博碩士論文 110521045 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.145.124.186
姓名 吳旻龍(Min-Long Wu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 用於共光學封裝的超高速、低噪音、單模、高功率850nm面射型雷射之開發
(The development of ultra-fast 850 nm VCSEL with low-noise , single-mode , and high power for co-packaged optics)
相關論文
★ 氮化鎵串接式綠光發光二極體在超高溫(200 ℃)操作的高速表現之和其內部之載子動力學★ 32Gbit/s 低耗能 850nm InAlGaAs 應變量子井面射型雷射
★ 具有大面積且在高靈敏度、低暗電流操作下具有頻寬增強效應的10 Gbit/sec平面式 InAlAs 累增崩潰光二極體★ 應用串接式技術達到超高飽和電流-頻寬乘積(7500mA-GHz,75mA,100GHz)的近彈道傳輸光偵測器
★ 利用鋅擴散方式在半絕緣(GaAs)基板上製作可室溫操作、高速且低漏電流的InAs光檢測器★ 應用超寬頻光子傳送混波器達到遠距分佈及調變的20Gbit/s無誤碼無線振幅偏移調變資料傳輸於W-頻帶
★ 具有同時高速資料傳輸及產生直流電功率的 砷化鎵/磷化銦鎵的雷射功率轉換器★ 超高速(>1Gb/s)可見光發光二極體應用於塑膠光纖通訊及內部載子動力學的研究
★ 具有超低耗能,傳輸資料量比值在850nm波段超高速(40 Gb/s)面射型雷射★ 超高速(~300GHz)光偵測器的製造與其在毫米波生物晶片上的應用
★ 超高速覆晶式(>300GHz)高功率(~mW)光偵測器製作與量測★ 具有單空間模態,低發散角,高功率的鋅擴散二維850nm面射型雷射陣列
★ 應用於850到1550 nm波長光連結且 具有高速,高效率和大面積的p-i-n光偵測器★ 應用於中距離(2km)至短距離光連結知單模態、高速、高輸出光功率的850nm波段面射型雷射
★ 應用在光連接具有高可靠度高速(>25Gbit/sec) 850光波段的垂直共振腔雷射★ 具有高可靠度/高功率輸出與直流到次兆赫茲 (≧300GHz)操作頻寬的超高速光偵測器和其覆晶式封裝設計與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在目前的 HDMI 2.1 和 CPU 或 GPU 的高速光連接系統中因為資
料量不斷的變大 (Tb/sec) 且每個通道的資料速度不斷升高,CoPackage Optics (CPO) 已經被採用於光連接系統中。CPO 的高密度
封裝需要使用尺寸較小的單模光纖,和多模光纖比較起來光窗密度
可以更高。為了能將 VCSEL 光耦合進單模光纖,勢必使用單模的
VCSEL,然而單模 VCSEL 在特性上有許多缺點,例如:輸出功率較
小、Spatial Hole Burning (SHB)效應嚴重造成低頻 roll off 以及較差的抗光反射能力。
在本論文中會利用特殊的鋅擴散結構來得到高速、高亮度及低
相對雜訊強度的單模 VCSEL,我們最後得到了 27 GHz 的 3-dB 頻率
響應,和 7 mW 的輸出功率,眼圖的部分在 back-to-back (BTB)的條
件下 Data rate 可以傳到 56 Gbps,另外傳輸 500 米的條件下 Data rate可以傳到 46Gbps,並擁有優秀的抗反射能力,比較沒反射及反射光
為-6dB 的情況下 Relative Intensity Noise Optical Modulation
Amplitude (RIN OMA)值變化僅 3 dB/Hz。上述結果和以前發表過文
章的單模 VCSEL 相比,有著顯著的進步。
我們設計最佳化的鋅擴散結構,將會對未來的 CPO 市場帶來革
命性的改變。
摘要(英) Co-Package Optics (CPO) is used in optical interconnect systems due to the growing data rates and increasing data speeds per channel in current
HDMI 2.1 and high-speed CPU or GPU optical connectivity systems.
To achieve high-density packaging, the use of single-mode fiber is crucial in the development of CPO. Single-mode fiber offers a higher number of channels compared to multi-mode fibers within the same crosssectional area of multicore fiber. To efficiently couple VCSEL light into single-mode fiber, it is necessary to utilize single-mode VCSEL. However,high power single-mode VCSEL has many disadvantages, such as, severe spatial hole burning (SHB) effect causing low-frequency roll off, and week immunity to the optical feedback.
In this thesis, we demonstrate a novel design of Zn diffusion structure for single-mode VCSEL with high speed, high brightness and low relative
noise intensity for >56G CPO application. By use of such new VCESL structure, we get a heavy damping frequency response with a 3-dB bandwidth at around 27 GHz, and an output power of 7 mW.The back-to-back (BTB) eye diagram data rate can reach 56 Gbps, on the other hand the data rate for OM4 transmission over 500 meters can reach 46 Gbps.
The demonstrated device also exhibits strong immunity to the optical feedback. for the case of -6dB reflected power there is only 3 dB/Hz degradation in the Relative Intensity Noise Optical Modulation Amplitude(RIN OMA) (from -134 dB/Hz to -131 dB/Hz).
Overall, our demonstrated Zn-diffusion structure will bring
revolutionary changes to the future CPO market.
關鍵字(中) ★ 面射型雷射
★ 濕式氧化
★ 鋅擴散
關鍵字(英)
論文目次 摘 要 I
Abstract II
致謝 III
第一章 序論 1
1-1 簡介 1
1-2 CPO 介紹 3
1-3 高密度封裝 5
1-4 垂直共振腔面射型雷射(VCSEL) 簡介 7
1-5 面射型雷射的電流侷限 9
1-6 VCSEL之氧化層結構 11
1-7 水氧氧化系統 14
1-7-1 VCSEL濕氧化原理 15
1-7-2 氧化層掏離製程 18
1-7-3 IR CCD系統 20
第二章 單模VCSEL的挑戰 21
2-1 小孔徑單模VCSEL 21
2-2 大孔徑單模VCSEL 23
2-3 850 nm波段VCSEL晶片磊晶結構 26
2-4 最佳化鋅擴散VCSEL 29
第三章 30
3-1鋅擴散 (Zn diffusion) 30
3-2水氧氧化製程 34
3-3製作電極 (P Metal 和 N Metal) 38
3-4 BCB(Benzocyclobutene)製程 41
3-5開洞(Via opening) 43
3-6 PAD金屬 46
第四章 實驗結果及探討 47
4-1量測系統簡介 47
4-1-1 電流對電壓(I-V)的量測 47
4-1-2光功率對電流(L-I)之量測 48
4-1-3 遠場(FFP Far Field Pattern)量測系統 48
4-1-4 頻譜(Spectrum)之量測系統 49
4-1-5 頻寬(Bandwidth)之量測系統 50
4-1-6 眼圖(Eye Pattern)量測系統 50
4-2 Gen1與Gen2鋅擴散結構量測比較 52
4-2-1 光功率-電流-電壓(L-I-V)曲線比較 52
4-2-2 E-O頻寬及頻譜量測 53
4-2-3 遠場發散角(Far Field Pattern, FFP)量測 55
4-2-4 眼圖(Eye Pattern)量測 55
4-3 相對強度噪音光調變振幅(RIN OMA)量測結果 58
4-4 Gen2元件與文獻之比較 61
4-5 單模光纖量測結果 64
第五章 結論及未來探討 66
第六章 Reference 67
參考文獻 [1] M. Azoff "AI晶片市場究竟是什麼模樣"電子工程專輯雜誌2020年10月號
https://www.eettaiwan.com/20201005nt31-optical-compute-promises-game-changing-ai-performance/
[2] C. Minkenberg, R. Krishnaswamy, A. Zilkie, and D. Nelson, “Co-packaged datacenter optics: Opportunities and challenges,” IET Optoelectronics, vol. 15, no. 2, pp. 77-91, 2021.
[3] M. Vallo, Technology & Market Analyst at Yole Intelligence, part of Yole Group for EETIMES, August 31, 2022
https://www.yolegroup.com/strategy-insights/global-insights-into-the-co-packaged-optics-technology-platform/
[4] D. Boesing,“New Cable Management System Improves SI, Thermals”, September 24, 2020
https://blog.samtec.com/post/new-cable-management-system-improves-si-thermals/
[5] https://mefiberoptic.com/what-are-fiber-optic-patch-cables-types/
[6] https://www.ist.hokudai.ac.jp/netjournal/net_46_1.html
[7] L. Dong, X. Gu and F. Koyama, “16-ch 1060-nm Single-mode Bottom-emitting Metal-aperture VCSEL Array for Co-packaged Optics,” 2023 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 2023, pp. 1-3
[8] S. Nakagawa, D. Kuchta, C. Schow, R. John, L. A. Coldren, and Y. Chang, “1.5mW/Gbps Low Power Optical Interconnect Transmitter Exploiting High-Efficiency VCSEL and CMOS Driver,” 2008 Optical Fiber Communication Conference and Exhibition (OFC), San Diego, CA, USA, 2008, paper OThS3.
[9] W. W. Chow, K. D. Choquette, M. H. Crawford, K. L. Lear, and G. R. Hadley, “Design, fabrication, and performance of infrared and visible vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron., vol. 33, no. 10, pp. 1810–1824, Oct. 1997.
[10] K. D. Croquette and H. Q. Hou, “Vertical-cavity surface emitting lasers: Moving from research to manufacturing,” Proc. IEEE, vol. 85, no. 11, pp. 1730–1739, Nov. 1997
[11] Y. C. Chang, and L. A. Coldrem, “Efficient, High-data-rate Tapered oxide-aperture Vertical-Cavity Surface-Emitting Lasers” IEEE J. Sel. Top. Quantum Electron., vol. 15, no. 3, pp. 704-715, Jun., 2009.
[12] M. Yazdanypoor, and A. Gholami, “Optimizing Optical Output Power of Single-Mode VCSELs Using Multiple Oxide Layers,” IEEE J. Sel. Top. Quantum Electron., vol. 19, no. 4, pp. 1701708, Mar., 2013.
[13] 顏志成(民國101)。具有超低耗能,傳輸資料比值在850nm波段超高速(40Gbit/s)面射型雷射。國立中央大學電機工程研究所論文,桃園市。
[14] R. W. Herrick, A. Dafinca, P. Farthouat, A. A. Grillo, S. J. McMahon, and A. R. Weidberg, “Corrosion-Based Failure of Oxide-Aperture VCSELs,” IEEE J. Quantum Electron., vol. 49, no. 12, pp. 1045-1052, Oct., 2013.
[15] B. E. Deal and A. S. Grove, “General relationship for the thermal oxidation of silicon,” J. Appl. Phys., vol. 36, no. 12, pp. 3770–3778, 1965.
[16] K. Nakajima, “Calculation of stresses in InxGa1−xAs/InP strained multilayer heterostructures,” J. Appl. Phys., vol. 72, no. 11, pp. 5213-5219, Dec., 1992.
[17] K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in Selective Wet Oxidation of AlGaAs Alloys,” IEEE J. Sel. Top. Quantum Electron., vol. 3, no. 3, pp. 916-926, Jun., 1997.
[18] K. D. Choquette, K. L. Lear, R. P. Schneider, Jr., K. M. Geib, J. J. Figiel, and R. Hull, “Fabrication and Performance of Selectively Oxidized Vertical-Cavity Lasers,” IEEE Photon. Technol. Lett., vol. 7, no.11, pp.1237-1239, Nov., 1995.
[19] F. A. Kish, S. A. Maranowski, G. E. Hofler, N. Holonyak, S. J. Caracci, J. M. Dallesasse and K. C. Hsieh “Dependence on doping type (p/n) of the water vapor oxidation of high‐gap AlxGa1-xAs,” Appl. Phys. Lett., vol. 60, no. 25, pp. 3165-3167, Jun., 1992.
[20] K. D. Choquette et al., “Selective oxidation of buried AlGaAs versus AlAs layers,” Appl. Phys. Lett., vol. 69, no. 10, pp. 1385–1387, 1996.
[21] K. L. Lear and A. N. Al-Omari, “Progress and issues for high speed vertical cavity surface emitting lasers,” Proc. SPIE, vol. 6484, pp. 64840J1–64840J-12, 2007.
[22] R. S. Geels, S. W. Corzine, J. W. Scott, D. B. Young, and L. A. Coldren, “Low threshold planarized vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett., vol. 2, pp. 234–236, 1990
[23] A. Haglund, J. S. Gustavsson, J. Vukusic, P. Modh, and A. Larsson, “Single Fundamental-Mode Output Power Exceeding 6mW from VCSELs with a Shallow Surface Relief,” IEEE Photon. Technol. Lett., vol. 16, no. 2, pp. 368-370, Feb., 2004.
[24] J. E. Bowers, “High speed semiconductor laser design and performance,” Solid-State Electron., vol. 30, no. 1, pp. 1–11, Jan. 1987.
[25] R. Safaisini, J. R. Joseph, and K. L. Lear, “Scalable high-CW-power highspeed 980-nm VCSEL arrays,” IEEE J. Quantum Electron., vol. 46, no. 11, pp. 1590–1596, Nov. 2010.
[26] J.-L. Yen, X.-N. Chen, K.-L. Chi, and J.-W. Shi, “850 nm Vertical-cavity surface-emitting laser arrays with enhanced high-speed transmission performance over a standard multi-mode fiber,” J. Lightw. Technol., vol. 35, no. 15, pp. 3242–3249, Aug. 2017.
[27] R. S. Geels, S. W. Corzine, J. W. Scott, D. B. Young, and L. A. Coldren, “Low threshold planarized vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett., vol. 2, pp. 234–236, 1990
[28] E. Haglund et al., “30 GHz bandwidth 850 nm VCSEL with sub-100 fJ/bit energy dissipation at 25–50 Gbit/s,” Electron. Lett., vol. 51, pp. 1096–1098, 2015.
[29] E. W. Young, K. D. Choquette, S. L. Chuang, K. M. Geib, A. J. Fischer, and A. A. Allerman, “Single-transverse-mode vertical-cavity lasers under continuous and pulsed operation,” IEEE Photon. Technol. Lett., vol. 13, pp. 927-929, Sep., 2001.
[30] Y. Liu, W.-C. Ng, B. Klein, and K. Hess, “Effects of the spatial nonuniformity of optical transverse modes on the modulation response of vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron., vol. 39, no. 1, pp. 99–108, Jan. 2003.
[31] Z. Khan, Y.-H. Chang, T.-L. Pan, Y.-C. Zhao, Y.-Y. Huang, C.-H. Lee, J.-S. Chang, C.-Y. Liu, C.-Y. Lee, C.-Y. Fang, and J.- W. Shi, “High-Brightness, High-Speed, and Low-Noise VCSEL Arrays for Optical Wireless Communication,” IEEE Access, vol. 10, pp. 2303-2317, Dec. 2022.
[32] K. Tai, G. Hasnain, J. D. Wynn, R. J. Fischer, Y. H. Wang, B. Weir, J. Gamelin, and A.Y. Cho, “90% coupling of top surface emitting GaAs/AlGaAs quantum well laser output into 8μm diameter core silica fibre,” Electron. Lett., vol. 26, no. 19, pp. 1628-1629, Sep., 1990.
[33] Y. J. Yang, T. G. Dziura, R. Fernandez, S. C. Wang, G. Du, and S. Wang, “Low-threshold operation of a GaAs single quantum well mushroom structure surface-emitting laser,” Appl. Phys. Lett., vol. 58, pp. 1780–1782, Jun. 1991
[34] J. W. Shi, C. C. Chen, Y. S. Wu, S. H. Guol, C. Kuo, and Y. J. Yang, “High power and high speed Zn-diffusion single fundamental mode vertical cavity surface emitting lasers at 850 nm wavelength,” IEEE Photon. Technol. Lett., vol. 20, no. 13, pp. 1121–1123, Jul. 2008.
[35] H. Wang, W. Fu, J. Qiu, and M. Feng, “850 nm VCSELs for 50 Gb/s NRZ Error-Free Transmission over 100-meter OM4 and up to 115 °C Operation,” 2019 Optical Fiber Communication Conference and Exhibition (OFC), San Diego, CA, USA, 2019, paper W3A.1.
[36] E. Haglund et al., “30 GHz bandwidth 850 nm VCSEL with sub-100 fJ/bit energy dissipation at 25–50 Gbit/s,” Electron. Lett., vol. 51, no. 14, pp. 1096–1098, Jul. 2015
[37] P. Westbergh et al., “High-speed 850 nm VCSELs operating error free up to 57 Gbit/s,” Electron. Lett., vol. 49, no. 16, pp. 1021–1023, Aug. 2013.
[38] G. Stepniak et al., “54 Gbit/s OOK transmission using single-mode VCSEL up to 2.2 km MMF,” Electron. Lett., vol. 52, no. 8, pp. 633–635, 2016.
[39] L. Dong, X. Gu and F. Koyama, “16-ch 1060-nm Single-mode Bottom-emitting Metal-aperture VCSEL Array for Co-packaged Optics,” 2023 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 2023, pp. 1-3
指導教授 許晉瑋(Jin-Wei Shi) 審核日期 2023-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明