博碩士論文 110521090 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:3.144.91.201
姓名 魏銘皓(Ming-Hao Wei)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 基於三維卷積神經網路於電腦斷層影像腎臟腫瘤偵測與量化
(Renal Tumor Detection and Quantification in Computed Tomography Based on Three-Dimensional Convolutional Neural Networks)
相關論文
★ 電子式基因序列偵測晶片之原型★ 眼動符號表達系統之可行性研究
★ 利用網印碳電極以交流阻抗法檢測糖化血紅素★ 電子式基因序列偵測晶片可行性之研究
★ 電腦化肺音擷取系統★ 眼寫鍵盤和眼寫滑鼠
★ 眼寫電話控制系統★ 氣喘肺音監測系統之可行性研究
★ 肺音聽診系統之可行性研究★ 穿戴式腳趾彎曲角度感測裝置之可行性研究
★ 注音符號眼寫系統之可行性研究★ 英文字母眼寫系統之可行性研究
★ 數位聽診器之原型★ 使用角度變化率為基準之心電訊號壓縮法
★ 電子式基因微陣列晶片與應用電路研究★ 電子聽診系統應用於左右肺部比較之臨床研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-7-31以後開放)
摘要(中) 腎臟腫瘤(Renal tumor)為腎臟上病變而發展出的區域,此區域有分成良
性惡性,若可以及早發現和治療即可減少許多未來的風險以及成本,那該如
何及早發現和治療就需要想該如何準確和有效率的辦法來實現。在電腦斷
層影像識別腎臟腫瘤相較於其他檢查方式而言,。
本研究共採取 382 筆病患資料,先採取對電腦斷層影像上做前處理;
接著利用三維卷積神經網路(3D Convolutional Neural Network, 3D CNN)架構
的 Deepmedic 採兩階段式的分割。第一階段目的為提取包含腎臟與腫瘤的
感興趣區域(Region of interest, ROI),接著透過影像後處理排除體積較小的
偽陽性區域;第二階段再以第一階段所提取的感興趣區域進一步去分割腎
臟腫瘤。最後再將此自動分割腎臟腫瘤的功能以更直觀、更方便使用的想法
上去建立一個圖形使用者介面,以利於醫師能直觀上能夠容易上手。
本文數據使用患有腎臟腫瘤病人的電腦斷層影像,其中 60%為訓練集、
20%為驗證集 以及 20%為測試集。腎臟和腫瘤的感興趣區域分割後經由後
處理的效能評估平均戴斯係數為 93.82%、平均精確率為 94.86%以及平均召
回率為 93.66%;腎臟腫瘤分割效能的效能評估平均戴斯係數為 88.19%、平
均精確率為 90.36%以及平均召回率為 88.23%。
透過深度學習的方式去訓練模型,使得可以在電腦斷層影像上分割腎
臟腫瘤的位置並且量化體積,可以看到腎臟和腫瘤的區域分割效能不錯,能
ii
夠有效地抓出腎臟和腫瘤區域。最後再製作出一個能使醫師更簡單且直接
操作的使用者介面,達到讓醫師能夠在短時間內有著極高的效率。本研究基
於深度學習對電腦斷層影像進行腎臟腫瘤自動分割與量化,進而輔助醫師
於臨床診斷上以及相關應用。
摘要(英) Renal tumor refers to a localized abnormality that develops in the kidney,
which can be classified as either benign or malignant. Early detection and
treatment of renal tumors are crucial to mitigate future risks and reduce associated
costs. To achieve accurate and efficient early detection and treatment,
computerized tomography (CT) imaging plays a significant role compared to
other diagnostic methods.
In this study, a total of 382 patient data were collected, and preprocessing
was performed on the CT images. A two-stage segmentation approach utilizing a
Three-Dimensional Convolutional Neural Network (3D CNN) architecture called
Deepmedic was employed. The first stage aimed to extract the Region of Interest
(ROI) containing the kidney and the tumor. Subsequently, post-processing was
conducted to eliminate small false positive regions. In the second stage, the ROI
obtained from the first stage was further segmented to delineate the renal tumor.
Finally, an intuitive and user-friendly graphical user interface was developed to
facilitate the ease of use for physicians.
The data used in this study consisted of CT images from patients with renal
tumors, with 60% used for training, 20% for validation, and 20% for test set. The
performance evaluation of the segmented kidney and tumor regions yielded an
average Dice coefficient of 93.82%, an average precision of 94.86%, and an
average recall of 93.66%. For the renal tumor segmentation, the average Dice
coefficient was 88.19%, the average precision was 90.36%, and the average recall
was 88.23%.
By employing deep learning, the model was trained to segment the location
of renal tumors and quantify their volume on CT images, showing favorable
iv
segmentation performance for the kidney and tumor regions. The developed user
interface further simplified the interaction for physicians, enabling them to
achieve high efficiency within a short timeframe. This research contributes to the
automated segmentation and quantification of renal tumors using deep learning
on CT images, offering valuable support for clinical diagnosis and related
applications.
關鍵字(中) ★ 腎臟腫瘤
★ 電腦斷層
★ 深度學習
★ 自動分割
★ 圖形使用者介面
關鍵字(英) ★ Renal Tumor
★ Computed Tomography
★ Deep Learning
★ Automated Segmentation
★ Graphical User Interface
論文目次 目錄
摘要 i
Abstract iii
圖目錄 vii
表目錄 xi
第一章 緒論 1
1.1 研究動機與背景 1
1.2 腎臟腫瘤 2
1.3 相關研究 3
第二章 研究方法 14
2.1  資料集 14
2.2  影像前處理 18
2.2.1 電腦斷層影像的三維重組 18
2.2.2 影像窗質化及映射 19
2.2.3 影像體素尺寸重採樣 21
2.3  模型訓練 24
2.3.1 交叉驗證 24
2.3.2 卷積神經網路介紹 24
2.3.3 Deepmedic介紹 27
2.4  感興趣範圍後處理 28
2.5  腫瘤分割的資料增量 30
2.6  評估指標 31
第三章 研究成果 33
3.1  腎臟感興趣區域分割結果 33
3.2  腎臟腫瘤分割結果 35
第四章 討論 38
4.1  腎臟感興趣區域後處理前後比較 38
4.1.1 分割結果與評估指標比較 38
4.1.2 可能產生的問題 40
4.2  分割腫瘤效能不佳探討 45
4.3  分割腎臟腫瘤現有文獻比較 48
4.4  臨床應用 49
4.5  研究侷限 49
第五章 結論 51
參考文獻 52
附錄 56
參考文獻 [1] 衛生福利部:, "〈中華民國 109 年癌症登記報告〉," 2022-12-29, p. 取自https://www.hpa.gov.tw/File/Attach/16434/File_21196.pdf.
[2] S. Krishna and C.A. Murray and M.D. McInnes and R. Chatelain and M. Siddaiah and O. Al-Dandan and S. Narayanasamy and N. Schieda., "CT imaging of solid renal masses: pitfalls and solutions," Clinical radiology, vol. 72, no. 9, pp. 708-721, 2017.
[3] S. Campbell, R.G. Uzzo, M.E. Allaf, E.B. Bass, J.A. Cadeddu, A. Chang, P.E. Clark, B.J. Davis, I.H. Derweesh, L. Giambarresi, D.A. Gervais, S.L. Hu, B.R. Lane, B.C. Leibovich, P.M. Pierorazio ., "Renal mass and localized renal cancer: AUA guideline," The Journal of urology, vol. 198, no. 3, pp. 520-529, 2017.
[4] I. Frank, M. L. Blute, J. C. Cheville, C. M. Lohse, A. L. Weaver, and H. Zincke, "Solid renal tumors: an analysis of pathological features related to tumor size," The Journal of urology, vol. 170, no. 6, pp. 2217-2220, 2003.
[5] M. S. Davenport, A. M. Neville, J. H. Ellis, R. H. Cohan, H. S. Chaudhry, and R. A. Leder, "Diagnosis of renal angiomyolipoma with hounsfield unit thresholds: effect of size of region of interest and nephrographic phase imaging," Radiology, vol. 260, no. 1, pp. 158-165, 2011.
[6] S. D. O′Connor, P. J. Pickhardt, D. H. Kim, M. R. Oliva, and S. G. Silverman, "Incidental finding of renal masses at unenhanced CT: prevalence and analysis of features for guiding management," American Journal of Roentgenology, vol. 197, no. 1, pp. 139-145, 2011.
[7] G. Kunapuli, B. A.Varghese, P. Ganapathy, B. Desai, S. Cen, M. Aron, I. Gill, V. Duddalwar., "A decision-support tool for renal mass classification," Journal of Digital Imaging, vol. 31, pp. 929-939, 2018.
[8] C. Erdim, A.H. Yardimci, C.T. Bektas, B. Kocak, S.B. Koca, H. Demir, O. Kilickesmez., "Prediction of benign and malignant solid renal masses: machine learning-based CT texture analysis," Academic radiology, vol. 27, no. 10, pp. 1422-1429, 2020.
[9] Z. Gong and L. Kan, "Segmentation and classification of renal tumors based on convolutional neural network," Journal of Radiation Research and Applied Sciences, vol. 14, no. 1, pp. 412-422, 2021.
[10] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, "Pyramid scene parsing network," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 2881-2890.
[11] P. Kittipongdaja and T. Siriborvornratanakul, "Automatic kidney segmentation using 2.5 D ResUNet and 2.5 D DenseUNet for malignant potential analysis in complex renal cyst based on CT images," EURASIP Journal on Image and Video Processing, vol. 2022, no. 1, p. 5, 2022.
[12] N. Heller and Niranjan Jude Sathianathen and Arveen A. Kalapara and Edward Walczak and Keenan Moore and Heather Kaluzniak and Joel E Rosenberg and Paul Blake and Zachary Rengel and Makinna Oestreich and Joshua Dean and Michael B Tradewell and Aneri Shah and Resha Tejpaul and Zach Edgerton and Matthew Peterson and Shaneabbas Raza and Subodh K. Regmi and Nikolaos Papanikolopoulos and Christopher J. Weight ., "The kits19 challenge data: 300 kidney tumor cases with clinical context, ct semantic segmentations, and surgical outcomes," arXiv preprint arXiv:1904.00445, 2019.
[13] Lin, Zhiyong and Cui, Yingpu and Liu, Jia and Sun, Zhaonan and Ma, Shuai and Zhang, Xiaodong and Wang, Xiao-ying ., "Automated segmentation of kidney and renal mass and automated detection of renal mass in CT urography using 3D U-Net-based deep convolutional neural network," European Radiology, vol. 31, pp. 5021-5031, 2021.
[14] W. Zhao, D. Jiang, J. P. Queralta, and T. Westerlund, "MSS U-Net: 3D segmentation of kidneys and tumors from CT images with a multi-scale supervised U-Net," Informatics in Medicine Unlocked, vol. 19, p. 100357, 2020.
[15] F. Türk, M. Lüy, and N. Barışçı, "Kidney and renal tumor segmentation using a hybrid V-Net-based model," Mathematics, vol. 8, no. 10, p. 1772, 2020.
[16] J. K. Hoang, C. M. Glastonbury, L. F. Chen, J. K. Salvatore, and J. D. Eastwood, "CT mucosal window settings: a novel approach to evaluating early T-stage head and neck carcinoma," American Journal of Roentgenology, vol. 195, no. 4, pp. 1002-1006, 2010.
[17] D. Han, "Comparison of commonly used image interpolation methods," in Conference of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013), 2013: Atlantis Press, pp. 1556-1559.
[18] K. O′Shea and R. Nash, "An introduction to convolutional neural networks," arXiv preprint arXiv:1511.08458, 2015.
[19] Konstantinos Kamnitsas, Christian Ledig, Virginia F.J. Newcombe, Joanna P. Simpson, Andrew D. Kane, David K. Menon, Daniel Rueckert, and Ben Glocker, "Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation," Medical image analysis, vol. 36, pp. 61-78, 2017.
[20] Konstantinos Kamnitsas, Christian Ledig, Virginia F.J. Newcombe, Joanna P. Simpson, Andrew D. Kane, David K. Menon, Daniel Rueckert, and Ben Glocker, "DeepMedic for brain tumor segmentation," in Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: Second International Workshop, BrainLes 2016, with the Challenges on BRATS, ISLES and mTOP 2016, Held in Conjunction with MICCAI 2016, Athens, Greece, October 17, 2016, Revised Selected Papers 2, 2016: Springer, pp. 138-149.
[21] Zhao, Xiao and He, Lifeng and Wang, Yongchao and Chao, Yuyan and Yao, Bin and Hideto, Kasuya and Atsushi, Ohta ., "An Efficient Method for Connected-Component Labeling in 3D Binary Images," in 2018 International Conference on Robots & Intelligent System (ICRIS), 2018: IEEE, pp. 131-133.
[22] L. He, X. Ren, Q. Gao, X. Zhao, B. Yao, and Y. Chao, "The connected-component labeling problem: A review of state-of-the-art algorithms," Pattern Recognition, vol. 70, pp. 25-43, 2017.
[23] C. Shorten and T. M. Khoshgoftaar, "A survey on image data augmentation for deep learning," Journal of big data, vol. 6, no. 1, pp. 1-48, 2019.
[24] F. Isensee and K. Maier-Hein, An attempt at beating the 3D U-Net. in 2019 Kidney Tumor Segmentation Challenge: KiTS19, Miccai 2019, 2019: University of Minnesota Libraries Publishing. .
[25] X. Hou, C. Xie, F. Li, and Y. Nan, "Cascaded semantic segmentation for kidney and tumor," in 2019 Kidney Tumor Segmentation Challenge: KiTS19, Miccai 2019, 2019: University of Minnesota Libraries Publishing.
[26] Y. Liu, F. Jia, and S. Qi, "Minimal Information Loss Attention U-Net for abdominal CT of kidney cancers segmentation, in 2019 Kidney Tumor Segmentation Challenge: KiTS19, Miccai 2019, 2019: University of Minnesota Libraries Publishing.
[27] J. Zhang, K. He, T. Qin, J. Chen, and L. Yang, "Segmentation of kidney and kidney tumor by cascaded fusion FCNs with soft-boundary regression," in 2019 Kidney Tumor Segmentation Challenge: KiTS19, Miccai 2019, 2019: University of Minnesota Libraries Publishing.
[28] Wang, Chuanxia and He, Yuting and Qi, Xiaoming and Zhao, Ziteng and Yang, Guanyu and Zhu, Xiaomei and Zhang, Shaobo and Dillenseger, Jean-Louis and Coatrieux, Jean-Louis , "BiSC-UNet: A fine segmentation framework for kidney and renal tumor," in 2019 Kidney Tumor Segmentation Challenge: KiTS19, Miccai 2019, 2019: University of Minnesota Libraries Publishing.
[29] J. Lee, J. Song, S. Yang, I. Han, and J. Chul Ye, "Kidney and Kidney Tumor Segmentation Using Two-stage Convolutional Neural Network," in 2019 Kidney Tumor Segmentation Challenge: KiTS19, Miccai 2019, 2019: University of Minnesota Libraries Publishing.
[30] D. B. Efremova, D. A. Konovalov, T. Siriapisith, W. Kusakunniran, and P. Haddawy, "Automatic segmentation of kidney and liver tumors in CT images," in 2019 Kidney Tumor Segmentation Challenge: KiTS19, Miccai 2019, 2019: University of Minnesota Libraries Publishing.
[31] L. Sun, W. Zeng, X. Ding, and Y. Huang, "A multi-scale attention network for kidney tumor segmentation on CT scans," in 2019 Kidney Tumor Segmentation Challenge: KiTS19, Miccai 2019, 2019: University of Minnesota Libraries Publishing.
[32] I. Paolucci, "Technical report: Kidney tumor segmentation using a 2D U-Net followed by a statistical post-processing filter," in 2019 Kidney Tumor Segmentation Challenge: KiTS19, Miccai 2019, 2019: University of Minnesota Libraries Publishing.
[33] H. XueJian, P. S. Leung, and L. Wang, "Progressively Training an Enhanced U-Net Model for Segmentation of Kidney Tumors," in 2019 Kidney Tumor Segmentation Challenge: KiTS19, Miccai 2019, 2019: University of Minnesota Libraries Publishing.
[34] S. Kondo, "KiTS19 Submission," in 2019 Kidney Tumor Segmentation Challenge: KiTS19, Miccai 2019, 2019: University of Minnesota Libraries Publishing.
指導教授 蔡章仁(Jang-Zern Tsai) 審核日期 2023-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明