博碩士論文 111324004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:18.222.109.133
姓名 趙玟惠(Wen-Hui Chao)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 人類多能幹細胞在細胞外基質衍生肽接枝樹枝狀聚合物表面上培養
(Human Pluripotent Stem Cells Culture on Dendrimer Surface Grafted with ECM-derived Peptides)
相關論文
★ 於不同彈性係數的生醫材料上體外培植造血幹細胞★ 藉由調整水凝膠之表面電荷及軟硬度並嫁接玻連蛋白用以培養人類多功能幹細胞
★ 可見光對羊水間葉幹細胞成骨分化之影響★ 可見光調控神經細胞之基因表現及突觸生長
★ 膜純化法及免疫抗體磁珠法用於分離及體外增殖血液幹細胞之研究★ 人類表皮成長因子的結構穩定性及生物活性測定
★ 微環境對羊水間葉幹細胞多功能性基因表現及分化之影響★ 奈米片段與細胞外基質之改質膜用於臍帶血中造血幹細胞之純化與培養
★ 小鼠脂肪幹細胞之膜純化法及細胞外間質對人類脂肪幹細胞影響之研究★ 利用具有奈米片段與細胞外間質蛋白質的表面改殖材質進行臍帶血造血幹細胞體外培養
★ 在不同培養條件下針對大腸癌細胞及組織中癌細胞進行純化、剔除及鑑定之研究★ 羊水間葉幹細胞培養於細胞外間質改質表面其分化能力及多能性之研究
★ 人類脂肪幹細胞的膜純化法與分化能力研究★ 具有抗藥性之大腸癌細胞株能提高癌胚抗原的表現,但並非是癌症起始細胞
★ 羊水間葉幹細胞培養於接枝細胞外間質寡肽與環狀肽具有最佳表面硬度的生醫材料,其增殖能力及多能性之研究★ 人類體細胞從組成誘導型多能性幹細胞培養在無飼養層上
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-20以後開放)
摘要(中) 人類多能幹細胞 (hPSCs) 可以分為人類胚胎幹細胞 (hESCs) 和人類誘導多能幹細胞 (hiPSCs),這些細胞可以分化成源自三個胚層的細胞,如內胚層、中胚層和外胚層。一般而言,與大多數癌細胞或組織細胞不同,hPSCs 無法在傳統的組織培養聚苯乙烯 (TCPS) 盤上增殖。而 hPSCs 通常在塗有 Matrigel 的培養皿上培養,其中包含異種物質。因此有必要使用嵌合合成肽的生物材料來促進 hPSC 的粘附、多能性的保持和分化,以支持hPSC 的臨床應用。為了維持 hPSCs 的增殖,我們開發了具有最佳彈性 (25.3 千帕) 的特定肽嵌合的 PVA-IA(聚(乙烯醇-乙烯酸酯-巯基丙烯酸))水凝膠,其中以特定的層黏連蛋白-β4 和玻連蛋白衍生的寡肽嵌合的水凝膠是最適合 hPSC 增殖的生物材料。在我們之前的研究中,hPSCs 可以在嵌合了特定層黏連蛋白-β4 和玻連蛋白衍生寡肽的水凝膠上成功培養超過 10 代。然而用於嵌合的寡肽溶液濃度 (通常為 1000 μg/mL) 比 ECM 蛋白質塗層表面溶液的濃度 (通常為 5-10 μg/mL) 要高得多。為了改進這一點,本研究開發了一種新的基於樹枝狀結構的肽嵌合表面細胞培養生物材料設計。由多個支鏈的醯胺和胺基組成的第 3 代聚胺酯胺(PAMAM)樹枝狀結構被固定在水凝膠表面,預期對 hPSC 的培養和分化具有高生物相容性。將嵌合不同肽濃度的 CLB1GK (CGGGGKGGPMQKMRGDVFSP) 的樹枝狀結構表面上的 hiPSCs 細胞增殖進行定量評估。探究哪種肽濃度更適合hiPSCs 的增殖。hPSCs 可以在低濃度的肽 (50 μg/ml) 嵌合的樹枝狀結構表面增殖。在肽濃度較低(50 μg/ml)的條件下,在肽嵌合的樹枝狀結構表面長期培養(10 代)的 hiPSCs 表現出其多能性和分化為三個胚層細胞的能力。目前,只有這項研究支持 hPSC 在肽濃度較低的肽嵌合樹枝狀結構表面上增殖,而大多數用於 hPSC 培養的典型肽嵌合生物材料是使用肽濃度較高的溶液,例如>1000 μg/ml。在樹枝狀結構表面3D 嵌合多肽能夠在長時間的培養中維持 hPSC 的多能性。
摘要(英) Human pluripotent stem cells (hPSCs) can be divided into human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), which can differentiate into the cells derived from three germ layers, such as endoderm, ectoderm, and mesoderm. Typically, conventional tissue culture polystyrene plates cannot support the proliferation of hPSCs, unlike most cancer cells or tissue cells that can proliferate. Alternatively, hPSCs are commonly cultured on dishes coated with Matrigel, which involves xeno-containing substances. Hence, it is advisable to employ biomaterials grafted with synthetic peptides to facilitate hPSC adhesion, maintain hPSC pluripotency, and differentiate hPSCs for the clinical application of hPSCs. The specific peptide-grafted PVA-IA (poly (vinyl alcohol-co-vinyl acetate-co-itaconic acid)) hydrogels with optimal elasticity (25.3 kPa) have been developed to support the proliferation of hPSCs, where the hydrogels grafted with specific oligopeptides derived from laminin-β4 (LMN) and vitronectin were the most preferable biomaterials for hPSC proliferation and could be used as cell culture biomaterials of hPSCs for more than 10 passages. However, the concentration of oligopeptide solution needed for grafting on the hydrogels should be much higher (typically 1000 μg/mL) than the concentration of ECM proteins used for the preparation of ECM protein-coated surface (typically 5-10 μg/mL). To improve this point, a new design of cell culture biomaterials using a dendrimer-based peptide-grafted surface was developed in this study. Polyamidoamine (PAMAM) dendrimer having generation 3, which was composed of many branched subunits of amide and amine groups, was used to be immobilized on the hydrogel surface, where it is expected to have high biocompatibility for hPSC culture and differentiation. The cell proliferation of hiPSCs on PAMAM dendrimer surface grafted with CLB1GK with different peptide concentration were evaluated from expansion fold. It is evaluated which peptide concentration was more suitable for hiPSC proliferation in this study. The hPSCs could be cultured on PAMAM dendrimer surface grafted with the peptide, which were prepared with low concentration of peptide (50 μg/mL) and where the concentration of peptide is the same order of the concentration of coating ECM solution (5-10 μg/mL) on ECM protein-coated surface. The hiPSCs showed their pluripotency and differentiation ability into three germ layer cells after long-term (10 passage) culture on the peptide-grafted PAMAM dendrimer hydrogel surface, which were prepared with a low peptide concentration (50 μg/ml). Currently, only this study supports hPSC proliferation on the peptide-grafted surface, which was prepared with a low concentration of peptide solution (50 μg/ml), whereas most typical peptide-grafted biomaterials for hPSC culture was prepared with a high concentration of peptide solution, such as >1000 μg/ml. 3D peptide location (immobilization) on the surface using PAMAM dendrimer enables to maintain the pluripotency of hPSCs during their cultivation for
a long time.
關鍵字(中) ★ 人類多能幹細胞
★ RGD寡肽
★ PAMAM樹枝狀聚合物
★ 表面反應
★ 無異種條件培養
★ 生醫材料
關鍵字(英) ★ Human pluripotent stem cells (hPSC)
★ RGD peptide
★ PAMAM dendrimer
★ Surface reaction
★ Xeno-free condition
★ biomaterials
論文目次 Abstract ...................................................................................................................................... I
摘要 ................................................................................................................................... III
Index of content ........................................................................................................................ IV
Index of figure .........................................................................................................................VII
Index of table ............................................................................................................................ XI
Chapter 1 Introduction ................................................................................................................ 1
1-1 Stem cells ..................................................................................................................... 1
1-1-1 Human pluripotent stem cells (hPSCs) ............................................................. 2
1-1-2 Human embryonic stem cells (hESCs) ............................................................. 3
1-1-3 Human induced pluripotent stem cells (hiPSCs) .............................................. 4
1-1-4 Characterization of human pluripotent stem cells ............................................ 5
1-1-5 hPSCs for therapeutic application ..................................................................... 8
1-2 Mesenchymal stem cells .............................................................................................. 8
1-2-1 Characterization of human mesenchymal stem cells ........................................ 9
1-2-2 Differentiation ability of hMSCs .................................................................... 11
1-2-3 The current clinical trials using MSCs and its challenge ................................ 13
1-3 The biomaterial substrates for hPSCs cultivation ...................................................... 14
1-3-1 The feeder cell layers for hPSCs cultivation ................................................... 14
1-3-2 The maintenance of hPSCs on feeder-free and xeno-contained proteins ....... 15
1-3-3 The maintenance of hPSCs on feeder-free and xeno-free conditions ............. 16
1-3-4 Oligopeptides for hPSC adhesion, cultivation, and differentiation ................ 18
1-4 Dendrimers ................................................................................................................. 20
1-4-1 Poly(amidoamine) (PAMAM) dendrimer ....................................................... 20
1-5 The goal of this study ................................................................................................. 22
Chapter 2 Materials and Method .............................................................................................. 23
2-1 Materials ..................................................................................................................... 23
2-1-1 Cell lines ......................................................................................................... 23
2-1-2 Commercial Culture Dishes ............................................................................ 23
2-1-3 Commercial Coated Substrates ....................................................................... 23
2-1-4 Medium for hPSCs .......................................................................................... 23
2-1-5 Medium and chemicals for MSCs differentiation from hPSCs ...................... 23
2-1-6 Medium and chemicals for cardiomyocytes differentiated from hPSCs ........ 24
2-1-7 Medium and chemicals for cell passages ........................................................ 24
2-1-8 Phosphate buffer saline solution (PBS) .......................................................... 24
2-1-9 The chemicals of oligopeptide-grafted hydrogels ........................................... 25
2-1-10 Chemicals for immunostaining ..................................................................... 30
2-1-11 Chemicals for flow cytometry....................................................................... 30
2-2 Experimental instruments ........................................................................................... 31
2-3 Experimental methods ................................................................................................ 32
2-3-1 Preparation of culture medium for cell cultivation ......................................... 32
2-3-2 Human pluripotent stem cells maintenance .................................................... 33
2-3-3 The passage method of human pluripotent stem cells .................................... 33
2-3-4 Expansion fold and differentiation ratio of hPSCs ......................................... 34
2-3-5 Flow cytometry measurements ....................................................................... 35
2-3-6 Immunostaining of hPSCs .............................................................................. 36
2-3-7 Embryoid body (EB) formation in vitro ......................................................... 39
2-3-8 Freezing of human pluripotent stem cells ....................................................... 39
2-3-9 Thawing of human pluripotent stem cells ....................................................... 40
2-4 Preparation of oligopeptide-grafted hydrogels ........................................................... 41
2-4-1 Preparation of PVA-IA coated surface ............................................................ 41
2-4-2 Preparation of different oligopeptide-grafted PVA-IA hydrogels ................... 42
2-4-3 Preparation of dendrimer-based oligopeptide-grafted PVA-IA hydrogels ...... 42
2-5 Characterization of oligopeptide-grafted hydrogels ................................................... 45
2-5-1 X-ray photoelectron spectroscopy (XPS) measurements ............................... 45
2-5-2 Zeta potential measurements .......................................................................... 46
2-5-3 PrimosCR 45 measurements ............................................................................. 46
Chapter 3 Result and discussion ............................................................................................... 47
3-1 Cultivation of hiPSCs (HPS0077) on different peptide-grafted hydrogels ................ 47
3-1-1 The morphologies of hiPSCs (HPS0077) on different peptide-grafted hydrogels
in long-term cultivation ............................................................................................ 48
3-1-2 The expansion fold of hiPSCs (HPS0077) on different peptide-grafted
hydrogels in long-term cultivation ........................................................................... 50
3-1-3 The pluripotency analysis of hiPSCs (HPS0077) on different peptide-grafted
hydrogels in long-term cultivation ........................................................................... 52
3-2 Cultivation of hiPSCs (HPS0077) on dendrimer-based peptide-grafted hydrogels ... 56
3-2-1 The optimal concentration ratio of dendrimer and crosslinker on dendrimer-
based peptide-grafted hydrogels ............................................................................... 56
3-2-2 The optimal washing method to remove ungrafted peptides on dendrimer-based
peptide-grafted hydrogels ......................................................................................... 59
3-2-3 The morphologies of hiPSCs (HPS0077) on dendrimer-based hydrogels
prepared with different concentrations of peptides .................................................. 61
3-2-4 The expansion fold of hiPSCs (HPS0077) on dendrimer-based hydrogels
prepared with different concentrations of peptide .................................................... 63
3-2-5 The pluripotency analysis of hiPSCs (HPS0077) on dendrimer-based hydrogels
prepared with different concentrations of peptides .................................................. 65
3-2-6 The differentiation of hiPSCs (HPS0077) after cultivation on the dendrimer-
based hydrogels prepared with different concentrations of peptides (Embryoid body
Formation) ................................................................................................................ 67
3-3 Cultivation of hiPSCs (Mix5) on dendrimer-based peptide-grafted hydrogels ......... 70
3-3-1 The morphologies of hiPSCs (Mix5) on the dendrimer-based hydrogels
prepared with different concentrations of peptides .................................................. 70
3-3-2 The expansion fold of hiPSCs (Mix5) on the dendrimer-based hydrogels
prepared with different concentrations of peptides .................................................. 72
3-3-3 The pluripotency analysis of hiPSCs (Mix5) on the dendrimer-based hydrogels
prepared with different concentrations of peptides .................................................. 74
3-3-4 The differentiation of hiPSCs (Mix5) after cultivation on the dendrimer-based
hydrogels prepared with different concentrations of peptide (Embryoid body
Formation) ................................................................................................................ 77
3-4 Characterization of different peptide-grafted hydrogels ............................................ 80
3-4-1 X-ray photoelectron spectroscopy analysis of several peptide-grafted hydrogels
.................................................................................................................................. 80
3-4-2 Zeta potential analysis of the surface electrical potential on several peptide-
grafted hydrogels ...................................................................................................... 83
3-4-3 PrimosCR 45 analysis of the surface roughness on different peptide-grafted
hydrogels .................................................................................................................. 85
3-5 Characterization of dendrimer-based peptide-grafted hydrogels ............................... 87
3-5-1 X-ray photoelectron spectroscopy analysis of several dendrimer-based peptide-
grafted hydrogels ...................................................................................................... 87
3-5-2 Zeta potential analysis of the surface electrical potential on several dendrimer-
based peptide-grafted hydrogels ............................................................................... 91
3-5-3 PrimosCR 45 analysis of the surface roughness on several dendrimer-based
peptide-grafted hydrogels ......................................................................................... 93
Chapter 4 Conclusion ............................................................................................................... 96
References ................................................................................................................................ 98
Appendix ................................................................................................................................ 107
參考文獻 1. Biehl, J. K.; Russell, B. Introduction to stem cell therapy. Journal of Cardiovascular
Nursing 2009, 24 (2), 98-103.
2. Zakrzewski, W.; Dobrzyński, M.; Szymonowicz, M.; Rybak, Z. Stem cells: past, present,
and future. Stem cell research & therapy 2019, 10 (1), 1-22.
3. Berdasco, M.; Esteller, M. DNA methylation in stem cell renewal and multipotency.
Stem cell research & therapy 2011, 2, 1-9.
4. Menon, S.; Shailendra, S.; Renda, A.; Longaker, M.; Quarto, N. An overview of direct
somatic reprogramming: the ins and outs of iPSCs. International journal of molecular
sciences 2016, 17 (1), 141.
5. Estrada-Meza, C.; Torres-Copado, A.; Loreti González-Melgoza, L.; Ruiz-Manriquez,
L. M.; De Donato, M.; Sharma, A.; Pathak, S.; Banerjee, A.; Paul, S. Recent insights
into the microRNA and long non-coding RNA-mediated regulation of stem cell
populations. 3 Biotech 2022, 12 (10), 270.
6. Okita, K.; Ichisaka, T.; Yamanaka, S. Generation of germline-competent induced
pluripotent stem cells. nature 2007, 448 (7151), 313-317.
7. Takahashi, K.; Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic
and adult fibroblast cultures by defined factors. cell 2006, 126 (4), 663-676.
8. Yu, J.; Vodyanik, M. A.; Smuga-Otto, K.; Antosiewicz-Bourget, J.; Frane, J. L.; Tian,
S.; Nie, J.; Jonsdottir, G. A.; Ruotti, V.; Stewart, R. Induced pluripotent stem cell lines
derived from human somatic cells. science 2007, 318 (5858), 1917-1920.
9. Kaebisch, C.; Schipper, D.; Babczyk, P.; Tobiasch, E. The role of purinergic receptors
in stem cell differentiation. Computational and structural biotechnology journal 2015,
13, 75-84.
10. Thomson, J. A.; Itskovitz-Eldor, J.; Shapiro, S. S.; Waknitz, M. A.; Swiergiel, J. J.;
Marshall, V. S.; Jones, J. M. Embryonic stem cell lines derived from human blastocysts.
science 1998, 282 (5391), 1145-1147.
11. Meier, J. J.; Bhushan, A.; Butler, P. C. The potential for stem cell therapy in diabetes.
Pediatric research 2006, 59 (4), 65-73.
12. Rowe, R. G.; Daley, G. Q. Induced pluripotent stem cells in disease modelling and drug
discovery. Nature Reviews Genetics 2019, 20 (7), 377-388.
13. Higuchi, A.; Ling, Q.-D.; Kumar, S. S.; Munusamy, M.; Alarfajj, A. A.; Umezawa, A.;
Wu, G.-J. Design of polymeric materials for culturing human pluripotent stem cells:
Progress toward feeder-free and xeno-free culturing. Progress in Polymer Science 2014,
39 (7), 1348-1374.
14. Higuchi, A.; Ling, Q.-D.; Ko, Y.-A.; Chang, Y.; Umezawa, A. Biomaterials for the
feeder-free culture of human embryonic stem cells and induced pluripotent stem cells.
Chemical reviews 2011, 111 (5), 3021-3035.
15. Bai, H.; Wang, Z. Directing human embryonic stem cells to generate vascular progenitor
cells. Gene therapy 2008, 15 (2), 89-95.
16. Chen, H.; Zhang, A.; Wu, J. C. Harnessing cell pluripotency for cardiovascular
regenerative medicine. Nature biomedical engineering 2018, 2 (6), 392-398.
17. Liu, T.-M. Application of mesenchymal stem cells derived from human pluripotent stem
cells in regenerative medicine. World Journal of Stem Cells 2021, 13 (12), 1826.
18. Screening techniques to identify genomic instability of pluripotent stem cells in
ensuring the safety of applications in regenerative medicine. J Stem Cells Regen Med
2023, 19 (1), 1-2. DOI: 10.46582/jsrm.1901001 From NLM.
19. Pittenger, M. F.; Mackay, A. M.; Beck, S. C.; Jaiswal, R. K.; Douglas, R.; Mosca, J. D.;
Moorman, M. A.; Simonetti, D. W.; Craig, S.; Marshak, D. R. Multilineage potential of
adult human mesenchymal stem cells. science 1999, 284 (5411), 143-147.
20. Mattar, P.; Bieback, K. Comparing the immunomodulatory properties of bone marrow,
adipose tissue, and birth-associated tissue mesenchymal stromal cells. Frontiers in
immunology 2015, 6, 164869.
21. Nowakowski, A.; Walczak, P.; Janowski, M.; Lukomska, B. Genetic engineering of
mesenchymal stem cells for regenerative medicine. Stem cells and development 2015,
24 (19), 2219-2242.
22. Ravera, F.; Efeoglu, E.; Byrne, H. J. Vibrational spectroscopy for in vitro monitoring
stem cell differentiation. Molecules 2020, 25 (23), 5554.
23. Ullah, I.; Subbarao, R. B.; Rho, G. J. Human mesenchymal stem cells-current trends
and future prospective. Bioscience reports 2015, 35 (2), e00191.
24. Stewart, K.; Walsh, S.; Screen, J.; Jefferiss, C. M.; Chainey, J.; Jordan, G. R.; Beresford,
J. N. Further characterization of cells expressing STRO‐1 in cultures of adult human
bone marrow stromal cells. Journal of Bone and Mineral Research 1999, 14 (8), 1345-
1356.
25. Otsuru, S.; Hofmann, T. J.; Olson, T. S.; Dominici, M.; Horwitz, E. M. Improved
isolation and expansion of bone marrow mesenchymal stromal cells using a novel
marrow filter device. Cytotherapy 2013, 15 (2), 146-153.
26. Mamidi, M. K.; Nathan, K. G.; Singh, G.; Thrichelvam, S. T.; Mohd Yusof, N. A. N.;
Fakharuzi, N. A.; Zakaria, Z.; Bhonde, R.; Das, A. K.; Majumdar, A. S. Comparative
cellular and molecular analyses of pooled bone marrow multipotent mesenchymal
stromal cells during continuous passaging and after successive cryopreservation.
Journal of cellular biochemistry 2012, 113 (10), 3153-3164.
27. Gronthos, S.; Graves, S.; Ohta, S.; Simmons, P. The STRO-1+ fraction of adult human
bone marrow contains the osteogenic precursors. 1994.
28. Zhang, X.; Hirai, M.; Cantero, S.; Ciubotariu, R.; Dobrila, L.; Hirsh, A.; Igura, K.; Satoh,
H.; Yokomi, I.; Nishimura, T. Isolation and characterization of mesenchymal stem cells
from human umbilical cord blood: reevaluation of critical factors for successful
isolation and high ability to proliferate and differentiate to chondrocytes as compared to
mesenchymal stem cells from bone marrow and adipose tissue. Journal of cellular
biochemistry 2011, 112 (4), 1206-1218.
29. Wagner, W.; Wein, F.; Seckinger, A.; Frankhauser, M.; Wirkner, U.; Krause, U.; Blake,
J.; Schwager, C.; Eckstein, V.; Ansorge, W. Comparative characteristics of
mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord
blood. Experimental hematology 2005, 33 (11), 1402-1416.
30. Pendleton, C.; Li, Q.; Chesler, D. A.; Yuan, K.; Guerrero-Cazares, H.; Quinones-
Hinojosa, A. Mesenchymal stem cells derived from adipose tissue vs bone marrow: in
vitro comparison of their tropism towards gliomas. PloS one 2013, 8 (3), e58198.
31. Gronthos, S.; Franklin, D. M.; Leddy, H. A.; Robey, P. G.; Storms, R. W.; Gimble, J. M.
Surface protein characterization of human adipose tissue‐derived stromal cells. Journal
of cellular physiology 2001, 189 (1), 54-63.
32. Baglioni, S.; Francalanci, M.; Squecco, R.; Lombardi, A.; Cantini, G.; Angeli, R.;
Gelmini, S.; Guasti, D.; Benvenuti, S.; Annunziato, F. Characterization of human adult
stem‐cell populations isolated from visceral and subcutaneous adipose tissue. The
FASEB Journal 2009, 23 (10), 3494-3505.
33. int Anker, P. S.; Scherjon, S. A.; Kleijburg-Van der Keur, C.; Noort, W. A.; Claas, F. H.;
Willemze, R.; Fibbe, W. E.; Kanhai, H. H. Amniotic fluid as a novel source of
mesenchymal stem cells for therapeutic transplantation. Blood 2003, 102 (4), 1548-1549.
34. Tsai, M. S.; Lee, J. L.; Chang, Y. J.; Hwang, S. M. Isolation of human multipotent
mesenchymal stem cells from second‐trimester amniotic fluid using a novel two‐stage
culture protocol. Human reproduction 2004, 19 (6), 1450-1456.
35. Cai, J.; Li, W.; Su, H.; Qin, D.; Yang, J.; Zhu, F.; Xu, J.; He, W.; Guo, X.; Labuda, K.
Generation of human induced pluripotent stem cells from umbilical cord matrix and
amniotic membrane mesenchymal cells. Journal of Biological Chemistry 2010, 285 (15),
11227-11234.
36. Huang, G.-J.; Gronthos, S.; Shi, S. Mesenchymal stem cells derived from dental tissues
vs. those from other sources: their biology and role in regenerative medicine. Journal
of dental research 2009, 88 (9), 792-806.
37. Seifrtová, M.; Havelek, R.; Ćmielová, J.; Jiroutová, A.; Soukup, T.; Brůčková, L.;
Mokrý, J.; English, D.; Řezáčová, M. The response of human ectomesenchymal dental
pulp stem cells to cisplatin treatment. International endodontic journal 2012, 45 (5),
401-412.
38. Kadar, K.; Kiraly, M.; Porcsalmy, B.; Molnar, B.; Racz, G.; Blazsek, J.; Kallo, K.; Szabo,
E.; Gera, I.; Gerber, G. Differentiation potential of stem cells from human dental origin-
promise for tissue engineering. J Physiol Pharmacol 2009, 60 (Suppl 7), 167-175.
39. Schüring, A. N.; Schulte, N.; Kelsch, R.; Röpke, A.; Kiesel, L.; Götte, M.
Characterization of endometrial mesenchymal stem-like cells obtained by endometrial
biopsy during routine diagnostics. Fertility and sterility 2011, 95 (1), 423-426.
40. Jiao, F.; Wang, J.; Dong, Z.-l.; Wu, M.-j.; Zhao, T.-b.; Li, D.-d.; Wang, X. Human
mesenchymal stem cells derived from limb bud can differentiate into all three
embryonic germ layers lineages. Cellular Reprogramming (Formerly" Cloning and
Stem Cells") 2012, 14 (4), 324-333.
41. Ab Kadir, R.; Zainal Ariffin, S. H.; Megat Abdul Wahab, R.; Kermani, S.; Senafi, S.
Characterization of mononucleated human peripheral blood cells. The Scientific World
Journal 2012, 2012.
42. Raynaud, C.; Maleki, M.; Lis, R.; Ahmed, B.; Al-Azwani, I.; Malek, J.; Safadi, F.; Rafii,
A. Comprehensive characterization of mesenchymal stem cells from human placenta
and fetal membrane and their response to osteoactivin stimulation. Stem cells
international 2012, 2012.
43. Kita, K.; Gauglitz, G. G.; Phan, T. T.; Herndon, D. N.; Jeschke, M. G. Isolation and
characterization of mesenchymal stem cells from the sub-amniotic human umbilical
cord lining membrane. Stem cells and development 2010, 19 (4), 491-502.
44. Moretti, P.; Hatlapatka, T.; Marten, D.; Lavrentieva, A.; Majore, I.; Hass, R.; Kasper, C.
Mesenchymal stromal cells derived from human umbilical cord tissues: primitive cells
with potential for clinical and tissue engineering applications. Bioreactor Systems for
Tissue Engineering II: Strategies for the Expansion and Directed Differentiation of Stem
Cells 2010, 29-54.
45. Bartsch Jr, G.; Yoo, J. J.; De Coppi, P.; Siddiqui, M. M.; Schuch, G.; Pohl, H. G.; Fuhr,
J.; Perin, L.; Soker, S.; Atala, A. Propagation, expansion, and multilineage
differentiation of human somatic stem cells from dermal progenitors. Stem cells and
development 2005, 14 (3), 337-348.
46. Riekstina, U.; Muceniece, R.; Cakstina, I.; Muiznieks, I.; Ancans, J. Characterization of
human skin-derived mesenchymal stem cell proliferation rate in different growth
conditions. Cytotechnology 2008, 58, 153-162.
47. Ryu, J.-S.; Jeong, E.-J.; Kim, J.-Y.; Park, S. J.; Ju, W. S.; Kim, C.-H.; Kim, J.-S.; Choo,
Y.-K. Application of mesenchymal stem cells in inflammatory and fibrotic diseases.
International journal of molecular sciences 2020, 21 (21), 8366.
48. Siddiqui, N.; Madala, S.; Rao Parcha, S.; Mallick, S. P. Osteogenic differentiation ability
of human mesenchymal stem cells on Chitosan/Poly (Caprolactone)/nano beta
Tricalcium Phosphate composite scaffolds. Biomed Phys Eng Express 2020, 6 (1),
015018. DOI: 10.1088/2057-1976/ab6550 From NLM.
49. Park, S. Y.; Kim, D. S.; Kim, H. M.; Lee, J. K.; Hwang, D. Y.; Kim, T. H.; You, S.; Han,
D. K. Human Mesenchymal Stem Cell-Derived Extracellular Vesicles Promote Neural
Differentiation of Neural Progenitor Cells. Int J Mol Sci 2022, 23 (13). DOI:
10.3390/ijms23137047 From NLM.
50. Zhi, F.; Ding, Y.; Wang, R.; Yang, Y.; Luo, K.; Hua, F. Exosomal hsa_circ_0006859 is a
potential biomarker for postmenopausal osteoporosis and enhances adipogenic versus
osteogenic differentiation in human bone marrow mesenchymal stem cells by sponging
miR-431-5p. Stem Cell Res Ther 2021, 12 (1), 157. DOI: 10.1186/s13287-021-02214-y
From NLM.
51. Szychlinska, M. A.; Calabrese, G.; Ravalli, S.; Parrinello, N. L.; Forte, S.;
Castrogiovanni, P.; Pricoco, E.; Imbesi, R.; Castorina, S.; Leonardi, R.; et al.
Cycloastragenol as an Exogenous Enhancer of Chondrogenic Differentiation of Human
Adipose-Derived Mesenchymal Stem Cells. A Morphological Study. Cells 2020, 9 (2).
DOI: 10.3390/cells9020347 From NLM.
52. Brauer, A.; Pohlemann, T.; Metzger, W. Osteogenic differentiation of immature
osteoblasts: Interplay of cell culture media and supplements. Biotechnic &
Histochemistry 2016, 91 (3), 161-169.
53. Suh, J. H.; Lee, H. W.; Lee, J.-W.; Kim, J. B. Hes1 stimulates transcriptional activity of
Runx2 by increasing protein stabilization during osteoblast differentiation. Biochemical
and biophysical research communications 2008, 367 (1), 97-102.
54. Sun, H.; Feng, K.; Hu, J.; Soker, S.; Atala, A.; Ma, P. X. Osteogenic differentiation of
human amniotic fluid-derived stem cells induced by bone morphogenetic protein-7 and
enhanced by nanofibrous scaffolds. Biomaterials 2010, 31 (6), 1133-1139.
55. Higuchi, A.; Ling, Q.-D.; Hsu, S.-T.; Umezawa, A. Biomimetic cell culture proteins as
extracellular matrices for stem cell differentiation. Chemical reviews 2012, 112 (8),
4507-4540.
56. Goude, M. C.; McDevitt, T. C.; Temenoff, J. S. Chondroitin sulfate microparticles
modulate transforming growth factor-β1-induced chondrogenesis of human
mesenchymal stem cell spheroids. Cells Tissues Organs 2014, 199 (2-3), 117-130.
57. Moller, H.; Heinegard, D.; Poulsen, J. Combined alcian blue and silver staining of
subnanogram quantities of proteoglycans and glycosaminoglycans in sodium dodecyl
sulfate-polyacrylamide gels. Analytical biochemistry 1993, 209 (1), 169-175.
58. Jung, J.-S.; Volk, C.; Marga, C.; Navarrete Santos, A.; Jung, M.; Rujescu, D.; Navarrete
Santos, A. Adipose-derived stem/stromal cells recapitulate aging biomarkers and show
reduced stem cell plasticity affecting their adipogenic differentiation capacity. Cellular
reprogramming 2019, 21 (4), 187-199.
59. Tang, J.; Yuan, Y.; Guo, X. ANGPTL8 promotes adipogenic differentiation of
mesenchymal stem cells: potential role in ectopic lipid deposition. Frontiers in
Endocrinology 2022, 13, 927763.
60. Wang, L. T.; Ting, C. H.; Yen, M. L.; Liu, K. J.; Sytwu, H. K.; Wu, K. K.; Yen, B. L.
Human mesenchymal stem cells (MSCs) for treatment towards immune- and
inflammation-mediated diseases: review of current clinical trials. J Biomed Sci 2016, 23
(1), 76. DOI: 10.1186/s12929-016-0289-5 From NLM.
61. Li, Y.; Hao, J.; Hu, Z.; Yang, Y. G.; Zhou, Q.; Sun, L.; Wu, J. Current status of clinical
trials assessing mesenchymal stem cell therapy for graft versus host disease: a
systematic review. Stem Cell Res Ther 2022, 13 (1), 93. DOI: 10.1186/s13287-022-
02751-0 From NLM.
62. Han, Y.; Yang, J.; Fang, J.; Zhou, Y.; Candi, E.; Wang, J.; Hua, D.; Shao, C.; Shi, Y. The
secretion profile of mesenchymal stem cells and potential applications in treating human
diseases. Signal Transduct Target Ther 2022, 7 (1), 92. DOI: 10.1038/s41392-022-
00932-0 From NLM.
63. Sarsenova, M.; Kim, Y.; Raziyeva, K.; Kazybay, B.; Ogay, V.; Saparov, A. Recent
advances to enhance the immunomodulatory potential of mesenchymal stem cells.
Front Immunol 2022, 13, 1010399. DOI: 10.3389/fimmu.2022.1010399 From NLM.
64. Wang, L.; Wang, C.; Wu, S.; Fan, Y.; Li, X. Influence of the mechanical properties of
biomaterials on degradability, cell behaviors and signaling pathways: current progress
and challenges. Biomater Sci 2020, 8 (10), 2714-2733. DOI: 10.1039/d0bm00269k
From NLM.
65. Hovatta, O.; Mikkola, M.; Gertow, K.; Strömberg, A. M.; Inzunza, J.; Hreinsson, J.;
Rozell, B.; Blennow, E.; Andäng, M.; Ahrlund-Richter, L. A culture system using human
foreskin fibroblasts as feeder cells allows production of human embryonic stem cells.
Hum Reprod 2003, 18 (7), 1404-1409. DOI: 10.1093/humrep/deg290 From NLM.
66. Hwang, S.-T.; Kang, S.-W.; Lee, S.-J.; Lee, T.-H.; Suh, W.; Shim, S. H.; Lee, D.-R.;
Taite, L. J.; Kim, K.-S.; Lee, S.-H. The expansion of human ES and iPS cells on porous
membranes and proliferating human adipose-derived feeder cells. Biomaterials 2010,
31 (31), 8012-8021.
67. Abraham, S. Extracellular matrix-based substrates for propagation of human
pluripotent stem cells; Virginia Commonwealth University, 2010.
68. Yang, K.; Lee, J.; Cho, S. W. Engineering biomaterials for feeder-free maintenance of
human pluripotent stem cells. Int J Stem Cells 2012, 5 (1), 1-5. DOI:
10.15283/ijsc.2012.5.1.1 From NLM.
69. Xu, C.; Inokuma, M. S.; Denham, J.; Golds, K.; Kundu, P.; Gold, J. D.; Carpenter, M.
K. Feeder-free growth of undifferentiated human embryonic stem cells. Nature
biotechnology 2001, 19 (10), 971-974.
70. Kawase, E.; Nakatsuji, N. Development of substrates for the culture of human
pluripotent stem cells. Biomaterials Science 2023.
71. Carlson Scholz, J. A.; Garg, R.; Compton, S. R.; Allore, H. G.; Zeiss, C. J.; Uchio, E.
M. Poliomyelitis in MuLV-infected ICR-SCID mice after injection of basement
membrane matrix contaminated with lactate dehydrogenase-elevating virus.
Comparative medicine 2011, 61 (5), 404-411.
72. Martin, M. J.; Muotri, A.; Gage, F.; Varki, A. Human embryonic stem cells express an
immunogenic nonhuman sialic acid. Nature medicine 2005, 11 (2), 228-232.
73. Mei, Y.; Saha, K.; Bogatyrev, S. R.; Yang, J.; Hook, A. L.; Kalcioglu, Z. I.; Cho, S.-W.;
Mitalipova, M.; Pyzocha, N.; Rojas, F. Combinatorial development of biomaterials for
clonal growth of human pluripotent stem cells. Nature materials 2010, 9 (9), 768-778.
74. Xue, M.; Jackson, C. J. Extracellular matrix reorganization during wound healing and
its impact on abnormal scarring. Advances in wound care 2015, 4 (3), 119-136.
75. Liu, Y.-C.; Ban, L.-K.; Lee, H. H.-C.; Lee, H.-T.; Chang, Y.-T.; Lin, Y.-T.; Su, H.-Y.;
Hsu, S.-T.; Higuchi, A. Laminin-511 and recombinant vitronectin supplementation
enables human pluripotent stem cell culture and differentiation on conventional tissue
culture polystyrene surfaces in xeno-free conditions. Journal of Materials Chemistry B
2021, 9 (41), 8604-8614.
76. Chen, L.-H.; Sung, T.-C.; Lee, H. H.-C.; Higuchi, A.; Su, H.-C.; Lin, K.-J.; Huang, Y.-
R.; Ling, Q.-D.; Kumar, S. S.; Alarfaj, A. A. Xeno-free and feeder-free culture and
differentiation of human embryonic stem cells on recombinant vitronectin-grafted
hydrogels. Biomaterials science 2019, 7 (10), 4345-4362.
77. Wang, T.; Liu, Q.; Chang, Y.-T.; Liu, J.; Yu, T.; Maitiruze, K.; Ban, L.-K.; Sung, T.-C.;
Subbiah, S. K.; Renuka, R. R. Designed peptide-grafted hydrogels for human
pluripotent stem cell culture and differentiation. Journal of Materials Chemistry B 2023,
11 (7), 1434-1444.
78. Melkoumian, Z.; Weber, J. L.; Weber, D. M.; Fadeev, A. G.; Zhou, Y.; Dolley-Sonneville,
P.; Yang, J.; Qiu, L.; Priest, C. A.; Shogbon, C. Synthetic peptide-acrylate surfaces for
long-term self-renewal and cardiomyocyte differentiation of human embryonic stem
cells. Nature biotechnology 2010, 28 (6), 606-610.
79. Pierschbacher, M. D.; Ruoslahti, E. Cell attachment activity of fibronectin can be
duplicated by small synthetic fragments of the molecule. Nature 1984, 309 (5963), 30-
33.
80. Cooke, M.; Zahir, T.; Phillips, S.; Shah, D.; Athey, D.; Lakey, J.; Shoichet, M.;
Przyborski, S. Neural differentiation regulated by biomimetic surfaces presenting motifs
of extracellular matrix proteins. Journal of Biomedical Materials Research Part A: An
Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials,
and The Australian Society for Biomaterials and the Korean Society for Biomaterials
2010, 93 (3), 824-832.
81. Nomizu, M.; Kuratomi, Y.; Malinda, K. M.; Song, S.-Y.; Miyoshi, K.; Otaka, A.; Powell,
S. K.; Hoffman, M. P.; Kleinman, H. K.; Yamada, Y. Cell binding sequences in mouse
laminin α1 chain. Journal of Biological Chemistry 1998, 273 (49), 32491-32499.
82. Jia, J.; Jeon, E. J.; Li, M.; Richards, D. J.; Lee, S.; Jung, Y.; Barrs, R. W.; Coyle, R.; Li,
X.; Chou, J. C. Evolutionarily conserved sequence motif analysis guides development
of chemically defined hydrogels for therapeutic vascularization. Science advances 2020,
6 (28), eaaz5894.
83. Jia, J.; Richards, D. J.; Pollard, S.; Tan, Y.; Rodriguez, J.; Visconti, R. P.; Trusk, T. C.;
Yost, M. J.; Yao, H.; Markwald, R. R. Engineering alginate as bioink for bioprinting.
Acta biomaterialia 2014, 10 (10), 4323-4331.
84. Jia, J.; Coyle, R. C.; Richards, D. J.; Berry, C. L.; Barrs, R. W.; Biggs, J.; Chou, C. J.;
Trusk, T. C.; Mei, Y. Development of peptide-functionalized synthetic hydrogel
microarrays for stem cell and tissue engineering applications. Acta biomaterialia 2016,
45, 110-120.
85. Higuchi, A.; Yang, S.-T.; Li, P.-T.; Chang, Y.; Tsai, E. M.; Chen, Y. H.; Chen, Y.-J.; Wang,
H.-C.; Hsu, S.-T. Polymeric materials for ex vivo expansion of hematopoietic progenitor
and stem cells. Journal of Macromolecular Science®, Part C: Polymer Reviews 2009,
49 (3), 181-200.
86. Oldberg, A.; Franzen, A.; Heinegård, D.; Pierschbacher, M.; Ruoslahti, E. Identification
of a bone sialoprotein receptor in osteosarcoma cells. Journal of Biological Chemistry
1988, 263 (36), 19433-19436.
87. Salasznyk, R. M.; Williams, W. A.; Boskey, A.; Batorsky, A.; Plopper, G. E. Adhesion
to vitronectin and collagen I promotes osteogenic differentiation of human
mesenchymal stem cells. BioMed Research International 2004, 2004, 24-34.
88. Suzuki, S.; Oldberg, A.; Hayman, E. G.; Pierschbacher, M. D.; Ruoslahti, E. Complete
amino acid sequence of human vitronectin deduced from cDNA. Similarity of cell
attachment sites in vitronectin and fibronectin. The EMBO journal 1985, 4 (10), 2519-
2524.
89. Buhleier, E.; Wehner, W.; Vögtle, F. " Cascade"-and" nonskid-chain-like" syntheses of
molecular cavity topologies. Synthesis 1978, 1978 (02), 155-158.
90. Hawker, C. J.; Frechet, J. M. Preparation of polymers with controlled molecular
architecture. A new convergent approach to dendritic macromolecules. Journal of the
American Chemical Society 1990, 112 (21), 7638-7647.
91. Majoros, I. J.; Keszler, B.; Woehler, S.; Bull, T.; Baker, J. R. Acetylation of poly
(amidoamine) dendrimers. Macromolecules 2003, 36 (15), 5526-5529.
92. Markowicz, M.; Szymański, P.; Ciszewski, M.; Kłys, A.; Mikiciuk-Olasik, E.
Evaluation of poly (amidoamine) dendrimers as potential carriers of iminodiacetic
derivatives using solubility studies and 2D-NOESY NMR spectroscopy. Journal of
biological physics 2012, 38, 637-656.
93. Frechet, J. M. Functional polymers and dendrimers: reactivity, molecular architecture,
and interfacial energy. Science 1994, 263 (5154), 1710-1715.
94. Simons, D. M. Spacers, probability, and yields. Bioconjugate Chemistry 1999, 10 (1),
3-8.
95. Ortega, P.; Sánchez-Nieves, J.; Martínez-Bonet, M.; Perisé-Barrios, A. J.; Gómez, R.;
Muñoz-Fernández, M.; de la Mata, F. J. Cationic Dendritic Systems as Non-viral
Vehicles for Gene Delivery Applications. 2014.
96. Chen, Y.-M.; Chen, L.-H.; Li, M.-P.; Li, H.-F.; Higuchi, A.; Kumar, S. S.; Ling, Q.-D.;
Alarfaj, A. A.; Munusamy, M. A.; Chang, Y. Xeno-free culture of human pluripotent
stem cells on oligopeptide-grafted hydrogels with various molecular designs. Scientific
reports 2017, 7 (1), 45146.
97. Higuchi, A.; Kao, S.-H.; Ling, Q.-D.; Chen, Y.-M.; Li, H.-F.; Alarfaj, A. A.; Munusamy,
M. A.; Murugan, K.; Chang, S.-C.; Lee, H.-C. Long-term xeno-free culture of human
pluripotent stem cells on hydrogels with optimal elasticity. Scientific reports 2015, 5 (1),
18136.
98. Muduli, S.; Chen, L.-H.; Li, M.-P.; Heish, Z.-w.; Liu, C.-H.; Kumar, S.; Alarfaj, A. A.;
Munusamy, M. A.; Benelli, G.; Murugan, K. Stem cell culture on polyvinyl alcohol
hydrogels having different elasticity and immobilized with ECM-derived oligopeptides.
Journal of Polymer Engineering 2017, 37 (7), 647-660.
99. Sung, T.-C.; Li, H.-F.; Higuchi, A.; Ling, Q.-D.; Yang, J.-S.; Tseng, Y.-C.; Pan, C.-H. P.;
Alarfaj, A. A.; Munusamy, M. A.; Kumar, S. Human pluripotent stem cell culture on
polyvinyl alcohol-co-itaconic acid hydrogels with varying stiffness under xeno-free
conditions. JoVE (Journal of Visualized Experiments) 2018, (132), e57314.
100. Sung, T.-C.; Chen, Y.-H.; Wang, T.; Qian, L.; Chao, W.-H.; Liu, J.; Pang, J.; Ling, Q.-
D.; Lee, H. H.-C.; Higuchi, A. Design of dual peptide-conjugated hydrogels for
proliferation and differentiation of human pluripotent stem cells. Materials Today Bio
2024, 25, 100969.
指導教授 樋口亞紺(Akon Higuchi) 審核日期 2024-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明