![]() |
以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:14 、訪客IP:18.188.224.69
姓名 馮瑞驊(Jui-Hwa Feng) 查詢紙本館藏 畢業系所 資訊工程學系 論文名稱 應用資料倉儲技術探索點對點網路環境知識之研究
(A Data Warehousing Approach to Discover Knowledge in Peer-to-Peer Network Application)相關論文 檔案 [Endnote RIS 格式]
[Bibtex 格式]
[相關文章]
[文章引用]
[完整記錄]
[館藏目錄]
[檢視]
[下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 近年來隨著網路的迅速發展,點對點(Peer-to-Peer)的檔案傳輸方法相較於傳統的主從式架構來說具有快速、穩定、以及節省資源等各項優點,因而逐漸取代傳統檔案傳輸的模式。BitTorrent就是根據點對點檔案傳輸方式所衍生出的一個應用程式,而在廣大的BitTorrent使用戶中,必定隱含許多資訊可提供給使用者,包括使用者的使用習性、所喜愛的檔案,及其他各項特徵。
在本篇論文中,我們設計了一個針對BitTorrent使用者的資料分析系統。再搭配資料倉儲及資料探勘技術,將資料有系統的整合與管理,而由此整合後的資料,我們可以迅速並且得到更具有代表性意義的資訊及分析以提供給使用者參考利用。摘要(英) Recently, BitTorrent has emerged as a very popular and scalable peer-to-peer file distribution mechanism. It has been successful at distributing large file quickly and efficiently. With traditional client-server architecture expensive large server farms or mirroring are used to satisfy large number of requests. On the other hand, BitTorrent users act simultaneously as clients and servers. With large number users of BitTorrent, there should be much information about the user data flowing through network. The rich information may imply the users’ habitual behavior, data access pattern, interested file, and so on. The information is useful for general users, network managers, and designer, etc. Hence, we propose a framework on BitTorrent which combined with data warehouse and data mining techniques to offer an efficient and systematic analysis for users. 關鍵字(中) ★ 點對點網路
★ 資料探勘
★ 資料倉儲關鍵字(英) ★ data mining
★ data warehouse
★ bittorrent論文目次 CHAPTER 1 INTRODUCTION 1
CHAPTER 2 BACKGROUND AND RELATED WORK 4
2.1 BITTORRENT OVERVIEW 4
2.2 DATA WAREHOUSE AND OLAP 6
2.2.1 Data Warehouse 6
2.2.2 On-Line Analytical Processing (OLAP) 8
2.2.3 Data Cube 9
2.3 DATA MODEL 10
2.3.1 Star Schema 10
2.3.2 Snowflake Schema 12
2.4 ASSOCIATION RULE MINING 13
2.4.1 Association Rules 13
2.4.2 Multi-dimensional Association Rules 14
2.5 RELATED WORK 16
CHAPTER 3 SYSTEM FRAMEWORK 17
3.1 DATA COLLECTION 18
3.1.1 Get BitTorrent Users 18
3.1.2 Geographical location measurement 19
3.1.3 Round-trip time measurement 20
3.1.4 Bandwidth measurement 21
3.2 GENERALIZED DATA 24
3.3 DATA WAREHOUSE AND OLAP CUBE 24
3.4 ASSOCIATION RULE MINING PROCESS 26
CHAPTER 4 OLAP ASSOCIATION RULE MINING 27
4.1 GENERATING WORKING CUBE 28
4.2 GENERATING FREQUENT ITEMSETS 31
4.2.1 Apriori algorithm 31
4.3 GENERATING STRONG ASSOCIATION RULES 36
4.4 THE AFFECT OF DISTINCT VALUE AND MINIMUM SUPPORT 37
CHAPTER 5 EXPERIMENT RESULT 39
5.1 EXECUTION TIME COMPARISON 39
5.2 ANALYZE THE ASSOCIATION RULES 42
CHAPTER 6 CONCLUSIONS AND FUTURE WORK 45
REFERENCES 46參考文獻 [1] CacheLogic. The true picture of peer-to-peer filesharing. July 2004.
http://www.cachelogic.com/research.
[2] Fping – a program to ping hosts in parallel. http://www.fping.com/.
[3] WHOIS - a TCP-based query/response protocol in order to determine the owner
of a domain name, an IP address. http://en.wikiwedia.org/wiki/Whois
[4] B.Cohen. Incentives build robustness in bittorrent. In Workshop on Economics
of Peer-to-Peer Systems, Berkeley, USA, May 2003. http://bittorrent.com/.
[5] M. Izal, G. Urvoy-Keller, E. Biersack, P. Felber, A. Al Hamra, and L.
Garces-Erice. Dissecting bittorrent: Five months in a torrent’s lifetime.
In Passive and Active Measurements, Antibes Juan-les-Pins, France, April
2004.
[6] D. Qiu and R. Srikant. Modeling and performance analysis of bittorrent-like
peer-to-peer networks. In ACM SIGCOMM, Portland, OR, USA, August 2004.
[7] W.H. Inmon and C. Kelly, (1993): Rdb/VMS: Developing the Data Warehouse, QED
Publishing Group, Boston, Massachussetts.
[8] S. Chaudhuri and U. Dayal, (1997): “An overview of data warehouse and OLAP
technology,” in ACM SIGMOD Record, Vol. 26, pp. 359-370.
[9] J. Han and M. Kamber, (2000): Data mining: Concepts and Techniques, MORGAN
KAUFMANN PUBLISHERS.
[10] R. Kimball, The Data Warehouse Toolkit Practical For Building Dimensional
Data Warehouses, JOHN WILEY & SONS, INC. 1996.
[11] R. Agrawal and R. Srikant (1994): Fast algorithms for mining association
rules, in Proceedings of the 20th VLDB Conference, pp. 487-499.
[12] H. Zhu, (1998): On-Line Analytical Mining of Association Rules, SIMON FRASER
UNIVERSITY, December.
[13] J. Pouwelse, P. Garbacki, D. Epema, and H. Sips. The Bittorrent P2P
File-sharing System: Measurements and Analysis. In 4th International
Workshop on Peer-to-Peer Systems (IPTPS’05), Feb. 2005.
[14] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh, “Data cube: a relation
aggregation operator generalizing group-by, cross-tabs and subtotals,” in
Proceedings of International Conference on Data Engineering, pp. 152-159,
1996.
[15] P. Francis, S. Jamin, V. Paxson, L. Zhang, D.F. Gryniewicz, and Y. Jin, “An
architecture for a global Internet host distance estimation service,” in
Proceedings of IEEE INFOCOM ’99, New York, NY, Mar. 1999.
[16] R. Kapoor, L. Chen, L. Lao, M. Gerla, and M. Sanadidi, “CapProbe: a simple
and accurate capacity estimation technique,” in Proceedings of the 2004
Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communications, 2004.
[17] T. S. E. Ng, Y. hua Chu, S. G. Rao, K. Sripanidkulchai, and H. Zhang,
“Measurement-based optimization techniques for bandwidth-demanding
peer-to-peer systems,” in Proceedings of IEEE INFOCOM, April 2003.
[18] K. Hubbard, M. Kosters, D. Conrad, D. Karrenberg, J. Postel. Internet
registry ip allocation guidelines, November 1996.指導教授 蔡孟峰(Meng-Feng Tsai) 審核日期 2006-8-28 推文 plurk
funp
live
udn
HD
myshare
netvibes
friend
youpush
delicious
baidu
網路書籤 Google bookmarks
del.icio.us
hemidemi
myshare