博碩士論文 111223004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:3.145.124.186
姓名 周孟瑮(Meng-Li Jhou)  查詢紙本館藏   畢業系所 化學學系
論文名稱 雙噻吩並吡咯 (DTP) 及環戊烷二噻吩 (CDT) 衍生物之電洞傳輸層材料開發
相關論文
★ Cycloiptycene分子之合成與自組裝行為之研究★ 含二噻吩蒽[3,2-b:2′,3′-d]噻吩單元之敏化染料太陽能電池
★ 以有機磷酸修飾電極表面功函數及對有機發光元件效率影響研究★ 有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發
★ 具交聯結構之磺酸化聚馬來醯亞胺高分子質子傳導膜之開發與製備★ 有機薄膜電晶體材料苯三併環噻吩及苯四併環噻吩衍生物之開發
★ 有機薄膜電晶體高分子材料併環噻吩系列之開發★ 有機薄膜電晶體材料及可溶性有機薄膜電晶體材料衍生物之開發
★ 有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發★ 具交聯結構之苯乙烯-馬來醯亞胺 接枝型高分子質子傳導膜之開發與製備
★ 有機薄膜電晶體材料苯三併環噻吩及可溶性聯噻吩衍生物之開發★ 可溶性有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發
★ 含benzotriazole 之D-π-A 共軛形光敏染料及其染料太陽能電池★ 有機薄膜電晶材料苯併環噻吩和可溶性硫醚噻吩衍生物之開發
★ 具咪唑鹽團聯高分子之陰離子傳導膜的開發與製備★ 可溶性有機薄膜電晶體材料三併環 及四併環噻吩衍生物之開發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-6-30以後開放)
摘要(中) 本研究以雙噻吩並吡咯 (dithienopyrrole, DTP)及環戊烷二噻吩 (cyclopentadithiophene, CDT)為核心,開發出數種有機電洞傳輸材料,並以自主裝方式搭配NiOx製成元件,應用於錫鈣鈦礦太陽能電池 (TPSC) 中。
本論文第一系列研究中,以DTP為核心,一端接上推電子基團三苯胺,另一端接上拉電子基團氰乙酸乙烯基 (ethyl cyanoacetate)、丙二腈 (malononitrile)、以及氰基膦酸 (cyano phosphonic acid)作為錨定基團,製備出六種小分子材料 : DTP-MN-b8 (1)、DTP-MN-b16 (2)、DTP-CA-b8 (3)、DTP-CA-b16 (4)、DTP-PA-b8 (5)以及DTP-PA-b16 (6),其中DTP-PA-b8的光電轉換效率已有達到8.7%,其他材料的效率也在5.9%-7.2%之間,與目前以SAM製備之TPSC之最高效率8.3%相比,已是不錯的表現。
第二部分研究中,我們以CDT為核心,開發出四種X-shaped之有機電洞傳輸材料,這些材料在核心兩端接上推電子基三苯胺,並於另外兩端接上錨定基團氰乙酸乙烯基、丙二腈、氰甲基膦酸二乙酯 (diethyl cyanomethylphosphonate)以及氰基膦酸,再以苯環延長共軛長度,合成出DPCDT-MN (7)、DPCDT-CA (8)、DPCDT-PE (9)及DPCDT-PA (10)分子。
上述材料之電化學及光學性能 ( HOMO / LUMO 與 Eg ) 已藉由DPV及UV-Vis測定;材料之熱穩定性則透過TGA與DSC檢測,這些新開發的有機分子材料正在進行其相關元件之優化研究。
摘要(英) In this study, various dithienopyrrole (DTP) and cyclopentadithiophene (CDT)-based donor-acceptor (D-A) type self-assembled monolayers (SAMs) were developed as dopant-free hole transport materials (HTMs), deposited on NiOx film, and applied in inverted tin-based perovskite solar cells (TPSCs).
In the first part of our research, DTP was used as the central core. One end of the core was functionalized with triphenylamine (TPA) as an electron-donating group, while the other end was modified with electron-withdrawing groups, namely cyanoacetic acid (CA), malononitrile (MN), and cyano phosphonic acid (PA), as anchoring groups. As a result, six small molecule materials were synthesized: DTP-MN-b8 (1), DTP-MN-b16 (2), DTP-CA-b8 (3), DTP-CA-b16 (4), DTP-PA-b8 (5), and DTP-PA-b16 (6). The single crystal structure of DTP-CA-b8 was obtained, showing that the planar nature of the DTP core with a long alkyl chain (branch C8H17) relative to the anchoring group facilitates easy molecular alignment and stacking, thereby promoting the formation of a uniform SAM layer on the NiOx/ITO substrate. Among all the SAMs studied, TPSCs fabricated with a combination of DTP-PA-b8 SAM and NiOx exhibited the highest hole mobility and the slowest charge recombination, achieving a high-power conversion efficiency (PCE) of 8.7%, due to the greater absorption energy and stronger chemical bonding of the PA unit compared to the other anchoring units. Compared to the current highest PCE of 8.3% for TPSCs prepared via self-assembled monolayers (SAM), these results are promising.
In the second part of our research, CDT was used as the core to synthesize four X-shaped self-assembled monolayers (SAMs). These molecules had two TPA groups attached at both ends of this core, and two anchoring groups at the other ends. Additionally, phenyl groups were inserted to extend the conjugation length. As a result, four small molecule materials were synthesized: DPCDT-MN (7), DPCDT-CA (8), DPCDT-PE (9), and DPCDT-PA (10).
The electrochemical and optical properties (HOMO/LUMO and Eg) of these materials were measured using differential pulse voltammetry (DPV) and UV-Vis spectroscopy. Thermal stability was assessed using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Optimization of these newly developed organic molecular materials for device applications is currently underway.
關鍵字(中) ★ 鈣鈦礦太陽能電池
★ 電洞傳輸材料
關鍵字(英) ★ Perovskite Solar Cell
★ Hole transport materials
論文目次 摘 要 IV
Abstract V
謝 誌 VII
目錄 VIII
List of Figures XII
List of Tables XIV
List of Schemes XV
附錄目錄 XVIII
第1章. 緒論 1
第一節、 前言 2
第二節、 太陽能電池之概論 3
1-2-1 矽晶太陽能電池 4
1-2-2 無機化合物半導體太陽能電池 5
1-2-3 混合式薄膜太陽能電池 6
第三節、 鈣鈦礦太陽能電池簡介 7
1-3-1 基本構造 9
1-3-2 工作原理 11
1-3-3 電洞傳輸層 12
1-3-4 鉛鈣鈦礦太陽能電池之電洞傳輸層材料 17
1-3-5 錫鈣鈦礦太陽能電池之電洞傳輸層材料 21
第四節、 電池參數介紹 24
1-4-1 J-V曲線 25
1-4-2 短路電流 26
1-4-3 開環電壓 26
1-4-4 外部量子效率 26
1-4-5 填充因子 27
1-4-6 能量轉換效率 27
第五節、 研究動機 27
1-5-1 文獻回顧 27
1-5-2 分子設計 35
第2章. 實驗部分 38
第一節、 化合物名稱對照 39
第二節、 實驗藥品 41
2-2-1 實驗所用之化學藥品 41
2-2-2 實驗所用之無水溶劑除水方式 43
第三節、 實驗儀器 44
2-3-1 核磁共振光譜儀 44
2-3-2 高解析質譜儀 44
2-3-3 紫外/可見/近紅外分光光度計 45
2-3-4 示差熱掃描卡計 45
2-3-5 熱重分析儀 45
2-3-6 電化學裝置 46
2-3-7 X射線單晶繞射儀 46
第四節、 合成步驟 47
3,3′-dibromo-2,2′-bithiophene (11) 47
N-(4-((2-ethylhexyl)oxy)phenyl)acetamide (12) 48
4-((2-ethylhexyl)oxy)aniline之合成 (13) 49
7-(bromomethyl)pentadecane (14)之合成 49
N-(4-((2-hexyldecyl)oxy)phenyl)acetamide (15) 50
4-((2-hexyldecyl)oxy)aniline(16)之合成 50
4-(4-((2-ethylhexyl)oxy)phenyl)-4H-dithieno[3,2-b:2′,3′-d]pyrrole (17) 51
4-(4-((2-ethylhexyl)oxy)phenyl)-4H-dithieno[3,2-b:2′,3′-d]pyrrole-2-carbaldehyde (17) 52
6-bromo-4-(4-((2-ethylhexyl)oxy)phenyl)-4H-dithieno[3,2-b:2′,3′-d]pyrrole-2-carbaldehyde (19) 53
4-bromo-N,N-bis(4-methoxyphenyl)aniline (20) 54
(4-(bis(4-methoxyphenyl)amino)phenyl)boronic acid (21) 54
6-(4-(bis(4-methoxyphenyl)amino)phenyl)-4-(4-((2-ethylhexyl)oxy)phenyl)-4H-dithieno[3,2-b:2′,3′-d]pyrrole-2-carbaldehyde (22) 55
DTP-MN-b8 (1) 56
DTP-CA-b8 (3) 57
(Z)-(2-(6-(4-(bis(4-methoxyphenyl)amino)phenyl)-4-(4-((2-ethylhexyl)oxy)phenyl)-4H-dithieno[3,2-b:2′,3′-d]pyrrol-2-yl)-1-cyanovinyl)phosphonate (23) 59
DTP-PA-b8 (5) 60
4-(4-((2-hexyldecyl)oxy)phenyl)-4H-dithieno[3,2-b:2′,3′-d]pyrrole (24) 61
4-(4-((2-hexyldecyl)oxy)phenyl)-4H-dithieno[3,2-b:2′,3′-d]pyrrole-2-carbaldehyde(25) 62
6-bromo-4-(4-((2-hexyldecyl)oxy)phenyl)-4H-dithieno[3,2-b:2′,3′-d]pyrrole-2-carbaldehyde (26) 63
6-(4-(bis(4-methoxyphenyl)amino)phenyl)-4-(4-((2-hexyldecyl)oxy)phenyl)-4H-dithieno[3,2-b:2′,3′-d]pyrrole-2-carbaldehyde (27) 64
DTP-MN-b16 (2) 65
DTP-CA-b16 (4) 66
diethyl (Z)-(2-(6-(4-(bis(4-methoxyphenyl)amino)phenyl)-4-(4-((2-hexyldecyl)oxy)phenyl)-4H-dithieno[3,2-b:2′,3′-d]pyrrol-2-yl)-1-cyanovinyl)phosphonate (28) 68
DTP-PA-b16 (6) 69
4H-cyclopenta[2,1-b:3,4-b′]dithiophen-4-one (29) 70
4-(dibromomethylene)-4H-cyclopenta[2,1-b:3,4-b′]dithiophene (30) 70
4,4′-((4H-cyclopenta[2,1-b:3,4-b′]dithiophen-4-ylidene)methylene)dibenzaldehyde (31) 71
4,4′-((2,6-dibromo-4H-cyclopenta[2,1-b:3,4-b′]dithiophen-4-ylidene)methylene)dibenzaldehyde (32) 72
4-methoxy-N-(4-methoxyphenyl)-N-(4-(tributylstannyl)phenyl)aniline(33) 73
4,4′-((2,6-bis(4-(bis(4-methoxyphenyl)amino)phenyl)-4H-cyclopenta[2,1-b:3,4-b′]dithiophen-4-ylidene)methylene)dibenzaldehyde (34) 74
DPCDT-MN (7) 75
DPCDT-CA (8) 76
DPCDT-PE (9) 77
DPCDT-PA (10) 78
第3章. 結果與討論 80
第一節、 有機分子材料之光學性質探討 81
3-1-1 電洞傳輸層材料 (DTP-SAMs) 81
3-1-2 電洞傳輸層材料 (CDT-SAMs) 82
第二節、 有機分子材料之電學性質探討 83
3-2-1 電洞傳輸層材料 (DTP-SAMs) 84
3-2-2 電洞傳輸層材料 (CDT-SAMs) 86
第三節、 有機分子材料之熱穩定性分析 88
3-3-1 電洞傳輸層材料 (DTP-SAMs) 88
3-3-2 電洞傳輸層材料 (CDT-SAMs) 90
第四節、 有機分子材料之晶體結構探討 92
3-4-1 電洞傳輸層材料 (DTP-SAMs) 92
第4章. 結論 94
第5章. 附錄 97
參考文獻 143
參考文獻 1. https://www.nrel.gov/pv/cell-efficiency.html, Best Research-Cell Efficiencies. 2024.
2. Fritts, C. E, Am. J. Sci. 1883, 26, 465
3. Chapin, D. M.; Fuller, C. C.; Person, G. L. J. Appl. Phys. 1954, 25, 676–677.
4. Patwardhan, S.; Cao, D. H.; Hatch, S.; Farha, O. K.; Hupp, J. T.; Kanatzidis, M. G.; Schatz, G. C. J. Phys. Chem. Lett. 2015, 6, 251–255.
5. Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T., Journal of the American Chemical Society. 2009, 131 (17), 6050–6051.
6. Kim, H. S.; Lee, C. R.; Im, J. H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, S. J.; Humphry-Baker R.; Yum, J. H.; Moser, J. E.; Gra¨tzel, M.; Park, N. Sci. Rep. 2012, 2, 591.
7. Burschka, J.; Pellet, N.; Moon, S.-J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Nature 2013, 499, 316.
8. Ahn, N.; Son, D.-Y.; Jang, I.-H.; Kang, S. M.; Choi, M.; Park, N.-G. J. Am. Chem. Soc. 2015, 137, 8696−8699.
9. Dou, J.; Zhang, Y.; Wang, Q.; Abate, A.; Li, Y.; Wei, M. Chem. Commun. 2019, 55, 14673−14676.
10. Li, H.; Xie, G.; Fang, J.; Wang, X.; Li, S.; Lin, D.; Wang, D.; Huang, N.; Peng, H.; Qiu, L. Nano. Energy. 2024, 109507
11. Song, Z.; Watthage, S. C.; Phillips, A. B.; Heben, M. J. J. Photonics Energy, 2016, 6, 022001.
12. Wu, Y.; Yang, X.; Chen, W.; Yue, Y.; Cai, M.; Xie, F.; Han, L. Nature Energy, 2016, 1, 1–7.
13. Ahmed, M. I.; Habib, A.; Javaid, S. S. Int. J. Photoenergy. 2015, 2015, 1–13.
14. Qin, P.; Tanaka, S.; Ito, S.; Tetreault, N.; Manabe, K.; Nishino, H.; Nazeeruddin, M. K.; Grätzel, M. Nat. Commun. 2014, 5, 3834.
15. Calió, L.; Kazim, S.; Grätzel, M.; Ahmad, S. Angew. Chem. Int. Ed. Engl. 2016, 55, 14522–14545.
16. Saragi, T. P. I.; Pudzich, R.; Fuhrmann-Lieker, T.; Salbeck, J. Opt. Mater. 2007, 29, 879.
17. Jena, A. K.; Ikegami, M.; Miyasaka, T. ACS Energy Lett. 2017, 2, 1760–1761,
18. Jeng, J.-Y.; Chiang, Y.-F.; Lee, M.-H.; Peng, S.-R.; Guo, T.-F.; Chen, P.; Wen, T.-C. Adv. Mater. 2013, 25, 3727–3732,
19. Yu, J. C.; Hong, J. A.; Jung, E. D.; Kim, D. B.; Baek, S.-M.; Lee, S.; Cho, S.; Park, S. S.; Choi, K. J.; Song, M. H. Sci. Rep. 2018, 8, 1070
20. Yalcin, E.; Can, M.; Rodriguez-Seco, C.; Aktas, E.; Pudi, R.; Cambarau, W.; Demic, S.; Palomares, E. Energy Environ. Sci. 2019, 12, 230–237.
21. Wang, S.; Guo, H.; Wu, Y. Materials Futures, 2023, 2, 012105
22. Magomedov, A.; Al-Ashouri, A.; Kasparavičius, E.; Strazdaite, S.; Niaura, G.; Jošt, M.; Malinauskas, T.; Albrecht, S.; Getautis, V. Adv. Energy Mater. 2018, 8, 1801892
23. Zhang, S.; Wu, R.; Mu, C.; Wang, Y.; Han, L.; Wu, Y.; Zhu, W. H. ACS Mater. Lett, 2022, 4, 1976–1983
24. Li, E.; Liu, C.; Lin, H.; Xu, X.; Liu, S.; Zhang, S.; Yu, M.; Cao, X.; Wu, Y.; Zhu, W.; Adv. Funct. Mater, 2022, 31, 2103847
25. Merz, V.; Weith, W. Ber. Dtsch. Chem. Ges. 1873, 6, 1511.
26. Goldberg, I.; Nimerovsky, M. Ber. Dtsch. Chem. Ges. 1907, 40, 2448.
27. Abate, A.; Paek, S.; Giordano, F.; Correa-Baena, J.-P.; Saliba, M.; Gao, P.; Matsui, T.; Ko, J.; Zakeeruddin, S. M.; Dahmen, K. H. Energy Environ. Sci. 2015, 8, 2946–2953.
28. Zhang, F.; Wang, Z. Q.; Zhu, H. W.; Pellet, N.-P.; Luo, J. S.; Yi, C. Y.; Liu, X. C.; Liu, H. L.; Wang, S. R.; Li, X. G.; Xiao, Y.; Zakeeruddin, S. M.; Bi, D. Q.; Grätzel, M. Nano Energy 2017, 41, 469–475
29. Lee, K.-M.; Huang, Y.-S.; Chiu, W.-H.; Huang, Y.-K.; Chen, G.; Adugna, G. B.; Li, S.-R.; Lin, F.-J.; Lu, S.-I.; Hsieh, H.-C.; Liau, K.-L.; Huang, C.-C.; Tai, Y.; Tao, Y.-T.; Lin, Y.-D. Adv. Funct. Mater, 2023, 33, 2306367
30. Liu, J.; Wu, Y. Z.; Qin, C. J.; Yang, X. D.; Yasuda, T.; Islam, A.; Zhang, K.; Peng, W. Q.; Chen, W.; Han, L. Y. A. Energy Environ. Sci. 2014, 7, 2963–2967,
31. Rakstys, K.; Paek, S.; Gao, P.; Gratia, P.; Marszalek, T.; Grancini, G.; Cho, K. T.; Genevicius, K.; Jankauskas, V.; Pisula, W.; Nazeeruddin, M. K. J. Mater. Chem. A. 2017, 5 (17), 7811–7815
32. Shockley, W.; Queisser, H. J. J. Appl. Phys., 1961, 32, 510–519
33. Hao, F.; Stoumpos, C. C.; Cao, D. H.; Chang, R. P. H.; Kanatzidis, M. G. Nat. Photonics. 2014, 8, 489–494,
34. Ke, W.; Priyanka, P.; Vegiraju, S.; Stoumpos, C. C.; Spanopoulos, I.; Soe, C. M. M.; Marks, T. J.; Chen, M.; Kanatzidis, M. G.; J. Am. Chem. Soc. 2018, 140, 388.
35. Kuan, C. H.; Balasaravanan, R.; Hsu, S. M.; Ni, J. S.; Tsai, Y. T.; Zhang, Z.X.; Chen, M. C.; Diau, W. G. Adv. Mater. 2023, 2300681.

36. Zhu, Z.; Jiang, X.; Yu, D.; Yu, N.; Ning, Z.; Mi, Q. ACS Energy Lett. 2022, 7, 2079–2083,
37. Sun, C.; Yang, P.; Nan, Z.; Tian, C.; Cai, Y.; Chen, J.; Qi, F.; Tian, H.; Xie, L.; Meng, L.; Wei, Z. Adv. Mater. 2023, 35, 2205603
38. Mazhari, B. Sol. Energy Mat. Sol. C., 2006, 90, 1021
39. Boudreault, P.-L.T.; Najari, A.; Leclerc, M. Chem. Mater. 2011, 23, 456–469.
40. Brabec, C. J.; Cravino, A.; Meissner, D.; Sariciftci, N. S.; Fromherz, T.; Rispens, M. T.; Sanchez, L.; Hummelen, J. C. Adv. Funct. Mater. 2001, 11, 374–380.
41. Mabrouk, S.; Zhang, M.; Wang, Z.; Liang, M.; Bahrami, B.; Wu, Y.; Wu, J.; Qiao, Q.; Yang, S. J. Mater. Chem. A 2018, 6 (17), 7950–7958
42. Zhou, J.; Yin, X.; Dong, Z.; Ali, A.; Song, Z.; Shrestha, N.; Bista, S. S.; Bao, Q.; Ellingson, R. J.; Yan, Y.; Tang, W. Angew. Chem., Int. Ed. 2019, 58, 13717–13721
43. Geng, Y.; Tang, A.; Tajima, K.; Zeng, Q.; Zhou, E. J. Mater. Chem. A. 2019, 7 (1), 64–96
44. Lin, Y.-D.; Abate, S. Y.; Chung, H.-C.; Liau, K.-L.; Tao, Y.-T.; Chow, T. J.; Sun, S.-S. ACS Appl. Energy Mater. 2019, 2 (10), 7070–7082.
45. Liu, Y.; Liu, Y.; Zhan, X. Macromol. Chem. Phys. 2011, 212, 428−443.
46. Wang, Y.; Liao, Q.; Chen, J.; Huang, W.; Zhuang, X.; Tang, Y.; Li, B.; Yao, X.; Feng, X.; Zhang, X.; Su, M.; He, Z.; Marks, T. J.; Facchetti, A.; Guo, X. J. Am. Chem. Soc. 2020, 142 (39), 16632–16643.
47. Mishra, A.; Fischer, M. K. R.; Bauerle, P. Angew. Chem., Int. Ed. 2009, 48, 2474–2499.
48. Zhang, S.; Wu, R.; Mu, C.; Wang, Y.; Han, L.; Wu, Y.; Zhu, W.-H. ACS Mater. Lett. 2022, 4, 1976–1983
49. Wang, Y.; Liao, Q.; Chen, J.; Huang, W.; Zhuang, X.; Tang, Y.;
Li, B.; Yao, X.; Feng, X.; Zhang, X.; Su, M.; He, Z.; Marks, T. J.;
Facchetti, A.; Guo, X. J. Am. Chem. Soc. 2020, 142, 16632−16643.
50. Afraj, S. N.; Kuan, C. H.; Lin, J. S.; Ni, J. S.; Velusamy, A.; Chen, M. C.; Diau, E. W. G, Adv. Funct. Mater. 2023, 33 (17), 1–10.
51. Lin, Y.-S.; Chen, N.-H.; Chen, Y.-R.; Kalidass, K.; Cheng, H.-Y.; Venkatakrishnan, P.; Chow, T. J.; Chang, Y. J. J. Photochem. Photobiol., 2023, 16, 100189
52. Yalcin, E.; Aktas, E.; Mendéz, M.; Arkan, E.; Sánchez, J. G.; Martínez-Ferrero, E.; Silvestri, F.; Barrena, E.; Can, M.; Demic, S. Palomares, E. ACS Appl. Mater. Interfaces, 2023, 15, 57153–57164.
指導教授 陳銘洲(Ming-Chou Chen) 審核日期 2024-6-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明