流影像之即時人臉偵測、追蹤與辨識─嵌入式系統設計★ 一個快速立體視覺系統的嵌入式硬體設計
★ 即時連續影像接合系統設計與實作★ 基於雙核心平台的嵌入式步態辨識系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-7-14以後開放)
摘要(中) 狗鼻紋路是非接觸式的犬隻身分識別的重要特徵。本論文提出使用深度度量學習(Deep Metric Learning, DML)的自動化狗鼻紋身分識別系統,DML相較典型直接分類方法,其學習的是將輸入映射至具有某種特性的向量空間。透過DML,將灰階狗鼻紋影像輸入至已訓練的DML模型,產生代表該張影像的一維特徵向量,在此向量空間中,同一犬隻不同的鼻紋影像樣本互相群聚,而不同犬隻的鼻紋互相遠離,要衡量兩張鼻紋影像是否屬於同一犬隻衡量此向量空間中代表這兩張樣本的向量的距離即可。深度學習框架成熟,訓練一個神經網路並不難,而DML領域為相對較新的子領域,與典型的深度學習比較上的差異-專為DML設計的損失函數,近年也推陳出新,且深度學習存在許多不同框架,致使了部署上的困難。本論文比較四個DML的損失函數在狗鼻紋上的性能,並將訓練後的神經網路轉至Open Neural Network Exchange(ONNX)的神經網路中介各式,以簡化部署流程。本論文中,輸入影像的狗鼻紋的區域使用語意切割神經網路進行預測,並使用DML搭配KNN的方式對其進行預測。在身分識別模組實驗中,對於訓練時期從未見過的30隻犬隻,每隻4張樣本,分別達到KNN(k=1) 87.3% 與KNN(k=3) 96.7% 的識別率。而完整的識別系統對於訓練時期從未見過的26隻犬隻識別率則為KNN(k=1) 76.9% 與KNN(k=3) 65.4%。
摘要(英) Dog muzzle prints are one of the important feature for non-contact dog identification. This paper proposes an automated dog nasal pattern identification system using Deep Metric Learning (DML), which is a more intuitive classification method than the typical direct classification method. DML learns to map inputs to a vector space with certain characteristics. In this vector space, different muzzle prints of the same dog cluster with each other, while muzzle prints of different dogs are far away from each other. To measure whether two muzzle images belong to the same dog, one calculates the distance between the two vectors representing these two samples. Deep learning frameworks are quite mature and it is not too difficult to train a neural network. However, the DML domain is a relatively new subfield, and its main differences compare to typical deep learning - loss functions designed for DML - have been introduced in recent years, combined with many different frameworks for deep learning, making it difficult to deploy. This paper compares the performance of four DML loss functions on dog muzzle prints images, and transfers the trained neural networks to the Open Neural Network Exchange (ONNX) neural network meddle format, to simplify the deployment process. In this paper, the regions of the dog nasal prints of the input images are predicted using a semantic segmentation neural network, and the prediction is performed using DML with KNN. In the independent identity recognition experiment, the identification rates of 87.3% for KNN(k=1) and 96.7% for KNN(k=3) were achieved for 30 dogs with 4 samples each that had never been seen during the training period. After automating the whole identification process, the identification rate for the 26 dogs never seen during the training period was 76.9% for KNN(k=1) and 65.4% for KNN(k=3).
關鍵字(中) ★ 深度學習
★ 深度尺度學習
★ 距離尺度學習
★ 生物辨識
關鍵字(英) ★ Deep Learning
★ Deep Metric Learning
★ Distance Metric Learning
★ Biometrics
論文目次 摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 VIII
第一章、 緒論 1
1.1 研究背景 1
1.2 研究目的 2
1.3 論文架構 3
第二章、 文獻回顧 4
2.1 深度度量學習-Deep Metric Learning(DML) 4
2.1.1 距離度量學習-Distance Metric Learning 5
2.1.2 用於深度度量學習的損失函數 7
2.1.3 孿生神經網路-Siamese Network 12
2.1.4 原型網路-Prototypical Network 13
2.2 K-近鄰演算法-K Nearest Neighbor 14
2.3 Open Neural Network Exchange 15
第三章、 狗鼻紋識別系統設計 17
3.1 系統架構 17
3.1.1 註冊犬隻 18
3.1.2 定義模型架構 19
3.1.3 狗鼻紋身分識別 20
3.2 離散事件建模 21
3.2.1 註冊犬隻 21
3.2.2 狗鼻紋身分識別 25
3.3 高階軟體合成 26
3.3.1 註冊犬隻 26
3.3.2 定義模型架構 29
3.3.3 狗鼻紋身分識別 30
第四章、 實驗 31
4.1 實驗環境 31
4.2 實驗資料集 32
4.3 語意切割模組實驗 33
4.4 身分識別模組實驗 40
4.5 系統整合實驗 50
第五章、 結論 52
5.1 結論 52
5.2 未來展望 53
參考文獻 54
參考文獻 [1] E. Axelsson, I. Ljungvall, P. Bhoumik, L. B. Conn, E. Muren, Å. Ohlsson, L. H. Olsen, K. Engdahl, R. Hagman, and J. Hanson, "The genetic consequences of dog breed formation—Accumulation of deleterious genetic variation and fixation of mutations associated with myxomatous mitral valve disease in cavalier King Charles spaniels," PLoS genetics, vol. 17, no. 9, p. e1009726, 2021.
[2] X. Wang, V. Ly, S. Sorensen, and C. Kambhamettu, "Dog breed classification via landmarks," in 2014 IEEE International Conference on Image Processing (ICIP), pp. 5237-5241, 2014.
[3] P. Borwarnginn, K. Thongkanchorn, S. Kanchanapreechakorn, and W. Kusakunniran, "Breakthrough conventional based approach for dog breed classification using CNN with transfer learning," in 2019 11th International Conference on Information Technology and Electrical Engineering (ICITEE), pp. 1-5, 2019.
[4] K. Albrecht, "Microchip-induced tumors in laboratory rodents and dogs: A review of the literature 1990–2006," in 2010 IEEE International Symposium on Technology and Society, pp. 337-349, 2010.
[5] A. Carminato, M. Vascellari, W. Marchioro, E. Melchiotti, and F. Mutinelli, "Microchip‐associated fibrosarcoma in a cat," Veterinary dermatology, vol. 22, no. 6, pp. 565-569, 2011.
[6] H. B. Bae, D. Pak, and S. Lee, "Dog Nose-Print Identification Using Deep Neural Networks," IEEE Access, vol. 9, pp. 49141-49153, 2021.
[7] K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770-778, 2016.
[8] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, "Attention is all you need," Advances in neural information processing systems, vol. 30, 2017.
[9] J. Fu, J. Liu, H. Tian, Y. Li, Y. Bao, Z. Fang, and H. Lu, "Dual attention network for scene segmentation," in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 3146-3154, 2019.
[10] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah, "Signature verification using a" siamese" time delay neural network," Advances in neural information processing systems, vol. 6, 1993.
[11] X. Li, X. Yang, Z. Ma, and J.-H. Xue, "Deep metric learning for few-shot image classification: A selective review," arXiv preprint arXiv:2105.08149, 2021.
[12] F. Shen, Z. Wang, Z. Wang, X. Fu, J. Chen, and X. Du, "A Competitive Method for Dog Nose-print Re-identification," arXiv preprint arXiv:2205.15934, 2022.
[13] H. Zhang, C. Wu, Z. Zhang, Y. Zhu, H. Lin, Z. Zhang, Y. Sun, T. He, J. Mueller, and R. Manmatha, "Resnest: Split-attention networks," in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2736-2746, 2022.
[14] N. Garun. (2019). A Chinese AI startup is tracking lost dogs using their nose prints. Available: https://www.theverge.com/2019/7/13/20693064/megvii-chinese-ai-facial-recognition-lost-pets-dogs-cats-surveillance
[15] N. Sarwar. (2022). Samsung-Backed Startup Made App That Scans Dog Nose Prints As An ID. Available: https://screenrant.com/dog-noseid-biometric-authentication-samsug-petnow/
[16] R. Min. (2022). ′Nose print′ tech could help identify and track pet dogs. Available: https://www.euronews.com/next/2022/11/01/each-dog-has-a-unique-nose-south-korea-tests-out-nose-print-id-for-national-pet-registrati
[17] B. Hineman. (2021). New technology in Nashville area can help find your missing dog by its nose. Available: https://news.yahoo.com/technology-nashville-area-help-missing-120210121.html
[18] TensorFlow. Available: https://www.tensorflow.org/
[19] PyTorch. Available: https://www.pytorch.org
[20] Caffe | Deep Learning Framework. Available: https://caffe.berkeleyvision.org/
[21] ONNX. Available: https://onnx.ai/
[22] T. Cover and P. Hart, "Nearest neighbor pattern classification," IEEE Transactions on Information Theory, vol. 13, no. 1, pp. 21-27, 1967-01 1967.
[23] K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image recognition," arXiv preprint arXiv:1409.1556, 2014.
[24] O. Ronneberger, P. Fischer, and T. Brox, "U-net: Convolutional networks for biomedical image segmentation," in Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18, pp. 234-241, 2015.
[25] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, "You only look once: Unified, real-time object detection," in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 779-788, 2016.
[26] J. L. Suárez, S. García, and F. Herrera, "A tutorial on distance metric learning: Mathematical foundations, algorithms, experimental analysis, prospects and challenges," Neurocomputing, vol. 425, pp. 300-322, 2021.
[27] E. Hoffer and N. Ailon, "Deep metric learning using triplet network," in Similarity-Based Pattern Recognition: Third International Workshop, SIMBAD 2015, Copenhagen, Denmark, October 12-14, 2015. Proceedings 3, pp. 84-92, 2015.
[28] H. Oh Song, Y. Xiang, S. Jegelka, and S. Savarese, "Deep metric learning via lifted structured feature embedding," in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4004-4012, 2016.
[29] Y. Sun, C. Cheng, Y. Zhang, C. Zhang, L. Zheng, Z. Wang, and Y. Wei, "Circle loss: A unified perspective of pair similarity optimization," in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 6398-6407, 2020.
[30] E. Ustinova and V. Lempitsky, "Learning deep embeddings with histogram loss," Advances in Neural Information Processing Systems, vol. 29, 2016.
[31] Y. Wen, K. Zhang, Z. Li, and Y. Qiao, "A discriminative feature learning approach for deep face recognition," in Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part VII 14, pp. 499-515, 2016.
[32] W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj, and L. Song, "Sphereface: Deep hypersphere embedding for face recognition," in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 212-220, 2017.
[33] H. Wang, Y. Wang, Z. Zhou, X. Ji, D. Gong, J. Zhou, Z. Li, and W. Liu, "Cosface: Large margin cosine loss for deep face recognition," in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 5265-5274, 2018.
[34] J. Deng, J. Guo, N. Xue, and S. Zafeiriou, "Arcface: Additive angular margin loss for deep face recognition," in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 4690-4699, 2019.
[35] K. Musgrave, S. Belongie, and S.-N. Lim, "A metric learning reality check," in Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXV 16, pp. 681-699, 2020.
[36] M. Kaya and H. Ş. Bi̇lge, "Deep Metric Learning: A Survey," (in en), Symmetry, vol. 11, no. 9, p. 1066, 2019/9 2019.
[37] J. Snell, K. Swersky, and R. Zemel, "Prototypical networks for few-shot learning," Advances in neural information processing systems, vol. 30, 2017.
[38] C.-H. Chen, M.-Y. Lin, and X.-C. Guo, "High-level modeling and synthesis of smart sensor networks for Industrial Internet of Things," Comput. Electr. Eng., vol. 61, pp. 48-66, 2017.
[39] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, "ImageNet: A large-scale hierarchical image database," presented at the 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPR Workshops), 2009
指導教授 陳慶瀚(Ching Han Chen) 審核日期 2023-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明