博碩士論文 111322005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:3.144.134.101
姓名 劉品呈(Pin-Cheng Liu)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 顆粒調諧質量阻尼器最佳化設計於軌道系統減振之應用
相關論文
★ 單擺式電磁調諧質量阻尼器外加飛輪於結構振動控制之應用★ 顆粒阻尼器在軌道系統振動控制之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究旨在探討顆粒調諧質量阻尼器(Particle Tuned Mass Damper, PTMD)在軌道系統之減振應用。首先,提出顆粒調諧質量阻尼器耦合軌道系統的理論數學模型,並推導其動力運動方程式。接著,推導該系統之加速度頻率響應函數及目標函數,利用 最佳化方法最小化隨機激勵下結構相對位移的均方響應。根據頻率響應函數及目標函數,推導出PTMD的最佳設計參數解析解。並通過衝擊實驗數據擬合和分析PTMD耦合軌道模型的動力行為,比對PTMD填充不同填充材料、尺寸及填充率的實驗結果,以確保模型的準確性。結果顯示,數學模型與實驗數據高度一致。此外,藉由調整PTMD參數,利用分析數值模型在不同PTMD配置下對軌道減振效益的影響,並找出最佳參數組合。最後,考量軌道不平順度,並加載不同列車車速的垂向輪軌接觸力於軌道系統,探討不同PTMD參數下之減振效益。結果表明,應用PTMD於高頻軌道系統能顯著降低其振動響應,從而為軌道系統設計和列車激振力作用下之結構穩定性提供有效的應對策略。
摘要(英) This study aims to investigate the application of a Particle Tuned Mass Damper (PTMD) in vibration reduction for railway systems. Firstly, a theoretical mathematical model coupling the PTMD with the railway system is proposed, and the dynamic equations of motion are derived. Subsequently, the acceleration frequency response function and the objective function of the system are derived. optimization method is utilized to minimize the mean square response of the structure’s relative displacement under random excitation. Based on the frequency response function and objective function, the optimal design parameters of the PTMD are analytically derived. The dynamic behavior of the PTMD-coupled railway model is analyzed and fitted using impact test data. Experimental results with different filling materials, sizes, and filling ratios are compared to ensure model accuracy. The results show a high consistency between the mathematical model and experimental data. Additionally, by adjusting the PTMD parameters, the effect of different PTMD configurations on the vibration reduction of the railway is analyzed using a numerical model to find the optimal parameter combination. Finally, considering track irregularities and applying vertical wheel-rail contact forces at different train speeds to the railway system, the vibration reduction effect under various PTMD parameters is explored. The results indicate that applying PTMD to high-frequency railway systems can significantly reduce their vibration response, thereby providing an effective strategy for the design of railway systems and the structural stability under train-induced excitation forces.
關鍵字(中) ★ 顆粒調諧質量阻尼器
★ 軌道系統
★ 振動控制
★ H2最佳化方法
★ 最佳化設計
★ 衝擊錘實驗
★ 列車引致激振力
關鍵字(英) ★ Particle tuned mass damper
★ Railway system
★ Vibration control
★ H2 optimization method
★ Optimal design
★ Impact hammer test
★ Train-induced excitation force
論文目次 摘要………………………………………………………………………………………….….i
ABSTRACT ii
誌謝 iv
符號表 v
目錄 viii
表目錄 xiv
圖目錄 xv
第一章 緒論 1
1-1 研究背景與動機 1
1-2 文獻回顧 2
1-3 研究內容 5
第二章 結構安裝顆粒調諧質量阻尼器理論推導 7
2-1 顆粒阻尼器等效模型 7
2-2 顆粒調諧阻尼器模型(無阻尼主結構) 8
2-3 隨機振動激振力作用下之結構均方響應 9
2-3-1 隨機激振力作用下之頻率響應函數 9
2-3-2 無因次頻響函數與目標函數推導 11
2-4 顆粒調諧質量阻尼器模型(有阻尼主結構) 13
2-5 顆粒調諧質量阻尼器(有阻尼主結構)之主結構減振效益 15
第三章、數學模型驗證與實驗數據擬合 29
3-1 實驗介紹 29
3-2 顆粒調諧質量阻尼器 30
3-3 軌道模型參數識別 37
3-4 不鏽鋼球 39
3-4-1 不鏽鋼球0.5mm 39
3-4-2 不鏽鋼球0.8mm 43
3-4-3 不鏽鋼球1.5mm 47
3-4-4 不鏽鋼球3.0mm 51
3-5 陶瓷球 55
3-5-1 陶瓷球0.4mm 55
3-5-2 陶瓷球0.8mm 59
3-5-3 陶瓷球1.5mm 63
3-5-4 陶瓷球3.0mm 67
3-6 識別參數統整 71
第四章、最佳化參數探討 74
4-1 PTMD最佳化方程式推導 74
4-2 PTMD解析解參數分析 77
4-3 PTMD最佳化參數變化對主結構減振效益的影響 81
4-3-1 腔體與主結構頻率比 82
4-3-2 顆粒與腔體頻率比 84
4-4 PTMD最佳化參數改變多個參數對主結構減振效益的影響 86
4-4-1 腔體質量與腔體加上未運動顆粒與主結構頻率比 86
4-4-2 腔體質量與顆粒運動比 88
4-4-3 顆粒阻尼比與腔體加上未運動顆粒與主結構頻率比 89
4-4-4 顆粒阻尼比與顆粒運動比 91
4-4-5 運動顆粒與腔體加上未運動顆粒頻率比和腔體加上未運動顆粒與主結構頻率比 93
4-5 PTMD實驗參數改變多個參數對軌道結構減振效益之影響 99
4-5-1 腔體質量和腔體加上未運動顆粒與主結構頻率比 99
4-5-2 運動顆粒與腔體加上未運動顆粒頻率比與顆粒阻尼比 100
4-5-3 不同PTMD質量比 104
4-5-4 不同運動比 109
4-6 不同頻率比 112
4-6-1 當 為0.01、 為50%,且 為50%時 113
4-6-2 當 為0.05、 為50%,且 為50%時 114
4-6-3 當 為0.1、 為50%,且 為50%時 115
4-6-4 當 為0.15、 為50%,且 為50%時 116
4-6-5 為0.01、 為50%,且 為5%時 118
4-6-6 為0.1、 為50%,且 為5%時 119
4-6-7 為0.01、 為50%,且 為5%時 120
4-6-8 為0.1、 為50%且 為5%時 121
第五章、PTMD耦合軌道系統數值模擬分析 123
5-1 軌道結構模型 123
5-2 PTMD耦合軌道系統之參數對減振效益影響 124
5-2-1 為20% 126
5-2-2 為40% 127
5-2-3 為60% 128
5-2-4 為80% 129
5-2-5 PTMD與TMD比較 133
5-3 最佳化PTMD耦合軌道系統之參數對減振效益影響 137
5-3-1 為20% 139
5-3-2 為40% 140
5-3-3 為60% 141
5-3-4 為80% 142
5-3-5 PTMD與TMD最佳化參數比較 145
5-4 考量不同阻尼比之結構減振效益 147
5-4-1 為20% 148
5-4-2 為40% 149
5-4-3 為60% 150
5-4-4 為80% 151
5-4-5 PTMD與TMD比較 155
5-5 時間歷時分析 156
5-5-1 正弦掃頻力分析 156
5-5-2 SINUS接觸力分析 159
第六章、結論與建議 167
6-1 結論 167
6-2 建議 168
參考文獻 170
附錄A 餘數定理求解均方響應(I6) 175
附錄B 餘數定理求解均方響應(I4) 176
附錄C 餘數定理求解均方響應(I2) 177
附錄D 狀態空間法 178
附錄E實驗擬合步驟 180
參考文獻 [1] Perrin, G., Soize, C., Duhamel, D., & Funfschilling, C. (2013). Track irregularities stochastic modeling. Probabilistic Engineering Mechanics, 34, 123-130.
[2] Mao, J., Yu, Z., Xiao, Y., Jin, C., & Bai, Y. (2016). Random dynamic analysis of a train-bridge coupled system involving random system parameters based on probability density evolution method. Probabilistic Engineering Mechanics, 46, 48-61.
[3] Yang, F., Sedaghati, R., & Esmailzadeh, E. (2022). Vibration suppression of structures using tuned mass damper technology: A state-of-the-art review. Journal of Vibration and Control, 28(7-8), 812-836.
[4] Panossian, H. V. (1992). Structural damping enhancement via non-obstructive particle damping technique.
[5] Friend, R. D., & Kinra, V. K. (2000). Particle impact damping. Journal of Sound and Vibration, 233(1), 93-118.
[6] Hollkamp, J. J., & Gordon, R. W. (1998, June). Experiments with particle damping. In Smart structures and materials 1998: Passive damping and isolation (Vol. 3327, pp. 2-12). SPIE.
[7] Fowler, B. L., Flint, E. M., & Olson, S. E. (2000, April). Effectiveness and predictability of particle damping. In Smart Structures and Materials 2000: Damping and Isolation (Vol. 3989, pp. 356-367). SPIE.
[8] Xu, Z., Wang, M. Y., & Chen, T. (2005). Particle damping for passive vibration suppression: numerical modelling and experimental investigation. Journal of Sound and Vibration, 279(3-5), 1097-1120.
[9] Housner, G., Bergman, L. A., Caughey, T. K., Chassiakos, A. G., Claus, R. O., Masri, S. F., ... & Yao, J. T. (1997). Structural control: past, present, and future. Journal of Engineering Mechanics, 123(9), 897-971.
[10] Frahm, H. (1911). U.S. Patent No. 989,958. Washington, DC: U.S. Patent and Trademark Office.
[11] Den Hartog, J., & fourth edition Mechanical, J. D. H. (1956). Vibrations. McGraw-Hill Book Company, Inc., New York.
[12] Luft, R. W. (1979). Optimal tuned mass dampers for buildings. Journal of the Structural Division, 105(12), 2766-2772.
[13] McNamara, R. J. (1977). Tuned mass dampers for buildings. Journal of the Structural Division, 103(9), 1785-1798.
[14] Wiesner, K. B. (1979, April). Tuned mass dampers to reduce building wind motion. In ASCE convention and exposition (Vol. 3510). ASCE New York.
[15] Sadek, F., Mohraz, B., Taylor, A. W., & Chung, R. M. (1997). A method of estimating the parameters of tuned mass dampers for seismic applications. Earthquake Engineering & Structural Dynamics, 26(6), 617-635.
[16] Kijewski, T., & Kareem, A. (2000). Estimation and modeling of damping and engineering auxiliary damping systems in civil engineering structures: an overview. NatHaz Modeling Laboratory Report, 9.
[17] Hahnkamm, E. (1933). Die dämpfung von fundamentschwingungen bei veränderlicher erregerfrequenz. Ingenieur-Archiv, 4, 192-201.
[18] Brock, J. E. (1946). A note on the damped vibration absorber.
[19] Lin, C. C., Hu, C. M., Wang, J. F., & Hu, R. Y. (1994). Vibration control effectiveness of passive tuned mass dampers. Journal of the Chinese Institute of Engineers, 17(3), 367-376.
[20] Lin, C. C., Wang, J. F., & Ueng, J. M. (2001). Vibration control identification of seismically excited mdof structure-PTMD systems. Journal of Sound and Vibration, 240(1), 87-115.
[21] Bakre, S. V., & Jangid, R. S. (2007). Optimum parameters of tuned mass damper for damped main system. Structural Control and Health Monitoring: The Official Journal of the International Association for Structural Control and Monitoring and of the European Association for the Control of Structures, 14(3), 448-470.
[22] Cheung, Y. L., & Wong, W. O. (2011). H2 optimization of a non-traditional dynamic vibration absorber for vibration control of structures under random force excitation. Journal of Sound Vibration, 330(6), 1039-1044.
[23] Tang, X., Liu, Y., Cui, W., & Zuo, L. (2016). Analytical solutions to H2 and optimizations of resonant shunted electromagnetic tuned mass damper and vibration energy harvester. Journal of Vibration and Acoustics, 138(1), 011018.
[24] Liu, Y., Lin, C. C., Parker, J., & Zuo, L. (2016). Exact H2 optimal tuning and experimental verification of energy-harvesting series electromagnetic tuned-mass dampers. Journal of Vibration and Acoustics, 138(6), 061003.
[25] Warburton, G. B., & Ayorinde, E. O. (1980). Optimum absorber parameters for simple systems. Earthquake Engineering & Structural Dynamics, 8(3), 197-217.
[26] Ayorinde, E. O., & Warburton, G. B. (1980). Minimizing structural vibrations with absorbers. Earthquake Engineering & Structural Dynamics, 8(3), 219-236.
[27] Bapat, V. A., & Kumaraswamy, H. V. (1979). Effect of primary system damping on the optimum design of an untuned viscous dynamic vibration absorber. Journal of Sound and Vibration, 63(4), 469-474.
[28] Thompson, A. G. (1980). Optimizing the untuned viscous dynamic vibration absorber with primary system damping: a frequency locus method. Journal of Sound Vibration, 73(3), 469-472.
[29] Asami, T., Nishihara, O., & Baz, A. M. (2002). Analytical solutions to and H2 optimization of dynamic vibration absorbers attached to damped linear systems. Journal of Vibration and Acoustics, 124(2), 284-295.
[30] Asami, T. (2017). Optimal design of double-mass dynamic vibration absorbers arranged in series or in parallel. Journal of Vibration and Acoustics, 139(1), 011015.
[31] Asami, T. (2019). Exact algebraic solution of an optimal double-mass dynamic vibration absorber attached to a damped primary system. Journal of Vibration and Acoustics, 141(5), 051013.
[32] Lu, Z., Wang, Z., Masri, S. F., & Lu, X. (2018). Particle impact dampers: Past, present, and future. Structural Control and Health Monitoring, 25(1), e2058.
[33] Gagnon, L., Morandini, M., & Ghiringhelli, G. L. (2019). A review of particle damping modeling and testing. Journal of Sound and Vibration, 459, 114865.
[34] Yao, B., Chen, Q., Xiang, H. Y., & Gao, X. (2014). Experimental and theoretical investigation on dynamic properties of tuned particle damper. International Journal of Mechanical Sciences, 80, 122-130.
[35] Yan, W., Xu, W., Wang, J., & Chen, Y. (2014). Experimental research on the effects of a tuned particle damper on a viaduct system under seismic loads. Journal of Bridge Engineering, 19(3), 04013004.
[36] Lu, Z., Chen, X., Zhang, D., & Dai, K. (2017). Experimental and analytical study on the performance of particle tuned mass dampers under seismic excitation. Earthquake Engineering & Structural Dynamics, 46(5), 697-714.
[37] Lu, Z., Wang, D., & Zhou, Y. (2017). Experimental parametric study on wind‐induced vibration control of particle tuned mass damper on a benchmark high‐rise building. The Structural Design of Tall and Special Buildings, 26(8), e1359.
[38] Lu, Z., Li, K., & Zhou, Y. (2018). Comparative studies on structures with a tuned mass damper and a particle damper. Journal of Aerospace Engineering, 31(6), 04018090.
[39] Newland, D. E. (2005). An introduction to random vibrations, spectral & wavelet analysis, Third Edition. Dover Publications.
[40] Lin, C. S., & Lin, G. L. (2023). Application of electromagnetic tuned mass damper with flywheels for controlling building structure vibration. Earthquake Engineering & Structural Dynamics, 52(12), 3788-3810.
指導教授 林志軒(Chih-Shiuan Lin) 審核日期 2024-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明