參考文獻 |
[1] M. Azoff "AI晶片市場究竟是什麼模樣"電子工程專輯雜誌2020年10月號
https://www.eettaiwan.com/20201005nt31-optical-compute-promises-game-changing-ai-performance/
[2] C. Minkenberg, R. Krishnaswamy, A. Zilkie, and D. Nelson, “Co-packaged datacenter optics: Opportunities and challenges,” IET Optoelectronics, vol. 15, no. 2, pp. 77-91, 2021.
[3] M. Vallo, Technology & Market Analyst at Yole Intelligence, part of Yole Group for EETIMES, August 31, 2022
https://www.yolegroup.com/strategy-insights/global-insights-into-the-co-packaged-optics-technology-platform/
[4] D. Boesing,“New Cable Management System Improves SI, Thermals”, September 24, 2020
https://blog.samtec.com/post/new-cable-management-system-improves-si-thermals/
[5] https://mefiberoptic.com/what-are-fiber-optic-patch-cables-types/
[6] https://www.ist.hokudai.ac.jp/netjournal/net_46_1.html
[7] L. Dong, X. Gu and F. Koyama, “16-ch 1060-nm Single-mode Bottom-emitting Metal-aperture VCSEL Array for Co-packaged Optics,” 2023 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 2023, pp. 1-3
[8] S. Nakagawa, D. Kuchta, C. Schow, R. John, L. A. Coldren, and Y. Chang, “1.5mW/Gbps Low Power Optical Interconnect Transmitter Exploiting High-Efficiency VCSEL and CMOS Driver,” 2008 Optical Fiber Communication Conference and Exhibition (OFC), San Diego, CA, USA, 2008, paper OThS3.
[9] W. W. Chow, K. D. Choquette, M. H. Crawford, K. L. Lear, and G. R. Hadley, “Design, fabrication, and performance of infrared and visible vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron., vol. 33, no. 10, pp. 1810–1824, Oct. 1997.
[10] K. D. Croquette and H. Q. Hou, “Vertical-cavity surface emitting lasers: Moving from research to manufacturing,” Proc. IEEE, vol. 85, no. 11, pp. 1730–1739, Nov. 1997
[11] Y. C. Chang, and L. A. Coldrem, “Efficient, High-data-rate Tapered oxide-aperture Vertical-Cavity Surface-Emitting Lasers” IEEE J. Sel. Top. Quantum Electron., vol. 15, no. 3, pp. 704-715, Jun., 2009.
[12] M. Yazdanypoor, and A. Gholami, “Optimizing Optical Output Power of Single-Mode VCSELs Using Multiple Oxide Layers,” IEEE J. Sel. Top. Quantum Electron., vol. 19, no. 4, pp. 1701708, Mar., 2013.
[13] 顏志成(民國101)。具有超低耗能,傳輸資料比值在850nm波段超高速(40Gbit/s)面射型雷射。國立中央大學電機工程研究所論文,桃園市。
[14] R. W. Herrick, A. Dafinca, P. Farthouat, A. A. Grillo, S. J. McMahon, and A. R. Weidberg, “Corrosion-Based Failure of Oxide-Aperture VCSELs,” IEEE J. Quantum Electron., vol. 49, no. 12, pp. 1045-1052, Oct., 2013.
[15] B. E. Deal and A. S. Grove, “General relationship for the thermal oxidation of silicon,” J. Appl. Phys., vol. 36, no. 12, pp. 3770–3778, 1965.
[16] K. Nakajima, “Calculation of stresses in InxGa1−xAs/InP strained multilayer heterostructures,” J. Appl. Phys., vol. 72, no. 11, pp. 5213-5219, Dec., 1992.
[17] K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in Selective Wet Oxidation of AlGaAs Alloys,” IEEE J. Sel. Top. Quantum Electron., vol. 3, no. 3, pp. 916-926, Jun., 1997.
[18] K. D. Choquette, K. L. Lear, R. P. Schneider, Jr., K. M. Geib, J. J. Figiel, and R. Hull, “Fabrication and Performance of Selectively Oxidized Vertical-Cavity Lasers,” IEEE Photon. Technol. Lett., vol. 7, no.11, pp.1237-1239, Nov., 1995.
[19] F. A. Kish, S. A. Maranowski, G. E. Hofler, N. Holonyak, S. J. Caracci, J. M. Dallesasse and K. C. Hsieh “Dependence on doping type (p/n) of the water vapor oxidation of high‐gap AlxGa1-xAs,” Appl. Phys. Lett., vol. 60, no. 25, pp. 3165-3167, Jun., 1992.
[20] K. D. Choquette et al., “Selective oxidation of buried AlGaAs versus AlAs layers,” Appl. Phys. Lett., vol. 69, no. 10, pp. 1385–1387, 1996.
[21] K. L. Lear and A. N. Al-Omari, “Progress and issues for high speed vertical cavity surface emitting lasers,” Proc. SPIE, vol. 6484, pp. 64840J1–64840J-12, 2007.
[22] R. S. Geels, S. W. Corzine, J. W. Scott, D. B. Young, and L. A. Coldren, “Low threshold planarized vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett., vol. 2, pp. 234–236, 1990
[23] A. Haglund, J. S. Gustavsson, J. Vukusic, P. Modh, and A. Larsson, “Single Fundamental-Mode Output Power Exceeding 6mW from VCSELs with a Shallow Surface Relief,” IEEE Photon. Technol. Lett., vol. 16, no. 2, pp. 368-370, Feb., 2004.
[24] J. E. Bowers, “High speed semiconductor laser design and performance,” Solid-State Electron., vol. 30, no. 1, pp. 1–11, Jan. 1987.
[25] R. Safaisini, J. R. Joseph, and K. L. Lear, “Scalable high-CW-power highspeed 980-nm VCSEL arrays,” IEEE J. Quantum Electron., vol. 46, no. 11, pp. 1590–1596, Nov. 2010.
[26] J.-L. Yen, X.-N. Chen, K.-L. Chi, and J.-W. Shi, “850 nm Vertical-cavity surface-emitting laser arrays with enhanced high-speed transmission performance over a standard multi-mode fiber,” J. Lightw. Technol., vol. 35, no. 15, pp. 3242–3249, Aug. 2017.
[27] R. S. Geels, S. W. Corzine, J. W. Scott, D. B. Young, and L. A. Coldren, “Low threshold planarized vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett., vol. 2, pp. 234–236, 1990
[28] E. Haglund et al., “30 GHz bandwidth 850 nm VCSEL with sub-100 fJ/bit energy dissipation at 25–50 Gbit/s,” Electron. Lett., vol. 51, pp. 1096–1098, 2015.
[29] E. W. Young, K. D. Choquette, S. L. Chuang, K. M. Geib, A. J. Fischer, and A. A. Allerman, “Single-transverse-mode vertical-cavity lasers under continuous and pulsed operation,” IEEE Photon. Technol. Lett., vol. 13, pp. 927-929, Sep., 2001.
[30] Y. Liu, W.-C. Ng, B. Klein, and K. Hess, “Effects of the spatial nonuniformity of optical transverse modes on the modulation response of vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron., vol. 39, no. 1, pp. 99–108, Jan. 2003.
[31] Z. Khan, Y.-H. Chang, T.-L. Pan, Y.-C. Zhao, Y.-Y. Huang, C.-H. Lee, J.-S. Chang, C.-Y. Liu, C.-Y. Lee, C.-Y. Fang, and J.- W. Shi, “High-Brightness, High-Speed, and Low-Noise VCSEL Arrays for Optical Wireless Communication,” IEEE Access, vol. 10, pp. 2303-2317, Dec. 2022.
[32] K. Tai, G. Hasnain, J. D. Wynn, R. J. Fischer, Y. H. Wang, B. Weir, J. Gamelin, and A.Y. Cho, “90% coupling of top surface emitting GaAs/AlGaAs quantum well laser output into 8μm diameter core silica fibre,” Electron. Lett., vol. 26, no. 19, pp. 1628-1629, Sep., 1990.
[33] Y. J. Yang, T. G. Dziura, R. Fernandez, S. C. Wang, G. Du, and S. Wang, “Low-threshold operation of a GaAs single quantum well mushroom structure surface-emitting laser,” Appl. Phys. Lett., vol. 58, pp. 1780–1782, Jun. 1991
[34] J. W. Shi, C. C. Chen, Y. S. Wu, S. H. Guol, C. Kuo, and Y. J. Yang, “High power and high speed Zn-diffusion single fundamental mode vertical cavity surface emitting lasers at 850 nm wavelength,” IEEE Photon. Technol. Lett., vol. 20, no. 13, pp. 1121–1123, Jul. 2008.
[35] H. Wang, W. Fu, J. Qiu, and M. Feng, “850 nm VCSELs for 50 Gb/s NRZ Error-Free Transmission over 100-meter OM4 and up to 115 °C Operation,” 2019 Optical Fiber Communication Conference and Exhibition (OFC), San Diego, CA, USA, 2019, paper W3A.1.
[36] E. Haglund et al., “30 GHz bandwidth 850 nm VCSEL with sub-100 fJ/bit energy dissipation at 25–50 Gbit/s,” Electron. Lett., vol. 51, no. 14, pp. 1096–1098, Jul. 2015
[37] P. Westbergh et al., “High-speed 850 nm VCSELs operating error free up to 57 Gbit/s,” Electron. Lett., vol. 49, no. 16, pp. 1021–1023, Aug. 2013.
[38] G. Stepniak et al., “54 Gbit/s OOK transmission using single-mode VCSEL up to 2.2 km MMF,” Electron. Lett., vol. 52, no. 8, pp. 633–635, 2016.
[39] L. Dong, X. Gu and F. Koyama, “16-ch 1060-nm Single-mode Bottom-emitting Metal-aperture VCSEL Array for Co-packaged Optics,” 2023 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 2023, pp. 1-3 |