博碩士論文 111324057 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:65 、訪客IP:18.119.164.249
姓名 劉怡君(Yi-Chun Liu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 擁有TiO2殼層之核殼結構ZnMn2O4與軟碳複合負極材料應用於鋰離子電池
(Core-Shell Structured ZnMn2O4 with TiO2 Shell Layer and Soft Carbon Composite Anode Material for Lithium-Ion Batteries)
相關論文
★ 氫氧化鎳/奈米碳管/碳纖維複合電極之製備及其於尿素溶液中電極動力學之研究★ 無黏合劑鉻摻雜鋰鎳錳氧/碳纖維高電壓複合正極與奈米碳管/碳纖維複合負極應用於鋰離子電池之研究
★ 鈣鈦礦釔鐵氧化物/碳纖維複合電極應用於有機汙水處理之研究★ 碳黑改質對高電壓鋰離子電池正極電化學表現影響之研究
★ 電化學輔助紫外光/氯程序應用於水楊酸降解之研究★ 以廢棄太陽能電池製作Si/SiOx/Al2O3碳纖維複合式負極應用於鋰離子電池之研究
★ 部分碳化聚乙烯吡咯烷酮黏著劑應用於高電壓鋰離子電池正極之研究★ 釔鐵氧化物/氧化鈰光陽極應用於有機汙水處理
★ 水熱法合成之Li1+xAlxTi2-x(PO4)3與聚偏二氟乙烯/醋酸纖維素複合型固態電解質 應用於鋰離子電池之研究★ 含水深共熔溶劑系統電化學製備之奈米氫氧化鎳/鎳/碳纖維氈複合電極應用於水分解製氫
★ 以回收太陽能板之矽基材料結合石墨製備Si/SiOx/C複合負極應用於鋰離子電池之研究★ 原位聚合生成雙鋰鹽系統類凝膠聚(1,3-二氧戊環)電解質應用於鋰離子電池之研究
★ 以含水深共熔溶劑電化學系統製備奈米鎳銅合金/碳纖維氈複合電極應用於水分解製氫★ 以有機金屬框架結合乙醇輔助水熱法製備鐵摻雜鋰鎳錳氧高電壓正極 應用於鋰離子電池之研究
★ 氧化鎂/聚丙烯酸/聚偏二氟乙烯修飾聚丙烯隔離膜應用於鋰離子電池★ 以有機金屬框架製備鐵摻雜富鋰鎳錳鈷氧正極材料 應用於鋰離子電池之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-6-30以後開放)
摘要(中) 為了減少人們對化石燃料的依賴及減少溫室氣體的排放,許多國家積極的開發綠色能源,其中能夠順利的利用其能源,發展出大規模儲存電力的設備及技術是不可或缺的,而高能量密度的鋰離子電池被廣泛的應用,為了進一步提高鋰離子電池性能,開發新型負極材料是的一大關鍵。ZnMn2O4 (ZMO)作為一種典型的三元過渡金屬氧化物,因為其鋅與錳的資源豐富、價格低廉、無毒,且具有優異的理論電容量(~784 mAh/g),但在實際應用仍面臨挑戰,因為其導電性差,充放電過程中體積變化大,很容易導致顆粒破碎,進而導致倍率性能差和電容量快速下降。
  本實驗首先透過簡單操作的共沉澱法及鍛燒製程,以製備出我們的ZMO奈米顆粒,接著採用溶膠-凝膠法將二氧化鈦包覆在ZMO奈米顆粒上,形成核殼結構複合材料,實驗結果表明,在包覆適當厚度二氧化鈦殼層的ZMO顆粒,也就是最佳參數ZMO@TiO2-0.052下,成功改善了材料的體積膨脹效應,並提供了鋰離子快速擴散的通道,使其於充放電 100 圈後擁有985.46 mAh/g 之比電容量(在100 mA/g電流密度下),以及因為Mn有更高氧化態出現提升了電容量,然而包覆二氧化鈦後比電容量增長更顯著,因其奈米級尺寸和短擴散路徑促進了鋰化,且二氧化鈦的價帶與導帶結構改善了電荷轉移和阻抗,加上其材料表層會有一層可逆形成、分解的有機聚合物/凝膠狀薄膜,產生贗電容現象及行為,使ZMO@TiO2-0.052在1000 mA/g電流密度下仍還有500.88 mAh/g的比電容量,電容保持率為74.0%,表現出比ZMO奈米顆粒更高的電容量及穩定性。
  接著為了進一步提升材料的導電率,在本研究中我們將煉油廢棄物瀝青利用鍛燒製程來製備出軟碳負極材料,並且藉由球磨的方式將先前製備出來的核殼材料與軟碳進行複合,根據結果顯示,在最佳軟碳複合比參數ZMO@TiO2/SC 1:0.25在100 mA/g電流密度下,於100圈充放電循環後表現出1171.83 mAh/g的比電容量,表示少量的軟碳複合比可以有效地提供導電路徑,並再度增強了抑制體積膨脹效應的能力,也發現因為軟碳孔洞結構的關係,提供了更好的離子通道條件和額外的鋰儲存位點,加上界面氧原子在碳質材料和二氧化鈦之間的鍵結增強了鋰離子的穩定性,再度加強了贗電容行為的貢獻,導致最佳參數在1000 mA/g電流密度下,其比電容量仍達到620.97 mAh/g,並擁有79.4%的電容保持率,最後與其他利用ZMO負極材料進行研究的論文相比較,本研究所製備出的複合材料表現出出色的性能表現。
摘要(英) Many countries are actively developing green energy sources to reduce reliance on fossil fuels and decrease greenhouse gas emissions. Developing large-scale energy storage devices and technologies is essential to utilize these energy sources efficiently. High-energy-density lithium-ion batteries are widely used for this purpose. To further improve the performance of lithium-ion batteries, developing new anode materials is crucial. ZnMn2O4 (ZMO), as a typical ternary transition metal oxide, is known for its abundant and low-cost zinc and manganese resources, non-toxicity, and excellent theoretical capacity (~784 mAh/g). However, its practical application faces challenges due to poor conductivity and significant volume changes during charge-discharge cycles, which can easily lead to particle breakage, resulting in poor rate performance and rapid capacity decay.
  In this experiment, we first prepared ZMO nanoparticles through a simple co-precipitation method followed by calcination. Next, we used the sol-gel method to coat titanium dioxide on the ZMO nanoparticles, forming a core-shell structured composite material. The experimental results showed that coating the ZMO particles with an appropriate thickness of titanium dioxide, specifically under the optimal parameter ZMO@TiO2-0.052, successfully mitigated the volumetric expansion effect and provided a rapid diffusion channel for lithium ions. This resulted in a specific capacity of 985.46 mAh/g after 100 charge-discharge cycles at a current density of 100 mA/g. Additionally, the increased oxidation state of Mn enhanced the capacity. The coated ZMO particles exhibited a more significant capacity increase due to the nanometer-sized titanium dioxide with short diffusion paths promoting lithiation, and the improved valence and conduction band structure of titanium dioxide facilitated charge transfer and reduced impedance. Furthermore, the material′s surface formed a reversible organic polymeric/gel-like layer, exhibiting pseudo-capacitance-type behavior. As a result, ZMO@TiO2-0.052 maintained a specific capacity of 500.88 mAh/g at a current density of 1000 mA/g, with a capacity retention rate of 74.0%, showing higher capacity and stability compared to ZMO nanoparticles.
  To further enhance the material′s conductivity, we prepared soft carbon anode material from refinery waste pitch through calcination. The core-shell material was then composited with the soft carbon using ball milling. The results indicated that the optimal soft carbon composite ratio, ZMO@TiO2/SC 1:0.25, exhibited a specific capacity of 1171.83 mAh/g after 100 charge-discharge cycles at a current density of 100 mA/g. This suggests that a small amount of soft carbon can effectively provide conductive pathways and further suppress volumetric expansion effects. The porous structure of the soft carbon provided better ion channel conditions and additional lithium storage sites. Additionally, the bond between interfacial oxygen atoms in the carbon material and titanium dioxide enhanced lithium-ion stability, further contributing to pseudo-capacitance-type behavior. Consequently, the optimal parameter maintained a specific capacity of 620.97 mAh/g at a current density of 1000 mA/g, with a capacity retention rate of 79.4%. Compared with other studies using ZMO anode materials, the composite material prepared in this study demonstrated outstanding performance.
關鍵字(中) ★ ZnMn2O4負極材料
★ 二氧化鈦殼層
★ 核殼結構
★ 軟碳複合材料
★ 鋰離子電池
關鍵字(英) ★ ZnMn2O4 anode material
★ Titanium dioxide shell layer
★ Core-shell Structure
★ Soft carbon composite
★ Lithium-ion battery
論文目次 摘要 II
Abstract III
誌謝 V
目錄 VII
圖目錄 XI
表目錄 XV
第一章 緒論 1
1-1 能源議題現況及儲能狀況 1
1-2 研究動機 4
第二章 文獻回顧 5
2-1 鋰離子電池之發展與應用 5
2-2 鋰離子電池之運作原理 6
2-3 鋰離子電池之組成材料 8
2-3-1 負極材料 8
2-3-2 正極材料 11
2-3-3 電解質 15
2-3-4 隔離膜 15
2-3-5 導電劑 16
2-3-6 黏著劑 16
2-4 過渡金屬氧化物負極材料 17
2-5 二氧化鈦殼層 22
2-6 軟碳複合 25
第三章 實驗方法 29
3-1 實驗架構 29
3-2 實驗藥品與儀器 31
3-3 實驗方法與步驟 34
3-3-1 ZnMn2O4負極活性物質之製備 34
3-3-2 ZnMn2O4@TiO2負極活性物質之製備 34
3-3-3 軟碳負極活性物質之製備 35
3-3-4 ZnMn2O4@TiO2/SC負極活性物質之製備 36
3-3-5 ZnMn2O4、ZnMn2O4@TiO2及ZnMn2O4@TiO2/SC銅箔集電體極片之製備 37
3-3-6 CR2032鈕扣型鋰離子電池之組裝 37
3-4 材料分析與電化學性能測試 39
3-4-1 X光繞射分析儀(X-ray Diffraction, XRD) 39
3-4-2 歐傑暨化學分析電子掃描微探儀(AES/ESCA Scanning Microprobe, AES/ESCA) 39
3-4-3 高解析熱場發射掃描式電子顯微鏡(High Resolution Thermal Field Emission Scanning Electron, HRFEG-SEM) 40
3-4-4 高解析穿透式電子顯微鏡(High Resolution Transmission Electron Microscope, HR-TEM) 41
3-4-5 動態光散射儀(Dynamic Light Scattering, DLS) 41
3-4-6 氮氣吸附孔隙儀(Nitrogen Adsorption Porosimeter) 42
3-4-7 循環充放電與倍率性能測試(Charge and Discharge Test) 42
3-4-8 循環伏安法(Cyclic Voltammetry, CV) 43
3-4-9 交流阻抗分析(Electrochemical Impedance Spectroscopy, EIS) 43
第四章 結果與討論 44
4-1 利用共沉澱法製備之ZnMn2O4負極材料 44
4-1-1 X光繞射分析 44
4-1-2 循環伏安法分析 46
4-1-3 循環充放電分析 48
4-2 不同二氧化鈦包覆濃度對ZnMn2O4@TiO2負極材料的影響 50
4-2-1 X光繞射分析 50
4-2-2 FE-SEM分析 51
4-2-3 DLS分析 54
4-2-4 HR-TEM分析 56
4-2-5 AES/ESCA分析 61
4-2-6 循環伏安法分析 64
4-2-7 循環充放電分析 67
4-2-8 AES/ESCA分析 71
4-2-9 HR-TEM分析 72
4-2-10 不同電流密度快速充放電分析 73
4-2-11 電化學動力學分析 75
4-2-12 贋電容貢獻比分析 77
4-2-13 交流阻抗分析 79
4-3 不同軟碳複合比對ZnMn2O4@TiO2/SC負極材料的影響 82
4-3-1 X光繞射分析 82
4-3-2 FE-SEM分析 83
4-3-3 HR-TEM分析 87
4-3-4 氮氣吸附孔隙儀分析 88
4-3-5 循環伏安法分析 90
4-3-6 循環充放電分析 93
4-3-7 不同電流密度快速充放電分析 96
4-3-8 電化學動力學分析 98
4-3-9 贋電容貢獻比分析 100
第五章 結論與未來展望 103
5-1 結論 103
5-1-1 利用共沉澱法製備之ZnMn2O4負極材料 103
5-1-2 不同二氧化鈦包覆濃度對ZnMn2O4@TiO2負極材料的影響 104
5-1-3 不同軟碳複合比對ZnMn2O4@TiO2/SC負極材料的影響 106
5-2 未來展望 108
參考文獻 109
附錄一 117
附錄二 120
參考文獻 1. Center, E.i. Global fossil CO2 emissions have risen steadily over the last decades Emissions are set to grow again in 2023. [cited 2024 June 5]; Available from: https://e-info.org.tw/node/238111.
2. Chen, H., et al., Progress in electrical energy storage system: A critical review. Progress in natural science, 2009. 19(3): p. 291-312.
3. Ding, Y., et al., Automotive Li-ion batteries: current status and future perspectives. Electrochemical Energy Reviews, 2019. 2: p. 1-28.
4. Ryu, J., et al., Practical considerations of Si-based anodes for lithium-ion battery applications. Nano Research, 2017. 10: p. 3970-4002.
5. Nzereogu, P., et al., Anode materials for lithium-ion batteries: A review. Applied Surface Science Advances, 2022. 9: p. 100233.
6. Roy, P. and S.K. Srivastava, Nanostructured anode materials for lithium ion batteries. Journal of Materials Chemistry A, 2015. 3(6): p. 2454-2484.
7. Etacheri, V., et al., Challenges in the development of advanced Li-ion batteries: a review. Energy & Environmental Science, 2011. 4(9): p. 3243-3262.
8. Son, Y., et al., Analysis of differences in electrochemical performance between coin and pouch cells for lithium‐ion battery applications. Energy & Environmental Materials, 2024. 7(3): p. e12615.
9. Qi, W., et al., Nanostructured anode materials for lithium-ion batteries: principle, recent progress and future perspectives. Journal of Materials Chemistry A, 2017. 5(37): p. 19521-19540.
10. Nazri, G.-A. and G. Pistoia, Lithium batteries: science and technology. 2008: Springer Science & Business Media.
11. Osiak, M., et al., Structuring materials for lithium-ion batteries: advancements in nanomaterial structure, composition, and defined assembly on cell performance. Journal of Materials Chemistry A, 2014. 2(25): p. 9433-9460.
12. Goriparti, S., et al., Review on recent progress of nanostructured anode materials for Li-ion batteries. Journal of power sources, 2014. 257: p. 421-443.
13. Persson, K., et al., Lithium diffusion in graphitic carbon. The journal of physical chemistry letters, 2010. 1(8): p. 1176-1180.
14. Schauerman, C.M., et al., Recycling single-wall carbon nanotube anodes from lithium ion batteries. Journal of Materials Chemistry, 2012. 22(24): p. 12008-12015.
15. Hou, J., et al., Graphene-based electrochemical energy conversion and storage: fuel cells, supercapacitors and lithium ion batteries. Physical Chemistry Chemical Physics, 2011. 13(34): p. 15384-15402.
16. Lu, J., et al., High-performance anode materials for rechargeable lithium-ion batteries. Electrochemical Energy Reviews, 2018. 1: p. 35-53.
17. Speirs, J., et al., The future of lithium availability for electric vehicle batteries. Renewable and Sustainable Energy Reviews, 2014. 35: p. 183-193.
18. Su, L., Y. Jing, and Z. Zhou, Li ion battery materials with core–shell nanostructures. Nanoscale, 2011. 3(10): p. 3967-3983.
19. Lu, Y., L. Yu, and X.W.D. Lou, Nanostructured conversion-type anode materials for advanced lithium-ion batteries. Chem, 2018. 4(5): p. 972-996.
20. Ji, L., et al., Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy & Environmental Science, 2011. 4(8): p. 2682-2699.
21. Xu, J.-S. and Y.-J. Zhu, Monodisperse Fe3O4 and γ-Fe2O3 magnetic mesoporous microspheres as anode materials for lithium-ion batteries. ACS applied materials & interfaces, 2012. 4(9): p. 4752-4757.
22. Mizushima, K., et al., LixCoO2 (0< x<-1): A new cathode material for batteries of high energy density. Materials Research Bulletin, 1980. 15(6): p. 783-789.
23. Xu, B., et al., Recent progress in cathode materials research for advanced lithium ion batteries. Materials Science and Engineering: R: Reports, 2012. 73(5-6): p. 51-65.
24. Thackeray, M.M., et al., Lithium insertion into manganese spinels. Materials research bulletin, 1983. 18(4): p. 461-472.
25. Aurbach, D., et al., Capacity fading of LixMn2O4 spinel electrodes studied by XRD and electroanalytical techniques. Journal of Power Sources, 1999. 81: p. 472-479.
26. An, S.J., et al., The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling. Carbon, 2016. 105: p. 52-76.
27. Wang, A., et al., Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries. npj Computational Materials 4. 2018.
28. Bhatt, M.D. and C. O′Dwyer, Recent progress in theoretical and computational investigations of Li-ion battery materials and electrolytes. Physical chemistry chemical physics, 2015. 17(7): p. 4799-4844.
29. Zhang, S.S., A review on the separators of liquid electrolyte Li-ion batteries. Journal of power sources, 2007. 164(1): p. 351-364.
30. Francis, C.F., I.L. Kyratzis, and A.S. Best, Lithium‐ion battery separators for ionic‐liquid electrolytes: a review. Advanced Materials, 2020. 32(18): p. 1904205.
31. Ahn, S., et al., Development of high capacity, high rate lithium ion batteries utilizing metal fiber conductive additives. Journal of power sources, 1999. 81: p. 896-901.
32. Wang, K., et al., Hybrid super-aligned carbon nanotube/carbon black conductive networks: A strategy to improve both electrical conductivity and capacity for lithium ion batteries. Journal of Power Sources, 2013. 233: p. 209-215.
33. Kuroda, S., et al., Charge–discharge properties of a cathode prepared with ketjen black as the electro-conductive additive in lithium ion batteries. Journal of Power Sources, 2003. 119: p. 924-928.
34. Wang, Y.-B., et al., Strategies of binder design for high-performance lithium-ion batteries: a mini review. Rare Metals, 2022: p. 1-17.
35. Dunn, B., H. Kamath, and J.-M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science, 2011. 334(6058): p. 928-935.
36. Courtel, F.M., et al., Water-soluble binders for MCMB carbon anodes for lithium-ion batteries. Journal of power sources, 2011. 196(4): p. 2128-2134.
37. Shin, D., H. Park, and U. Paik, Cross-linked poly (acrylic acid)-carboxymethyl cellulose and styrene-butadiene rubber as an efficient binder system and its physicochemical effects on a high energy density graphite anode for Li-ion batteries. Electrochemistry Communications, 2017. 77: p. 103-106.
38. Li, L., et al., Co3O4 mesoporous nanostructures@graphene membrane as an integrated anode for long-life lithium-ion batteries. Journal of Power Sources, 2014. 255: p. 52-58.
39. Kim, S.-W., et al., Electrochemical performance and ex situ analysis of ZnMn2O4 nanowires as anode materials for lithium rechargeable batteries. Nano Research, 2011. 4: p. 505-510.
40. Song, M.S., et al., Solvothermal synthesis of ZnMn2O4 as an anode material in lithium ion battery. Electrochimica Acta, 2014. 137: p. 266-272.
41. Yang, G., et al., Facile synthesis of interwoven ZnMn2O4 nanofibers by electrospinning and their performance in Li-ion batteries. Materials Letters, 2014. 128: p. 336-339.
42. Feng, T., et al., Pomegranate-structured ZnMn2O4 microspheres for long cycle life lithium ion anode and elucidation of its conversion mechanism. Journal of The Electrochemical Society, 2020. 167(6): p. 060507.
43. Bruce, P.G., B. Scrosati, and J.M. Tarascon, Nanomaterials for rechargeable lithium batteries. Angewandte Chemie International Edition, 2008. 47(16): p. 2930-2946.
44. Yang, Y., et al., Nanocrystalline ZnMn2O4 as a novel lithium-storage material. Electrochemistry communications, 2008. 10(8): p. 1117-1120.
45. Zhou, L., et al., Facile preparation of ZnMn2O4 hollow microspheres as high-capacity anodes for lithium-ion batteries. Journal of Materials Chemistry, 2012. 22(3): p. 827-829.
46. Wang, N., et al., Porous ZnMn2O4 microspheres as a promising anode material for advanced lithium-ion batteries. Nano Energy, 2014. 6: p. 193-199.
47. Vu, A., Y. Qian, and A. Stein, Porous electrode materials for lithium‐ion batteries–how to prepare them and what makes them special. Advanced Energy Materials, 2012. 2(9): p. 1056-1085.
48. Li, Y., Z.Y. Fu, and B.L. Su, Hierarchically structured porous materials for energy conversion and storage. Advanced Functional Materials, 2012. 22(22): p. 4634-4667.
49. Song, T., L. Hu, and U. Paik, One-dimensional silicon nanostructures for Li ion batteries. The Journal of Physical Chemistry Letters, 2014. 5(4): p. 720-731.
50. Petkovich, N.D., et al., Control of TiO2 grain size and positioning in three-dimensionally ordered macroporous TiO2/C composite anodes for lithium ion batteries. Inorganic chemistry, 2014. 53(2): p. 1100-1112.
51. Armstrong, G., et al., TiO2(B) nanowires as an improved anode material for lithium-ion batteries containing LiFePO4 or LiNi0.5Mn1.5O4 cathodes and a polymer electrolyte. Advanced Materials, 2006. 18(19): p. 2597-2600.
52. Lotfabad, E.M., et al., Si nanotubes ALD coated with TiO2, TiN or Al2O3 as high performance lithium ion battery anodes. Journal of Materials Chemistry A, 2014. 2(8): p. 2504-2516.
53. Yi, Z., et al., Facile fabrication of SnO2@TiO2 core–shell structures as anode materials for lithium-ion batteries. Journal of materials chemistry A, 2016. 4(33): p. 12850-12857.
54. Wang, X., et al., Core–shell Ge@graphene@TiO2 nanofibers as a high‐capacity and cycle‐stable anode for lithium and sodium ion battery. Advanced Functional Materials, 2016. 26(7): p. 1104-1111.
55. Du, J., et al., Investigation of the soft carbon microstructure in silicon/carbon anodes for superior lithium storage. RSC advances, 2022. 12(32): p. 20672-20678.
56. Hou, G., et al., Scalable production of 3D plum-pudding-like Si/C spheres: Towards practical application in Li-ion batteries. Nano Energy, 2016. 24: p. 111-120.
57. Zuo, P., et al., Improvement of cycle performance for silicon/carbon composite used as anode for lithium ion batteries. Materials Chemistry and Physics, 2009. 115(2-3): p. 757-760.
58. Alfaruqi, M.H., et al., Pyro-synthesis of nanostructured spinel ZnMn2O4/C as negative electrode for rechargeable lithium-ion batteries. Electrochimica Acta, 2015. 151: p. 558-564.
59. Zhang, L.-X., et al., Hollow core–shell ZnMn2O4 microspheres as a high-performance anode material for lithium-ion batteries. Ceramics International, 2015. 41(8): p. 9655-9661.
60. Courtel, F.M., Y. Abu-Lebdeh, and I.J. Davidson, ZnMn2O4 nanoparticles synthesized by a hydrothermal method as an anode material for Li-ion batteries. Electrochimica acta, 2012. 71: p. 123-127.
61. Li, P., et al., Three-dimensional ZnMn2O4/porous carbon framework from petroleum asphalt for high performance lithium-ion battery. Electrochimica Acta, 2015. 180: p. 164-172.
62. Dong, L., et al., Three‐dimensional ZnMn2O4 nanoparticles/carbon cloth anodes for high‐performance flexible lithium‐ion batteries. ChemistrySelect, 2020. 5(8): p. 2372-2378.
63. Zhang, T., et al., Convenient and high-yielding strategy for preparing nano-ZnMn2O4 as anode material in lithium-ion batteries. Electrochimica Acta, 2016. 198: p. 84-90.
64. Xu, D., et al., Amorphous TiO2 layer on silicon monoxide nanoparticles as stable and scalable core-shell anode materials for high performance lithium ion batteries. Applied Surface Science, 2019. 479: p. 980-988.
65. Levchenko, A.A., et al., TiO2 stability landscape: Polymorphism, surface energy, and bound water energetics. Chemistry of Materials, 2006. 18(26): p. 6324-6332.
66. Da Silva, A.L., D. Hotza, and R.H. Castro, Surface energy effects on the stability of anatase and rutile nanocrystals: A predictive diagram for Nb2O5-doped-TiO2. Applied Surface Science, 2017. 393: p. 103-109.
67. Liang, C., et al., ZnMn2O4 spheres anchored on jute porous carbon for use as a high-performance anode material in lithium-ion batteries. Journal of Alloys and Compounds, 2021. 878: p. 160445.
68. Zhang, L., et al., Hierarchical Porous ZnMn2O4 Hollow Nanotubes with Enhanced Lithium Storage toward Lithium‐Ion Batteries. Chemistry–A European Journal, 2015. 21(30): p. 10771-10777.
69. Zhang, Y., et al., Synthesis of pomegranate-shaped micron ZnMn2O4 with enhanced lithium storage capability. Journal of Materiomics, 2021. 7(4): p. 699-707.
70. Zhang, T., et al., Nano-particle assembled porous core–shell ZnMn2O4 microspheres with superb performance for lithium batteries. Nanotechnology, 2017. 28(10): p. 105403.
71. Tang, Q., et al., Three-dimensional hierarchical graphene and CNT-coated spinel ZnMn2O4 as a high-stability anode for lithium-ion batteries. Electrochimica Acta, 2020. 338: p. 135853.
72. Chu, Y., et al., Embedding MnO@ Mn3O4 nanoparticles in an N‐doped‐carbon framework derived from Mn‐organic clusters for efficient lithium storage. Advanced Materials, 2018. 30(6): p. 1704244.
73. Jiang, Y., et al., Highly porous Mn3O4 micro/nanocuboids with in situ coated carbon as advanced anode material for lithium‐ion batteries. Small, 2018. 14(19): p. 1704296.
74. Zhao, Z., et al., Elucidating the energy storage mechanism of ZnMn2O4 as promising anode for Li-ion batteries. Journal of Materials Chemistry A, 2018. 6(40): p. 19381-19392.
75. Duncan, H., F.M. Courtel, and Y. Abu-Lebdeh, A study of the solid-electrolyte-interface (SEI) of ZnMn2O4: a conversion-type anode material for Li-ion batteries. Journal of The Electrochemical Society, 2015. 162(13): p. A7110.
76. Su, L., Z. Zhou, and P. Shen, Ni/C hierarchical nanostructures with Ni nanoparticles highly dispersed in N-containing carbon nanosheets: origin of Li storage capacity. The Journal of Physical Chemistry C, 2012. 116(45): p. 23974-23980.
77. Zhang, R., et al., Single‐phase mixed transition metal carbonate encapsulated by graphene: facile synthesis and improved lithium storage properties. Advanced Functional Materials, 2018. 28(10): p. 1705817.
78. Wagemaker, M. and F.M. Mulder, Properties and promises of nanosized insertion materials for Li-ion batteries. Accounts of chemical research, 2013. 46(5): p. 1206-1215.
79. Wagemaker, M., W.J. Borghols, and F.M. Mulder, Large impact of particle size on insertion reactions. a case for anatase LixTiO2. Journal of the American Chemical Society, 2007. 129(14): p. 4323-4327.
80. Li, J., et al., Effect of Ni content in NixMn1-xCO3 (x= 0, 0.20, 0.25, 0.33) submicrospheres on the performances of rechargeable lithium ion batteries. Electrochimica Acta, 2018. 276: p. 333-342.
81. Ahmia, N., et al., Photocatalytic activity of ZnMn2O4/TiO2 heterostructure under solar light irradiation: Experimental and theoretical study. Journal of Molecular Structure, 2024: p. 137834.
82. Kim, A.-Y., et al., Hierarchical hollow dual Core–Shell carbon nanowall-encapsulated p–n SnO/SnO2 heterostructured anode for high-performance lithium-ion-based energy storage. Carbon, 2019. 153: p. 62-72.
83. Wang, D., et al., Layer by layer assembly of sandwiched graphene/SnO2 nanorod/carbon nanostructures with ultrahigh lithium ion storage properties. Energy & Environmental Science, 2013. 6(10): p. 2900-2906.
84. Lee, D., et al., Understanding the critical role of the Ag nanophase in boosting the initial reversibility of transition metal oxide anodes for lithium-ion batteries. ACS applied materials & interfaces, 2017. 9(26): p. 21715-21722.
85. Zhang, N., et al., Pitaya-like Sn@C nanocomposites as high-rate and long-life anode for lithium-ion batteries. Nanoscale, 2014. 6(5): p. 2827-2832.
86. Laruelle, S., et al., On the origin of the extra electrochemical capacity displayed by MO/Li cells at low potential. Journal of the Electrochemical Society, 2002. 149(5): p. A627.
87. Xu, Y., J. Guo, and C. Wang, Sponge-like porous carbon/tin composite anode materials for lithium ion batteries. Journal of Materials Chemistry, 2012. 22(19): p. 9562-9567.
88. Wei, T.-T., et al., Construction of porous biphasic ZnTiO3 rods as anode materials for high-performance Li-ion batteries driven by a hybrid Li storage mechanism. Applied Surface Science, 2023. 620: p. 156805.
89. Choi, W., et al., Modeling and applications of electrochemical impedance spectroscopy (EIS) for lithium-ion batteries. Journal of Electrochemical Science and Technology, 2020. 11(1): p. 1-13.
90. An, Y.-B., et al., Improving anode performances of lithium-ion capacitors employing carbon–Si composites. Rare Metals, 2019. 38: p. 1113-1123.
91. Xie, F., et al., Hard–soft carbon composite anodes with synergistic sodium storage performance. Advanced functional materials, 2019. 29(24): p. 1901072.
92. Sun, B., et al., Enhanced active sulfur in soft carbon via synergistic doping effect for ultra–stable lithium–ion batteries. Energy Storage Materials, 2020. 24: p. 450-457.
93. Cao, B., et al., Mesoporous soft carbon as an anode material for sodium ion batteries with superior rate and cycling performance. Journal of Materials Chemistry A, 2016. 4(17): p. 6472-6478.
94. Thommes, M., et al., Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and applied chemistry, 2015. 87(9-10): p. 1051-1069.
95. Liu, Z., et al., Facile synthesis of hybrid pitch-based soft carbon as high-performance silicon/carbon anodes for lithium-ion batteries. Ionics, 2022. 28(8): p. 3709-3718.
96. Li, H., et al., Enhanced reversible capability of a macroporous ZnMn2O4/C microsphere anode with a water-soluble binder for long-life and high-rate lithium-ion storage. Inorganic Chemistry Frontiers, 2019. 6(6): p. 1535-1545.
97. Zhang, Y., et al., Porous ZnMn2O4 nanowires as an advanced anode material for lithium ion battery. Electrochimica Acta, 2015. 182: p. 1140-1144.
98. Chen, X., et al., Porous ZnMn2O4 nanospheres: facile synthesis through microemulsion method and excellent performance as anode of lithium ion battery. Journal of Power Sources, 2016. 312: p. 137-145.
99. Carey, T., et al., Cyclic production of biocompatible few-layer graphene ink with in-line shear-mixing for inkjet-printed electrodes and Li-ion energy storage. npj 2D Materials and Applications, 2022. 6(1): p. 3.
100. Jin, Z., et al., Understanding the correlation between microstructure and electrochemical performance of hybridized pitch cokes for lithium-ion battery through tailoring their evolutional structures from ordered soft carbon to disordered hard carbon. Journal of Alloys and Compounds, 2021. 887: p. 161357.
101. Allagui, A., et al., Reevaluation of performance of electric double-layer capacitors from constant-current charge/discharge and cyclic voltammetry. Scientific reports, 2016. 6(1): p. 38568.
102. Dahn, J., W. Xing, and Y. Gao, The “falling cards model” for the structure of microporous carbons. Carbon, 1997. 35(6): p. 825-830.
103. Liu, Y., et al., Mechanism of lithium insertion in hard carbons prepared by pyrolysis of epoxy resins. Carbon, 1996. 34(2): p. 193-200.
104. Chang, P.-y., C.-h. Huang, and R.-a. Doong, Ordered mesoporous carbon–TiO2 materials for improved electrochemical performance of lithium ion battery. Carbon, 2012. 50(11): p. 4259-4268.
105. Ma, T., et al., Hierarchical pores from microscale to macroscale boost ultrahigh lithium intercalation pseudocapacitance of biomass carbon. Journal of Energy Storage, 2021. 33: p. 102068.
106. Gao, Q., et al., Reduced graphene oxide wrapped ZnMn2O4/carbon nanofibers for long-life lithium-ion batteries. Electrochimica Acta, 2018. 270: p. 417-425.
107. Yin, L., et al., Spinel ZnMn2O4 nanocrystal‐anchored 3D hierarchical carbon aerogel hybrids as anode materials for lithium ion batteries. Advanced Functional Materials, 2014. 24(26): p. 4176-4185.
108. Xiao, L., et al., Low temperature synthesis of flower-like ZnMn2O4 superstructures with enhanced electrochemical lithium storage. Journal of Power Sources, 2009. 194(2): p. 1089-1093.
109. Zhang, T., et al., A unique 2D-on-3D architecture developed from ZnMn2O4 and CMK-3 with excellent performance for lithium ion batteries. Carbon, 2017. 123: p. 717-725.
指導教授 劉奕宏(Yi-Hung Liu) 審核日期 2024-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明