參考文獻 |
1. Biehl, J. K.; Russell, B. Introduction to stem cell therapy. Journal of Cardiovascular
Nursing 2009, 24 (2), 98-103.
2. Zakrzewski, W.; Dobrzyński, M.; Szymonowicz, M.; Rybak, Z. Stem cells: past, present,
and future. Stem cell research & therapy 2019, 10 (1), 1-22.
3. Berdasco, M.; Esteller, M. DNA methylation in stem cell renewal and multipotency.
Stem cell research & therapy 2011, 2, 1-9.
4. Menon, S.; Shailendra, S.; Renda, A.; Longaker, M.; Quarto, N. An overview of direct
somatic reprogramming: the ins and outs of iPSCs. International journal of molecular
sciences 2016, 17 (1), 141.
5. Estrada-Meza, C.; Torres-Copado, A.; Loreti González-Melgoza, L.; Ruiz-Manriquez,
L. M.; De Donato, M.; Sharma, A.; Pathak, S.; Banerjee, A.; Paul, S. Recent insights
into the microRNA and long non-coding RNA-mediated regulation of stem cell
populations. 3 Biotech 2022, 12 (10), 270.
6. Okita, K.; Ichisaka, T.; Yamanaka, S. Generation of germline-competent induced
pluripotent stem cells. nature 2007, 448 (7151), 313-317.
7. Takahashi, K.; Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic
and adult fibroblast cultures by defined factors. cell 2006, 126 (4), 663-676.
8. Yu, J.; Vodyanik, M. A.; Smuga-Otto, K.; Antosiewicz-Bourget, J.; Frane, J. L.; Tian,
S.; Nie, J.; Jonsdottir, G. A.; Ruotti, V.; Stewart, R. Induced pluripotent stem cell lines
derived from human somatic cells. science 2007, 318 (5858), 1917-1920.
9. Kaebisch, C.; Schipper, D.; Babczyk, P.; Tobiasch, E. The role of purinergic receptors
in stem cell differentiation. Computational and structural biotechnology journal 2015,
13, 75-84.
10. Thomson, J. A.; Itskovitz-Eldor, J.; Shapiro, S. S.; Waknitz, M. A.; Swiergiel, J. J.;
Marshall, V. S.; Jones, J. M. Embryonic stem cell lines derived from human blastocysts.
science 1998, 282 (5391), 1145-1147.
11. Meier, J. J.; Bhushan, A.; Butler, P. C. The potential for stem cell therapy in diabetes.
Pediatric research 2006, 59 (4), 65-73.
12. Rowe, R. G.; Daley, G. Q. Induced pluripotent stem cells in disease modelling and drug
discovery. Nature Reviews Genetics 2019, 20 (7), 377-388.
13. Higuchi, A.; Ling, Q.-D.; Kumar, S. S.; Munusamy, M.; Alarfajj, A. A.; Umezawa, A.;
Wu, G.-J. Design of polymeric materials for culturing human pluripotent stem cells:
Progress toward feeder-free and xeno-free culturing. Progress in Polymer Science 2014,
39 (7), 1348-1374.
14. Higuchi, A.; Ling, Q.-D.; Ko, Y.-A.; Chang, Y.; Umezawa, A. Biomaterials for the
feeder-free culture of human embryonic stem cells and induced pluripotent stem cells.
Chemical reviews 2011, 111 (5), 3021-3035.
15. Bai, H.; Wang, Z. Directing human embryonic stem cells to generate vascular progenitor
cells. Gene therapy 2008, 15 (2), 89-95.
16. Chen, H.; Zhang, A.; Wu, J. C. Harnessing cell pluripotency for cardiovascular
regenerative medicine. Nature biomedical engineering 2018, 2 (6), 392-398.
17. Liu, T.-M. Application of mesenchymal stem cells derived from human pluripotent stem
cells in regenerative medicine. World Journal of Stem Cells 2021, 13 (12), 1826.
18. Screening techniques to identify genomic instability of pluripotent stem cells in
ensuring the safety of applications in regenerative medicine. J Stem Cells Regen Med
2023, 19 (1), 1-2. DOI: 10.46582/jsrm.1901001 From NLM.
19. Pittenger, M. F.; Mackay, A. M.; Beck, S. C.; Jaiswal, R. K.; Douglas, R.; Mosca, J. D.;
Moorman, M. A.; Simonetti, D. W.; Craig, S.; Marshak, D. R. Multilineage potential of
adult human mesenchymal stem cells. science 1999, 284 (5411), 143-147.
20. Mattar, P.; Bieback, K. Comparing the immunomodulatory properties of bone marrow,
adipose tissue, and birth-associated tissue mesenchymal stromal cells. Frontiers in
immunology 2015, 6, 164869.
21. Nowakowski, A.; Walczak, P.; Janowski, M.; Lukomska, B. Genetic engineering of
mesenchymal stem cells for regenerative medicine. Stem cells and development 2015,
24 (19), 2219-2242.
22. Ravera, F.; Efeoglu, E.; Byrne, H. J. Vibrational spectroscopy for in vitro monitoring
stem cell differentiation. Molecules 2020, 25 (23), 5554.
23. Ullah, I.; Subbarao, R. B.; Rho, G. J. Human mesenchymal stem cells-current trends
and future prospective. Bioscience reports 2015, 35 (2), e00191.
24. Stewart, K.; Walsh, S.; Screen, J.; Jefferiss, C. M.; Chainey, J.; Jordan, G. R.; Beresford,
J. N. Further characterization of cells expressing STRO‐1 in cultures of adult human
bone marrow stromal cells. Journal of Bone and Mineral Research 1999, 14 (8), 1345-
1356.
25. Otsuru, S.; Hofmann, T. J.; Olson, T. S.; Dominici, M.; Horwitz, E. M. Improved
isolation and expansion of bone marrow mesenchymal stromal cells using a novel
marrow filter device. Cytotherapy 2013, 15 (2), 146-153.
26. Mamidi, M. K.; Nathan, K. G.; Singh, G.; Thrichelvam, S. T.; Mohd Yusof, N. A. N.;
Fakharuzi, N. A.; Zakaria, Z.; Bhonde, R.; Das, A. K.; Majumdar, A. S. Comparative
cellular and molecular analyses of pooled bone marrow multipotent mesenchymal
stromal cells during continuous passaging and after successive cryopreservation.
Journal of cellular biochemistry 2012, 113 (10), 3153-3164.
27. Gronthos, S.; Graves, S.; Ohta, S.; Simmons, P. The STRO-1+ fraction of adult human
bone marrow contains the osteogenic precursors. 1994.
28. Zhang, X.; Hirai, M.; Cantero, S.; Ciubotariu, R.; Dobrila, L.; Hirsh, A.; Igura, K.; Satoh,
H.; Yokomi, I.; Nishimura, T. Isolation and characterization of mesenchymal stem cells
from human umbilical cord blood: reevaluation of critical factors for successful
isolation and high ability to proliferate and differentiate to chondrocytes as compared to
mesenchymal stem cells from bone marrow and adipose tissue. Journal of cellular
biochemistry 2011, 112 (4), 1206-1218.
29. Wagner, W.; Wein, F.; Seckinger, A.; Frankhauser, M.; Wirkner, U.; Krause, U.; Blake,
J.; Schwager, C.; Eckstein, V.; Ansorge, W. Comparative characteristics of
mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord
blood. Experimental hematology 2005, 33 (11), 1402-1416.
30. Pendleton, C.; Li, Q.; Chesler, D. A.; Yuan, K.; Guerrero-Cazares, H.; Quinones-
Hinojosa, A. Mesenchymal stem cells derived from adipose tissue vs bone marrow: in
vitro comparison of their tropism towards gliomas. PloS one 2013, 8 (3), e58198.
31. Gronthos, S.; Franklin, D. M.; Leddy, H. A.; Robey, P. G.; Storms, R. W.; Gimble, J. M.
Surface protein characterization of human adipose tissue‐derived stromal cells. Journal
of cellular physiology 2001, 189 (1), 54-63.
32. Baglioni, S.; Francalanci, M.; Squecco, R.; Lombardi, A.; Cantini, G.; Angeli, R.;
Gelmini, S.; Guasti, D.; Benvenuti, S.; Annunziato, F. Characterization of human adult
stem‐cell populations isolated from visceral and subcutaneous adipose tissue. The
FASEB Journal 2009, 23 (10), 3494-3505.
33. int Anker, P. S.; Scherjon, S. A.; Kleijburg-Van der Keur, C.; Noort, W. A.; Claas, F. H.;
Willemze, R.; Fibbe, W. E.; Kanhai, H. H. Amniotic fluid as a novel source of
mesenchymal stem cells for therapeutic transplantation. Blood 2003, 102 (4), 1548-1549.
34. Tsai, M. S.; Lee, J. L.; Chang, Y. J.; Hwang, S. M. Isolation of human multipotent
mesenchymal stem cells from second‐trimester amniotic fluid using a novel two‐stage
culture protocol. Human reproduction 2004, 19 (6), 1450-1456.
35. Cai, J.; Li, W.; Su, H.; Qin, D.; Yang, J.; Zhu, F.; Xu, J.; He, W.; Guo, X.; Labuda, K.
Generation of human induced pluripotent stem cells from umbilical cord matrix and
amniotic membrane mesenchymal cells. Journal of Biological Chemistry 2010, 285 (15),
11227-11234.
36. Huang, G.-J.; Gronthos, S.; Shi, S. Mesenchymal stem cells derived from dental tissues
vs. those from other sources: their biology and role in regenerative medicine. Journal
of dental research 2009, 88 (9), 792-806.
37. Seifrtová, M.; Havelek, R.; Ćmielová, J.; Jiroutová, A.; Soukup, T.; Brůčková, L.;
Mokrý, J.; English, D.; Řezáčová, M. The response of human ectomesenchymal dental
pulp stem cells to cisplatin treatment. International endodontic journal 2012, 45 (5),
401-412.
38. Kadar, K.; Kiraly, M.; Porcsalmy, B.; Molnar, B.; Racz, G.; Blazsek, J.; Kallo, K.; Szabo,
E.; Gera, I.; Gerber, G. Differentiation potential of stem cells from human dental origin-
promise for tissue engineering. J Physiol Pharmacol 2009, 60 (Suppl 7), 167-175.
39. Schüring, A. N.; Schulte, N.; Kelsch, R.; Röpke, A.; Kiesel, L.; Götte, M.
Characterization of endometrial mesenchymal stem-like cells obtained by endometrial
biopsy during routine diagnostics. Fertility and sterility 2011, 95 (1), 423-426.
40. Jiao, F.; Wang, J.; Dong, Z.-l.; Wu, M.-j.; Zhao, T.-b.; Li, D.-d.; Wang, X. Human
mesenchymal stem cells derived from limb bud can differentiate into all three
embryonic germ layers lineages. Cellular Reprogramming (Formerly" Cloning and
Stem Cells") 2012, 14 (4), 324-333.
41. Ab Kadir, R.; Zainal Ariffin, S. H.; Megat Abdul Wahab, R.; Kermani, S.; Senafi, S.
Characterization of mononucleated human peripheral blood cells. The Scientific World
Journal 2012, 2012.
42. Raynaud, C.; Maleki, M.; Lis, R.; Ahmed, B.; Al-Azwani, I.; Malek, J.; Safadi, F.; Rafii,
A. Comprehensive characterization of mesenchymal stem cells from human placenta
and fetal membrane and their response to osteoactivin stimulation. Stem cells
international 2012, 2012.
43. Kita, K.; Gauglitz, G. G.; Phan, T. T.; Herndon, D. N.; Jeschke, M. G. Isolation and
characterization of mesenchymal stem cells from the sub-amniotic human umbilical
cord lining membrane. Stem cells and development 2010, 19 (4), 491-502.
44. Moretti, P.; Hatlapatka, T.; Marten, D.; Lavrentieva, A.; Majore, I.; Hass, R.; Kasper, C.
Mesenchymal stromal cells derived from human umbilical cord tissues: primitive cells
with potential for clinical and tissue engineering applications. Bioreactor Systems for
Tissue Engineering II: Strategies for the Expansion and Directed Differentiation of Stem
Cells 2010, 29-54.
45. Bartsch Jr, G.; Yoo, J. J.; De Coppi, P.; Siddiqui, M. M.; Schuch, G.; Pohl, H. G.; Fuhr,
J.; Perin, L.; Soker, S.; Atala, A. Propagation, expansion, and multilineage
differentiation of human somatic stem cells from dermal progenitors. Stem cells and
development 2005, 14 (3), 337-348.
46. Riekstina, U.; Muceniece, R.; Cakstina, I.; Muiznieks, I.; Ancans, J. Characterization of
human skin-derived mesenchymal stem cell proliferation rate in different growth
conditions. Cytotechnology 2008, 58, 153-162.
47. Ryu, J.-S.; Jeong, E.-J.; Kim, J.-Y.; Park, S. J.; Ju, W. S.; Kim, C.-H.; Kim, J.-S.; Choo,
Y.-K. Application of mesenchymal stem cells in inflammatory and fibrotic diseases.
International journal of molecular sciences 2020, 21 (21), 8366.
48. Siddiqui, N.; Madala, S.; Rao Parcha, S.; Mallick, S. P. Osteogenic differentiation ability
of human mesenchymal stem cells on Chitosan/Poly (Caprolactone)/nano beta
Tricalcium Phosphate composite scaffolds. Biomed Phys Eng Express 2020, 6 (1),
015018. DOI: 10.1088/2057-1976/ab6550 From NLM.
49. Park, S. Y.; Kim, D. S.; Kim, H. M.; Lee, J. K.; Hwang, D. Y.; Kim, T. H.; You, S.; Han,
D. K. Human Mesenchymal Stem Cell-Derived Extracellular Vesicles Promote Neural
Differentiation of Neural Progenitor Cells. Int J Mol Sci 2022, 23 (13). DOI:
10.3390/ijms23137047 From NLM.
50. Zhi, F.; Ding, Y.; Wang, R.; Yang, Y.; Luo, K.; Hua, F. Exosomal hsa_circ_0006859 is a
potential biomarker for postmenopausal osteoporosis and enhances adipogenic versus
osteogenic differentiation in human bone marrow mesenchymal stem cells by sponging
miR-431-5p. Stem Cell Res Ther 2021, 12 (1), 157. DOI: 10.1186/s13287-021-02214-y
From NLM.
51. Szychlinska, M. A.; Calabrese, G.; Ravalli, S.; Parrinello, N. L.; Forte, S.;
Castrogiovanni, P.; Pricoco, E.; Imbesi, R.; Castorina, S.; Leonardi, R.; et al.
Cycloastragenol as an Exogenous Enhancer of Chondrogenic Differentiation of Human
Adipose-Derived Mesenchymal Stem Cells. A Morphological Study. Cells 2020, 9 (2).
DOI: 10.3390/cells9020347 From NLM.
52. Brauer, A.; Pohlemann, T.; Metzger, W. Osteogenic differentiation of immature
osteoblasts: Interplay of cell culture media and supplements. Biotechnic &
Histochemistry 2016, 91 (3), 161-169.
53. Suh, J. H.; Lee, H. W.; Lee, J.-W.; Kim, J. B. Hes1 stimulates transcriptional activity of
Runx2 by increasing protein stabilization during osteoblast differentiation. Biochemical
and biophysical research communications 2008, 367 (1), 97-102.
54. Sun, H.; Feng, K.; Hu, J.; Soker, S.; Atala, A.; Ma, P. X. Osteogenic differentiation of
human amniotic fluid-derived stem cells induced by bone morphogenetic protein-7 and
enhanced by nanofibrous scaffolds. Biomaterials 2010, 31 (6), 1133-1139.
55. Higuchi, A.; Ling, Q.-D.; Hsu, S.-T.; Umezawa, A. Biomimetic cell culture proteins as
extracellular matrices for stem cell differentiation. Chemical reviews 2012, 112 (8),
4507-4540.
56. Goude, M. C.; McDevitt, T. C.; Temenoff, J. S. Chondroitin sulfate microparticles
modulate transforming growth factor-β1-induced chondrogenesis of human
mesenchymal stem cell spheroids. Cells Tissues Organs 2014, 199 (2-3), 117-130.
57. Moller, H.; Heinegard, D.; Poulsen, J. Combined alcian blue and silver staining of
subnanogram quantities of proteoglycans and glycosaminoglycans in sodium dodecyl
sulfate-polyacrylamide gels. Analytical biochemistry 1993, 209 (1), 169-175.
58. Jung, J.-S.; Volk, C.; Marga, C.; Navarrete Santos, A.; Jung, M.; Rujescu, D.; Navarrete
Santos, A. Adipose-derived stem/stromal cells recapitulate aging biomarkers and show
reduced stem cell plasticity affecting their adipogenic differentiation capacity. Cellular
reprogramming 2019, 21 (4), 187-199.
59. Tang, J.; Yuan, Y.; Guo, X. ANGPTL8 promotes adipogenic differentiation of
mesenchymal stem cells: potential role in ectopic lipid deposition. Frontiers in
Endocrinology 2022, 13, 927763.
60. Wang, L. T.; Ting, C. H.; Yen, M. L.; Liu, K. J.; Sytwu, H. K.; Wu, K. K.; Yen, B. L.
Human mesenchymal stem cells (MSCs) for treatment towards immune- and
inflammation-mediated diseases: review of current clinical trials. J Biomed Sci 2016, 23
(1), 76. DOI: 10.1186/s12929-016-0289-5 From NLM.
61. Li, Y.; Hao, J.; Hu, Z.; Yang, Y. G.; Zhou, Q.; Sun, L.; Wu, J. Current status of clinical
trials assessing mesenchymal stem cell therapy for graft versus host disease: a
systematic review. Stem Cell Res Ther 2022, 13 (1), 93. DOI: 10.1186/s13287-022-
02751-0 From NLM.
62. Han, Y.; Yang, J.; Fang, J.; Zhou, Y.; Candi, E.; Wang, J.; Hua, D.; Shao, C.; Shi, Y. The
secretion profile of mesenchymal stem cells and potential applications in treating human
diseases. Signal Transduct Target Ther 2022, 7 (1), 92. DOI: 10.1038/s41392-022-
00932-0 From NLM.
63. Sarsenova, M.; Kim, Y.; Raziyeva, K.; Kazybay, B.; Ogay, V.; Saparov, A. Recent
advances to enhance the immunomodulatory potential of mesenchymal stem cells.
Front Immunol 2022, 13, 1010399. DOI: 10.3389/fimmu.2022.1010399 From NLM.
64. Wang, L.; Wang, C.; Wu, S.; Fan, Y.; Li, X. Influence of the mechanical properties of
biomaterials on degradability, cell behaviors and signaling pathways: current progress
and challenges. Biomater Sci 2020, 8 (10), 2714-2733. DOI: 10.1039/d0bm00269k
From NLM.
65. Hovatta, O.; Mikkola, M.; Gertow, K.; Strömberg, A. M.; Inzunza, J.; Hreinsson, J.;
Rozell, B.; Blennow, E.; Andäng, M.; Ahrlund-Richter, L. A culture system using human
foreskin fibroblasts as feeder cells allows production of human embryonic stem cells.
Hum Reprod 2003, 18 (7), 1404-1409. DOI: 10.1093/humrep/deg290 From NLM.
66. Hwang, S.-T.; Kang, S.-W.; Lee, S.-J.; Lee, T.-H.; Suh, W.; Shim, S. H.; Lee, D.-R.;
Taite, L. J.; Kim, K.-S.; Lee, S.-H. The expansion of human ES and iPS cells on porous
membranes and proliferating human adipose-derived feeder cells. Biomaterials 2010,
31 (31), 8012-8021.
67. Abraham, S. Extracellular matrix-based substrates for propagation of human
pluripotent stem cells; Virginia Commonwealth University, 2010.
68. Yang, K.; Lee, J.; Cho, S. W. Engineering biomaterials for feeder-free maintenance of
human pluripotent stem cells. Int J Stem Cells 2012, 5 (1), 1-5. DOI:
10.15283/ijsc.2012.5.1.1 From NLM.
69. Xu, C.; Inokuma, M. S.; Denham, J.; Golds, K.; Kundu, P.; Gold, J. D.; Carpenter, M.
K. Feeder-free growth of undifferentiated human embryonic stem cells. Nature
biotechnology 2001, 19 (10), 971-974.
70. Kawase, E.; Nakatsuji, N. Development of substrates for the culture of human
pluripotent stem cells. Biomaterials Science 2023.
71. Carlson Scholz, J. A.; Garg, R.; Compton, S. R.; Allore, H. G.; Zeiss, C. J.; Uchio, E.
M. Poliomyelitis in MuLV-infected ICR-SCID mice after injection of basement
membrane matrix contaminated with lactate dehydrogenase-elevating virus.
Comparative medicine 2011, 61 (5), 404-411.
72. Martin, M. J.; Muotri, A.; Gage, F.; Varki, A. Human embryonic stem cells express an
immunogenic nonhuman sialic acid. Nature medicine 2005, 11 (2), 228-232.
73. Mei, Y.; Saha, K.; Bogatyrev, S. R.; Yang, J.; Hook, A. L.; Kalcioglu, Z. I.; Cho, S.-W.;
Mitalipova, M.; Pyzocha, N.; Rojas, F. Combinatorial development of biomaterials for
clonal growth of human pluripotent stem cells. Nature materials 2010, 9 (9), 768-778.
74. Xue, M.; Jackson, C. J. Extracellular matrix reorganization during wound healing and
its impact on abnormal scarring. Advances in wound care 2015, 4 (3), 119-136.
75. Liu, Y.-C.; Ban, L.-K.; Lee, H. H.-C.; Lee, H.-T.; Chang, Y.-T.; Lin, Y.-T.; Su, H.-Y.;
Hsu, S.-T.; Higuchi, A. Laminin-511 and recombinant vitronectin supplementation
enables human pluripotent stem cell culture and differentiation on conventional tissue
culture polystyrene surfaces in xeno-free conditions. Journal of Materials Chemistry B
2021, 9 (41), 8604-8614.
76. Chen, L.-H.; Sung, T.-C.; Lee, H. H.-C.; Higuchi, A.; Su, H.-C.; Lin, K.-J.; Huang, Y.-
R.; Ling, Q.-D.; Kumar, S. S.; Alarfaj, A. A. Xeno-free and feeder-free culture and
differentiation of human embryonic stem cells on recombinant vitronectin-grafted
hydrogels. Biomaterials science 2019, 7 (10), 4345-4362.
77. Wang, T.; Liu, Q.; Chang, Y.-T.; Liu, J.; Yu, T.; Maitiruze, K.; Ban, L.-K.; Sung, T.-C.;
Subbiah, S. K.; Renuka, R. R. Designed peptide-grafted hydrogels for human
pluripotent stem cell culture and differentiation. Journal of Materials Chemistry B 2023,
11 (7), 1434-1444.
78. Melkoumian, Z.; Weber, J. L.; Weber, D. M.; Fadeev, A. G.; Zhou, Y.; Dolley-Sonneville,
P.; Yang, J.; Qiu, L.; Priest, C. A.; Shogbon, C. Synthetic peptide-acrylate surfaces for
long-term self-renewal and cardiomyocyte differentiation of human embryonic stem
cells. Nature biotechnology 2010, 28 (6), 606-610.
79. Pierschbacher, M. D.; Ruoslahti, E. Cell attachment activity of fibronectin can be
duplicated by small synthetic fragments of the molecule. Nature 1984, 309 (5963), 30-
33.
80. Cooke, M.; Zahir, T.; Phillips, S.; Shah, D.; Athey, D.; Lakey, J.; Shoichet, M.;
Przyborski, S. Neural differentiation regulated by biomimetic surfaces presenting motifs
of extracellular matrix proteins. Journal of Biomedical Materials Research Part A: An
Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials,
and The Australian Society for Biomaterials and the Korean Society for Biomaterials
2010, 93 (3), 824-832.
81. Nomizu, M.; Kuratomi, Y.; Malinda, K. M.; Song, S.-Y.; Miyoshi, K.; Otaka, A.; Powell,
S. K.; Hoffman, M. P.; Kleinman, H. K.; Yamada, Y. Cell binding sequences in mouse
laminin α1 chain. Journal of Biological Chemistry 1998, 273 (49), 32491-32499.
82. Jia, J.; Jeon, E. J.; Li, M.; Richards, D. J.; Lee, S.; Jung, Y.; Barrs, R. W.; Coyle, R.; Li,
X.; Chou, J. C. Evolutionarily conserved sequence motif analysis guides development
of chemically defined hydrogels for therapeutic vascularization. Science advances 2020,
6 (28), eaaz5894.
83. Jia, J.; Richards, D. J.; Pollard, S.; Tan, Y.; Rodriguez, J.; Visconti, R. P.; Trusk, T. C.;
Yost, M. J.; Yao, H.; Markwald, R. R. Engineering alginate as bioink for bioprinting.
Acta biomaterialia 2014, 10 (10), 4323-4331.
84. Jia, J.; Coyle, R. C.; Richards, D. J.; Berry, C. L.; Barrs, R. W.; Biggs, J.; Chou, C. J.;
Trusk, T. C.; Mei, Y. Development of peptide-functionalized synthetic hydrogel
microarrays for stem cell and tissue engineering applications. Acta biomaterialia 2016,
45, 110-120.
85. Higuchi, A.; Yang, S.-T.; Li, P.-T.; Chang, Y.; Tsai, E. M.; Chen, Y. H.; Chen, Y.-J.; Wang,
H.-C.; Hsu, S.-T. Polymeric materials for ex vivo expansion of hematopoietic progenitor
and stem cells. Journal of Macromolecular Science®, Part C: Polymer Reviews 2009,
49 (3), 181-200.
86. Oldberg, A.; Franzen, A.; Heinegård, D.; Pierschbacher, M.; Ruoslahti, E. Identification
of a bone sialoprotein receptor in osteosarcoma cells. Journal of Biological Chemistry
1988, 263 (36), 19433-19436.
87. Salasznyk, R. M.; Williams, W. A.; Boskey, A.; Batorsky, A.; Plopper, G. E. Adhesion
to vitronectin and collagen I promotes osteogenic differentiation of human
mesenchymal stem cells. BioMed Research International 2004, 2004, 24-34.
88. Suzuki, S.; Oldberg, A.; Hayman, E. G.; Pierschbacher, M. D.; Ruoslahti, E. Complete
amino acid sequence of human vitronectin deduced from cDNA. Similarity of cell
attachment sites in vitronectin and fibronectin. The EMBO journal 1985, 4 (10), 2519-
2524.
89. Buhleier, E.; Wehner, W.; Vögtle, F. " Cascade"-and" nonskid-chain-like" syntheses of
molecular cavity topologies. Synthesis 1978, 1978 (02), 155-158.
90. Hawker, C. J.; Frechet, J. M. Preparation of polymers with controlled molecular
architecture. A new convergent approach to dendritic macromolecules. Journal of the
American Chemical Society 1990, 112 (21), 7638-7647.
91. Majoros, I. J.; Keszler, B.; Woehler, S.; Bull, T.; Baker, J. R. Acetylation of poly
(amidoamine) dendrimers. Macromolecules 2003, 36 (15), 5526-5529.
92. Markowicz, M.; Szymański, P.; Ciszewski, M.; Kłys, A.; Mikiciuk-Olasik, E.
Evaluation of poly (amidoamine) dendrimers as potential carriers of iminodiacetic
derivatives using solubility studies and 2D-NOESY NMR spectroscopy. Journal of
biological physics 2012, 38, 637-656.
93. Frechet, J. M. Functional polymers and dendrimers: reactivity, molecular architecture,
and interfacial energy. Science 1994, 263 (5154), 1710-1715.
94. Simons, D. M. Spacers, probability, and yields. Bioconjugate Chemistry 1999, 10 (1),
3-8.
95. Ortega, P.; Sánchez-Nieves, J.; Martínez-Bonet, M.; Perisé-Barrios, A. J.; Gómez, R.;
Muñoz-Fernández, M.; de la Mata, F. J. Cationic Dendritic Systems as Non-viral
Vehicles for Gene Delivery Applications. 2014.
96. Chen, Y.-M.; Chen, L.-H.; Li, M.-P.; Li, H.-F.; Higuchi, A.; Kumar, S. S.; Ling, Q.-D.;
Alarfaj, A. A.; Munusamy, M. A.; Chang, Y. Xeno-free culture of human pluripotent
stem cells on oligopeptide-grafted hydrogels with various molecular designs. Scientific
reports 2017, 7 (1), 45146.
97. Higuchi, A.; Kao, S.-H.; Ling, Q.-D.; Chen, Y.-M.; Li, H.-F.; Alarfaj, A. A.; Munusamy,
M. A.; Murugan, K.; Chang, S.-C.; Lee, H.-C. Long-term xeno-free culture of human
pluripotent stem cells on hydrogels with optimal elasticity. Scientific reports 2015, 5 (1),
18136.
98. Muduli, S.; Chen, L.-H.; Li, M.-P.; Heish, Z.-w.; Liu, C.-H.; Kumar, S.; Alarfaj, A. A.;
Munusamy, M. A.; Benelli, G.; Murugan, K. Stem cell culture on polyvinyl alcohol
hydrogels having different elasticity and immobilized with ECM-derived oligopeptides.
Journal of Polymer Engineering 2017, 37 (7), 647-660.
99. Sung, T.-C.; Li, H.-F.; Higuchi, A.; Ling, Q.-D.; Yang, J.-S.; Tseng, Y.-C.; Pan, C.-H. P.;
Alarfaj, A. A.; Munusamy, M. A.; Kumar, S. Human pluripotent stem cell culture on
polyvinyl alcohol-co-itaconic acid hydrogels with varying stiffness under xeno-free
conditions. JoVE (Journal of Visualized Experiments) 2018, (132), e57314.
100. Sung, T.-C.; Chen, Y.-H.; Wang, T.; Qian, L.; Chao, W.-H.; Liu, J.; Pang, J.; Ling, Q.-
D.; Lee, H. H.-C.; Higuchi, A. Design of dual peptide-conjugated hydrogels for
proliferation and differentiation of human pluripotent stem cells. Materials Today Bio
2024, 25, 100969. |