參考文獻 |
[1] Perrin, G., Soize, C., Duhamel, D., & Funfschilling, C. (2013). Track irregularities stochastic modeling. Probabilistic Engineering Mechanics, 34, 123-130.
[2] Mao, J., Yu, Z., Xiao, Y., Jin, C., & Bai, Y. (2016). Random dynamic analysis of a train-bridge coupled system involving random system parameters based on probability density evolution method. Probabilistic Engineering Mechanics, 46, 48-61.
[3] Yang, F., Sedaghati, R., & Esmailzadeh, E. (2022). Vibration suppression of structures using tuned mass damper technology: A state-of-the-art review. Journal of Vibration and Control, 28(7-8), 812-836.
[4] Panossian, H. V. (1992). Structural damping enhancement via non-obstructive particle damping technique.
[5] Friend, R. D., & Kinra, V. K. (2000). Particle impact damping. Journal of Sound and Vibration, 233(1), 93-118.
[6] Hollkamp, J. J., & Gordon, R. W. (1998, June). Experiments with particle damping. In Smart structures and materials 1998: Passive damping and isolation (Vol. 3327, pp. 2-12). SPIE.
[7] Fowler, B. L., Flint, E. M., & Olson, S. E. (2000, April). Effectiveness and predictability of particle damping. In Smart Structures and Materials 2000: Damping and Isolation (Vol. 3989, pp. 356-367). SPIE.
[8] Xu, Z., Wang, M. Y., & Chen, T. (2005). Particle damping for passive vibration suppression: numerical modelling and experimental investigation. Journal of Sound and Vibration, 279(3-5), 1097-1120.
[9] Housner, G., Bergman, L. A., Caughey, T. K., Chassiakos, A. G., Claus, R. O., Masri, S. F., ... & Yao, J. T. (1997). Structural control: past, present, and future. Journal of Engineering Mechanics, 123(9), 897-971.
[10] Frahm, H. (1911). U.S. Patent No. 989,958. Washington, DC: U.S. Patent and Trademark Office.
[11] Den Hartog, J., & fourth edition Mechanical, J. D. H. (1956). Vibrations. McGraw-Hill Book Company, Inc., New York.
[12] Luft, R. W. (1979). Optimal tuned mass dampers for buildings. Journal of the Structural Division, 105(12), 2766-2772.
[13] McNamara, R. J. (1977). Tuned mass dampers for buildings. Journal of the Structural Division, 103(9), 1785-1798.
[14] Wiesner, K. B. (1979, April). Tuned mass dampers to reduce building wind motion. In ASCE convention and exposition (Vol. 3510). ASCE New York.
[15] Sadek, F., Mohraz, B., Taylor, A. W., & Chung, R. M. (1997). A method of estimating the parameters of tuned mass dampers for seismic applications. Earthquake Engineering & Structural Dynamics, 26(6), 617-635.
[16] Kijewski, T., & Kareem, A. (2000). Estimation and modeling of damping and engineering auxiliary damping systems in civil engineering structures: an overview. NatHaz Modeling Laboratory Report, 9.
[17] Hahnkamm, E. (1933). Die dämpfung von fundamentschwingungen bei veränderlicher erregerfrequenz. Ingenieur-Archiv, 4, 192-201.
[18] Brock, J. E. (1946). A note on the damped vibration absorber.
[19] Lin, C. C., Hu, C. M., Wang, J. F., & Hu, R. Y. (1994). Vibration control effectiveness of passive tuned mass dampers. Journal of the Chinese Institute of Engineers, 17(3), 367-376.
[20] Lin, C. C., Wang, J. F., & Ueng, J. M. (2001). Vibration control identification of seismically excited mdof structure-PTMD systems. Journal of Sound and Vibration, 240(1), 87-115.
[21] Bakre, S. V., & Jangid, R. S. (2007). Optimum parameters of tuned mass damper for damped main system. Structural Control and Health Monitoring: The Official Journal of the International Association for Structural Control and Monitoring and of the European Association for the Control of Structures, 14(3), 448-470.
[22] Cheung, Y. L., & Wong, W. O. (2011). H2 optimization of a non-traditional dynamic vibration absorber for vibration control of structures under random force excitation. Journal of Sound Vibration, 330(6), 1039-1044.
[23] Tang, X., Liu, Y., Cui, W., & Zuo, L. (2016). Analytical solutions to H2 and optimizations of resonant shunted electromagnetic tuned mass damper and vibration energy harvester. Journal of Vibration and Acoustics, 138(1), 011018.
[24] Liu, Y., Lin, C. C., Parker, J., & Zuo, L. (2016). Exact H2 optimal tuning and experimental verification of energy-harvesting series electromagnetic tuned-mass dampers. Journal of Vibration and Acoustics, 138(6), 061003.
[25] Warburton, G. B., & Ayorinde, E. O. (1980). Optimum absorber parameters for simple systems. Earthquake Engineering & Structural Dynamics, 8(3), 197-217.
[26] Ayorinde, E. O., & Warburton, G. B. (1980). Minimizing structural vibrations with absorbers. Earthquake Engineering & Structural Dynamics, 8(3), 219-236.
[27] Bapat, V. A., & Kumaraswamy, H. V. (1979). Effect of primary system damping on the optimum design of an untuned viscous dynamic vibration absorber. Journal of Sound and Vibration, 63(4), 469-474.
[28] Thompson, A. G. (1980). Optimizing the untuned viscous dynamic vibration absorber with primary system damping: a frequency locus method. Journal of Sound Vibration, 73(3), 469-472.
[29] Asami, T., Nishihara, O., & Baz, A. M. (2002). Analytical solutions to and H2 optimization of dynamic vibration absorbers attached to damped linear systems. Journal of Vibration and Acoustics, 124(2), 284-295.
[30] Asami, T. (2017). Optimal design of double-mass dynamic vibration absorbers arranged in series or in parallel. Journal of Vibration and Acoustics, 139(1), 011015.
[31] Asami, T. (2019). Exact algebraic solution of an optimal double-mass dynamic vibration absorber attached to a damped primary system. Journal of Vibration and Acoustics, 141(5), 051013.
[32] Lu, Z., Wang, Z., Masri, S. F., & Lu, X. (2018). Particle impact dampers: Past, present, and future. Structural Control and Health Monitoring, 25(1), e2058.
[33] Gagnon, L., Morandini, M., & Ghiringhelli, G. L. (2019). A review of particle damping modeling and testing. Journal of Sound and Vibration, 459, 114865.
[34] Yao, B., Chen, Q., Xiang, H. Y., & Gao, X. (2014). Experimental and theoretical investigation on dynamic properties of tuned particle damper. International Journal of Mechanical Sciences, 80, 122-130.
[35] Yan, W., Xu, W., Wang, J., & Chen, Y. (2014). Experimental research on the effects of a tuned particle damper on a viaduct system under seismic loads. Journal of Bridge Engineering, 19(3), 04013004.
[36] Lu, Z., Chen, X., Zhang, D., & Dai, K. (2017). Experimental and analytical study on the performance of particle tuned mass dampers under seismic excitation. Earthquake Engineering & Structural Dynamics, 46(5), 697-714.
[37] Lu, Z., Wang, D., & Zhou, Y. (2017). Experimental parametric study on wind‐induced vibration control of particle tuned mass damper on a benchmark high‐rise building. The Structural Design of Tall and Special Buildings, 26(8), e1359.
[38] Lu, Z., Li, K., & Zhou, Y. (2018). Comparative studies on structures with a tuned mass damper and a particle damper. Journal of Aerospace Engineering, 31(6), 04018090.
[39] Newland, D. E. (2005). An introduction to random vibrations, spectral & wavelet analysis, Third Edition. Dover Publications.
[40] Lin, C. S., & Lin, G. L. (2023). Application of electromagnetic tuned mass damper with flywheels for controlling building structure vibration. Earthquake Engineering & Structural Dynamics, 52(12), 3788-3810. |