博碩士論文 111223086 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:13.59.1.209
姓名 盧昱丞(Yu-Cheng Lu)  查詢紙本館藏   畢業系所 化學學系
論文名稱 於鋁基金屬有機骨架材料中封裝蔗糖分解酶 與其串聯生物催化反應之研究
(Encapsulation of Invertase in Aluminum-Based Metal-organic Frameworks for Tandem Biocatalysis)
相關論文
★ 天然物 Faveline methyl ether 之合成研究★ 人體突變生長激素受質膜內區段與半乳醣凝集素-12的表現、純化與結晶
★ 研究新型奈米粒子載體結合核糖核酸干擾調控在細胞內蛋白之表現★ 具芳香環胺基酸與內環狀結構之中孔洞材料的合成、鑑定與應用
★ 以手性亞碸催化劑進行醛的不對稱乙基化反應之研究★ 噁噻硼烷-氯化鎵錯合物催化不對稱 Diels-Alder 反應之研究
★ 開發心肌缺氧後再灌流傷害用藥與近紅外光染劑的高效率微脂體包覆方法★ Total Synthesis of Pikrosalvin, Simplexene C, D and Synthetic Studies toward Swartziarboreol G and Simplexene B
★ Understanding the Depolymerization of Biomass-derived Polysaccharides: Recrystallization while Hydrolyzing Polysaccharides★ 以手性有機硫催化劑進行不對稱環丙烷化反應並應用於合成吡咯類化合物之研究
★ 一、 以掌性硫化合物進行不對稱 [4+1] 環化反應並應用在吲哚啉類化合物的合成研究二、掌性共價有機框架材料的設計與合成並應用在多烯環化反應★ 第一章 以手性硫催化劑進行不對稱 [4+1] 環化反應並應用於合成吲哚類化合物之研究 第二章 設計與合成手性共價有機骨架並應用至不對稱多烯環化反應
★ 以開環置換聚合反應合成手性共價有機框架材料並將其應用於不對稱催化多烯環化反應之研究★ 利用光固化材料調控R3CE的界面共價修飾及其對三維細胞培養的影響
★ 流感病毒血球凝集素(II)膜外區域之物理化學特性分析★ 中孔洞材料SBA-15及其官能基化衍生材料對溶液中污染物之吸附應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-8-20以後開放)
摘要(中) 本研究旨在探討蔗糖分解酶 (Invertase, INV) 酵素固定化於鋁金屬基金屬有機骨架材料 (A520 和 Al-MIL-53) 上的應用,以優化轉化糖漿的生產。蔗糖分解酶能將蔗糖水解為葡萄糖和果糖,是製備轉化糖漿的重要催化劑。轉化糖漿 (Invert syrup) 因其較高的甜度和良好的保濕性,在食品工業中具有廣泛的應用,例如在烘焙和飲料行業中被廣泛使用。鋁金屬基金屬有機骨架材料 (Metal-organic Frameworks, MOFs),如 A520 和 Al-MIL-53 ,因其高比表面積、可調控的孔徑和優異的穩定性,成為固定化酵素的理想載體。
本研究結果發現蔗糖分解酶固定化於 A520 和 Al-MIL-53 中,能顯著提高酵素的穩定性和活性。例如在反應溫度為 55°C 和 65°C 的高溫條件下將蔗糖分解酶包覆於 A520 材料中,其活性均較純蔗糖分解酶高出約 2 至 4 倍。這些 MOFs 材料能夠保護酵素在不利的反應條件(如高溫或強酸強鹼環境)下仍能保持其催化功能,從而提高反應效率和產品品質。此外,這種固定化方法還能有效防止酵素的溢漏問題,實現酵素的重複利用,降低生產成本。
未來的研究方向包括將酵素串聯反應(Tandem reactions)應用於固定化系統。例如,將 α-半乳糖苷酶(α-Galactosidase)和蔗糖分解酶聯合固定於 A520 和 Al-MIL-53 中,可實現棉子糖(Raffinose)一步轉化為高價值的轉化糖漿。此方法不僅簡化生產工藝,減少中間產物分離和酵素再利用步驟,還顯著提高生產效率和經濟效益。
綜上所述,本研究展示了 MOFs 在酵素固定化中的巨大潛力,為食品工業中的轉化糖漿生產提供高效且經濟的技術途徑。同時,這一技術在酵素串聯反應中的應用前景廣闊,有望實現多步驟反應的一體化操作,進一步提升工業生產效率和永續性。
摘要(英) This study aims to investigate the application of invertase (INV) enzyme immobilization on aluminum-based metal-organic frameworks (MOFs), specifically A520 and Al-MIL-53, to optimize the production of invert syrup. Invertase catalyzes the hydrolysis of sucrose into glucose and fructose, serving as a crucial catalyst in the preparation of invert syrup. Due to its higher sweetness and excellent moisture retention properties, invert syrup is widely used in the food industry, particularly in baking and beverages. Aluminum-based MOFs, such as A520 and Al-MIL-53, are ideal carriers for enzyme immobilization due to their high specific surface area, tunable pore size, and exceptional stability.
The results of this study indicate that immobilizing invertase on A520 and Al-MIL-53 significantly enhances enzyme stability and activity. For instance, under high-temperature reaction conditions of 55°C and 65°C, invertase encapsulated in A520 material exhibited an activity approximately 2 to 4 times higher than that of pure invertase. These MOFs can protect the enzyme′s catalytic function under adverse reaction conditions, such as high temperatures or strong acidic and alkaline environments, thereby improving reaction efficiency and product quality. Additionally, this immobilization method effectively prevents enzyme leakage, enabling enzyme reuse and reducing production costs.
Future research directions include applying tandem reactions in immobilized systems. For example, co-immobilizing α-galactosidase and invertase on A520 and Al-MIL-53 could achieve the one-step conversion of raffinose to high-value invert syrup. This approach simplifies the production process, reduces intermediate product separation and enzyme reuse steps, and significantly enhances production efficiency and economic benefits.
In summary, this study demonstrates the significant potential of MOFs in enzyme immobilization, providing an efficient and economical technological approach for the production of invert syrup in the food industry. Moreover, this technology has broad application prospects in tandem enzyme reactions, potentially enabling the integration of multi-step reactions and further enhancing industrial production efficiency and sustainability.
關鍵字(中) ★ 鋁基底金屬骨架有機材料
★ 蔗糖轉換酶
★ 酵素固定化
★ 溫和水相合成法
★ 轉化糖漿
關鍵字(英) ★ aluminum-based metal-organic frameworks
★ invertase
★ enzyme immobilization
★ mild aqueous synthesis method
★ invert syrup
論文目次 中文摘要 i
Abstract iii
目錄 v
圖目錄 ix
表目錄 xii
第一章 緒論 1
1-1 金屬有機骨架材料 1
1-2 鋁金屬基底之金屬有機骨架材料 3
1-2-1 金屬有機骨架材料 A520 4
1-2-2 金屬有機骨架材料 Al-MIL-53 5
1-3 酵素、酵素固定化與金屬有機骨架材料 7
1-4 酵素串聯反應 (Tandem Reactions) 9
1-5 蔗糖分解酶 (Invertase, INV) 10
1-6 棉子糖 (Raffinose) 10
1-7 研究動機與目的 11
第二章 實驗部分 13
2-1 實驗藥品 13
2-2 實驗使用儀器 16
2-3 實驗鑑定用儀器 17
2-4 實驗儀器之原理 18
2-4-1 紫外光可見光分光光譜儀 (UV/VIS Spectrophotometer) 18
2-4-2 X 射線粉末繞射儀 (Powder X-ray Diffractometer;XRD) 20
2-5 實驗所用之分析方法 25
2-5-1 Bradford Assay: 偵測蛋白質濃度 25
2-5-2 糖脎反應:用於測定蔗糖分解酶活性 26
2-5-3 十二烷基硫酸鈉聚丙烯醯胺凝膠電泳 (SDS-PAGE) 27
2-6 實驗步驟 29
2-6-1 鋁金屬基底金屬有機材料 A520 之合成 29
2-6-2 蔗糖分解酶封裝於鋁金屬基底金屬有機材料 A520 (INV@A520) 之合成 29
2-6-3 鋁金屬基底金屬有機材料 Al-MIL-53 之合成 30
2-6-4 蔗糖分解酶封裝於鋁金屬基底金屬有機材料 Al-MIL-53 (INV@MIL-53) 之合成 30
2-6-5 測定蛋白質含量 (Bradford Assay) 31
2-6-6 配製糖脎反應試劑與檢量線 32
2-6-7 測定蔗糖分解酶活性 33
2-6-8 十二烷基硫酸鈉聚丙烯醯胺凝膠電泳(SDS-PAGE) 35
第三章 結果與討論 37
3-1 蔗糖分解酶包覆於 A520 之鑑定與活性實驗 37
3-1-1 INV@A520 之 X 射線粉末繞射圖譜鑑定 37
3-1-2 INV@A520之掃描式電子顯微鏡影像分析 38
3-1-3 INV@A520 之 SDS-PAGE 鑑定 39
3-1-4 INV@A520 之蛋白質含量測試 40
3-1-5 INV@A520 與純蔗糖分解酶之活性探討 41
3-2 蔗糖分解酶包覆於 Al-MIL-53 之鑑定與活性實驗 49
3-2-1 INV@MIL-53 之 X 射線粉末繞射圖譜鑑定 49
3-2-2 INV@MIL-53 之掃描式電子顯微鏡影像分析 50
3-2-3 INV@MIL-53 之 SDS-PAGE 鑑定 52
3-2-4 INV@MIL-53之蛋白質含量測試 53
3-2-5 蔗糖分解酶包覆於 A520 與 Al-MIL-53 和純蔗糖分解酶的活性實驗結果比較 54
第四章 結論及未來展望 60
參考文獻 62

圖目錄
圖 1 1 各種合成 MOFs 的方法12 2
圖 1-2 MOFs 之應用 2
圖 1-3 A520 之結構示意圖 5
圖 1 5 固定化酵素之方法53, 59 8
圖 1 6 酵素-MOF複合材料之製備方法65 8
圖 1 7 棉子糖透過雙酵素反應產生轉化糖漿之示意圖 12
圖 2-1 電磁波能量範圍79 18
圖 2-2 雙光紫外光-可見光光譜儀結構示意圖81 19
圖 2 3 晶面方向與立方晶體中不同晶面的密勒指數82, 83 20
圖 2 4 簡單立方點陣中不同晶面的間距82, 83 21
圖 2 5 布拉格定律示意圖83 22
圖 2-6 掃描式電子顯微鏡結構示意圖86 24
圖 2-7 糖脎反應 26
圖 2-8 SDS-PAGE 凝膠電泳示意圖90 28
圖 2-9 本次研究所使用的 Protein Marker 28
圖 3-1 INV@A520之 X 射線粉末繞射圖譜 37
圖 3-2 INV@A520 之 掃描式電子顯微鏡影像分析圖 38
圖 3-3 INV@A520 之 SDS-PAGE 鑑定圖 39
圖 3-4 INV@A520 之 Bradford Assay 檢量線 40
圖 3-5 INV@A520 與 Free Invertase 在 Incubation 2 分鐘後分解蔗糖之活性測試 (反應條件:pH 4.0, 反應溫度 55°C) (三重複) 41
圖 3-6 INV@A520 與 Free Invertase 在 Incubation 5 分鐘後分解蔗糖之活性測試 (反應條件:pH 4.0, 反應溫度 55°C) (三重複) 42
圖 3-7 INV@A520 與 Free Invertase 在 Incubation 10 分鐘後分解蔗糖之活性測試 (反應條件:pH 4.0, 反應溫度 55°C) (三重複) 42
圖 3-8 INV@A520 與 Free Invertase 在 Incubation 20 分鐘後分解蔗糖之活性測試 (反應條件:pH 4.0, 反應溫度 55°C) (三重複) 43
圖 3-9 INV@A520與 Free Invertase 在 pH 4.0 且反應溫度為 45°C 下分解蔗糖之活性測試比較圖 (三重複) 44
圖 3-10 INV@A520與 Free Invertase 在 pH 4.0 且反應溫度為 55°C 下分解蔗糖之活性測試比較圖 (三重複) 44
圖 3-11 INV@A520與 Free Invertase 在 pH 4.0 且反應溫度為 65°C 下分解蔗糖之活性測試比較圖 (三重複) 45
圖 3-12 INV@A520與 Free Invertase 在 pH 5.0 且反應溫度為 45°C 下分解蔗糖之活性測試比較圖 (三重複) 45
圖 3-13 INV@A520與 Free Invertase 在 pH 5.0 且反應溫度為 55°C 下分解蔗糖之活性測試比較圖 (三重複) 46
圖 3-14 INV@A520與 Free Invertase 在 pH 5.0 且反應溫度為 65°C 下分解蔗糖之活性測試比較圖 (三重複) 46
圖 3-15 INV@A520與 Free Invertase 在 pH 6.0 且反應溫度為 45°C 下分解蔗糖之活性測試比較圖 (三重複) 47
圖 3-16 INV@A520與 Free Invertase 在 pH 6.0 且反應溫度為 55°C 下分解蔗糖之活性測試比較圖 (三重複) 47
圖 3-17 INV@A520與 Free Invertase 在 pH 6.0 且反應溫度為 65°C 下分解蔗糖之活性測試比較圖 (三重複) 48
圖 3-18 INV@MIL-53 與 Al-MIL-53 之 X 射線粉末繞射圖譜 49
圖 3-19 INV@MIL-53 之 掃描式電子顯微鏡影像分析圖 50
圖 3-20 INV@MIL-53 之 SDS-PAGE 鑑定圖 52
圖 3-21 INV@MIL-53 之 Bradford Assay 檢量線 53
圖 3-22 INV@A520、INV@MIL-53 與 Free Invertase 在 pH 4.0且反應溫度為 45°C下分解蔗糖之活性測試 (三重複) 54
圖 3-23 INV@A520、INV@MIL-53 與 Free Invertase 在 pH 4.0且反應溫度為 55°C下分解蔗糖之活性測試 (三重複) 55
圖 3-24 INV@A520、INV@MIL-53 與 Free Invertase 在 pH 4.0且反應溫度為 65°C下分解蔗糖之活性測試 (三重複) 55
圖 3-25 INV@A520、INV@MIL-53 與 Free Invertase 在 pH 5.0且反應溫度為 45°C下分解蔗糖之活性測試 (三重複) 56
圖 3-26 INV@A520、INV@MIL-53 與 Free Invertase 在 pH 5.0且反應溫度為 55°C下分解蔗糖之活性測試 (三重複) 56
圖 3-27 INV@A520、INV@MIL-53 與 Free Invertase 在 pH 5.0且反應溫度為 65°C下分解蔗糖之活性測試 (三重複) 57
圖 3-28 INV@A520、INV@MIL-53 與 Free Invertase 在 pH 6.0且反應溫度為 45°C下分解蔗糖之活性測試 (三重複) 57
圖 3-29 INV@A520、INV@MIL-53 與 Free Invertase 在 pH 6.0且反應溫度為 55°C下分解蔗糖之活性測試 (三重複) 58
圖 3-30 INV@A520、INV@MIL-53 與 Free Invertase 在 pH 6.0且反應溫度為 65°C下分解蔗糖之活性測試 (三重複) 58
圖 3-31 Free Invertase、 INV@A520 與 INV@MIL-53 於不同溫度、酸鹼值下之活性比較示意圖 59


表目錄

表 1 實驗藥品 13
表 2 分離/膠集膠體配方 35
表 3 染劑/退染劑配方 36
參考文獻 (1) Li, H.; Eddaoudi, M.; O′Keeffe, M.; Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. nature 1999, 402 (6759), 276-279.
(2) Yaghi, O. M.; Li, G.; Li, H. Selective binding and removal of guests in a microporous metal–organic framework. Nature 1995, 378 (6558), 703-706.
(3) Wang, H.; Zhu, Q.; Zou, R.; Xu, Q. Metal-Organic Frameworks for Energy Applications. Chem 2017, 2, 52-80.
(4) Wen, Y.; Zhang, P.; Sharma, V. K.; Ma, X.; Zhou, H. Metal-organic frameworks for environmental applications. Cell Reports Physical Science 2021, 2 (2).
(5) McKinlay, A. C.; Morris, R. E.; Horcajada, P.; Férey, G.; Gref, R.; Couvreur, P.; Serre, C. BioMOFs: metal-organic frameworks for biological and medical applications. Angewandte Chemie 2010, 49 36, 6260-6266.
(6) Yaghi, O. M.; O′Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Reticular synthesis and the design of new materials. Nature 2003, 423 (6941), 705-714.
(7) Li, P.; Cheng, F.-F.; Xiong, W.; Zhang, Q. New synthetic strategies to prepare metal–organic frameworks. Inorganic chemistry frontiers 2018, 5, 2693-2708.
(8) Klinowski, J.; Paz, F. A. A.; Silva, P.; Rocha, J. Microwave-assisted synthesis of metal–organic frameworks. Dalton Transactions 2011, 40 (2), 321-330.
(9) Pichon, A.; Lazuen-Garay, A.; James, S. L. Solvent-free synthesis of a microporous metal–organic framework. CrystEngComm 2006, 8 (3), 211-214.
(10) Qiu, L.-G.; Li, Z.-Q.; Wu, Y.; Wang, W.; Xu, T.; Jiang, X. Facile synthesis of nanocrystals of a microporous metal–organic framework by an ultrasonic method and selective sensing of organoamines. Chemical communications 2008, (31), 3642-3644.
(11) Ameloot, R.; Stappers, L.; Fransaer, J.; Alaerts, L.; Sels, B. F.; De Vos, D. E. Patterned growth of metal-organic framework coatings by electrochemical synthesis. Chemistry of Materials 2009, 21 (13), 2580-2582.
(12) Stock, N.; Biswas, S. Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chemical reviews 2012, 112 (2), 933-969.
(13) Ma, Y.; Zhang, L.; Tang, C. Property of Nanoporous Metal-Organic Frameworks at Different Synthesis Temperature. Advanced Materials Research 2012, 427, 123 - 127.
(14) Armstrong, M.; Senthilnathan, S.; Balzer, C. J.; Shan, B.; Chen, L.; Mu, B. Particle size studies to reveal crystallization mechanisms of the metal organic framework HKUST-1 during sonochemical synthesis. Ultrasonics sonochemistry 2017, 34, 365-370.
(15) Bosch, M.; Sun, X.; Yuan, S.; Chen, Y. P.; Wang, Q.; Wang, X.; Zhou, H. C. Modulated Synthesis of Metal‐Organic Frameworks through Tuning of the Initial Oxidation State of the Metal. European Journal of Inorganic Chemistry 2016, 2016 (27), 4368-4372.
(16) Pakamorė, I.; Rousseau, J.; Rousseau, C.; Monflier, E.; Szilágyi, P. Á. An ambient-temperature aqueous synthesis of zirconium-based metal–organic frameworks. Green chemistry 2018, 20 (23), 5292-5298.
(17) Moellmer, J.; Celer, E. B.; Luebke, R.; Cairns, A. J.; Staudt, R.; Eddaoudi, M.; Thommes, M. Insights on Adsorption Characterization of Metal-Organic Frameworks: A Benchmark Study on the Novel soc-MOF. Microporous and Mesoporous Materials 2010, 129, 345-353.
(18) Li, J.; Ma, Y.; McCarthy, M. C.; Sculley, J. P.; Yu, J.; Jeong, H. K.; Balbuena, P. B.; Zhou, H. Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks. Coordination Chemistry Reviews 2011, 255, 1791-1823.
(19) Daliran, S.; Oveisi, A. R.; Peng, Y.; López‐Magano, A.; Khajeh, M.; Mas‐Ballesté, R.; Alemán, J.; Luque, R.; García, H. Metal-organic framework (MOF)-, covalent-organic framework (COF)-, and porous-organic polymers (POP)-catalyzed selective C-H bond activation and functionalization reactions. Chemical Society reviews 2022.
(20) Reddy, C. V.; Reddy, K. R.; Harish, V. V. N.; Shim, J.-J.; Shankar, M. V.; Shetti, N. P.; Aminabhavi, T. M. Metal-organic frameworks (MOFs)-based efficient heterogeneous photocatalysts: Synthesis, properties and its applications in photocatalytic hydrogen generation, CO2 reduction and photodegradation of organic dyes. International Journal of Hydrogen Energy 2020, 45, 7656-7679.
(21) Shen, K.; Chen, X.; Chen, J.; Li, Y. Development of MOF-Derived Carbon-Based Nanomaterials for Efficient Catalysis. ACS Catalysis 2016, 6, 5887-5903.
(22) Dhakshinamoorthy, A.; Asiri, A. M.; García, H. Catalysis in Confined Spaces of Metal Organic Frameworks. ChemCatChem 2020, 12.
(23) Koo, W. T.; Jang, J.-S.; Kim, I. D. Metal-Organic Frameworks for Chemiresistive Sensors. Chem 2019.
(24) Lv, M.; Zhou, W.; Tavakoli, H.; Bautista, C.; Xia, J.; Wang, Z.; Li, X. Aptamer-functionalized metal-organic frameworks (MOFs) for biosensing. Biosensors & bioelectronics 2020, 176, 112947.
(25) Li, H.; Zhao, S. N.; Zang, S.; Li, J. Functional metal-organic frameworks as effective sensors of gases and volatile compounds. Chemical Society reviews 2020.
(26) Fang, X.; Zong, B.; Mao, S. Metal–organic framework-based sensors for environmental contaminant sensing. Nano-micro letters 2018, 10, 1-19.
(27) Tan, L.-L.; Li, H.; Zhou, Y.; Zhang, Y.; Feng, X.; Wang, B.; Yang, Y. Zn(2+)-Triggered Drug Release from Biocompatible Zirconium MOFs Equipped with Supramolecular Gates. Small 2015, 11 31, 3807-3813.
(28) Zheng, H.; Zhang, Y.; Liu, L.; Wan, W.; Guo, P.; Nyström, A. M.; Zou, X. One-pot Synthesis of Metal-Organic Frameworks with Encapsulated Target Molecules and Their Applications for Controlled Drug Delivery. Journal of the American Chemical Society 2016, 138 3, 962-968.
(29) Wang, L.; Zheng, M.; Xie, Z. Nanoscale metal-organic frameworks for drug delivery: a conventional platform with new promise. Journal of materials chemistry. B 2018, 6 5, 707-717.
(30) Wu, M. X.; Yang, Y. W. Metal–organic framework (MOF)‐based drug/cargo delivery and cancer therapy. Advanced Materials 2017, 29 (23), 1606134.
(31) Aguilera-Sigalat, J.; Bradshaw, D. Synthesis and applications of metal-organic framework–quantum dot (QD@ MOF) composites. Coordination Chemistry Reviews 2016, 307, 267-291.
(32) Duan, H.-H.; Zhao, Z.; Lu, J.; Hu, W.; Zhang, Y.; Li, S.; Zhang, M. F.; Zhu, R.; Pang, H. When Conductive MOFs Meet MnO2: High Electrochemical Energy Storage Performance in an Aqueous Asymmetric Supercapacitor. ACS applied materials & interfaces 2021.
(33) Stock, N. Metal‐organic frameworks: aluminium‐based frameworks. Encyclopedia of Inorganic and Bioinorganic Chemistry 2011, 1-16.
(34) Senkovska, I.; Hoffmann, F.; Fröba, M.; Getzschmann, J.; Böhlmann, W.; Kaskel, S. New highly porous aluminium based metal-organic frameworks: Al(OH)(ndc) (ndc = 2,6-naphthalene dicarboxylate) and Al(OH)(bpdc) (bpdc = 4,4′-biphenyl dicarboxylate). Microporous and Mesoporous Materials 2009, 122, 93-98.
(35) Wu, T.; Prasetya, N.; Li, K. Recent advances in aluminium-based metal-organic frameworks (MOF) and its membrane applications. Journal of Membrane Science 2020, 615, 118493.
(36) Serre, C.; Bourrelly, S.; Vimont, A.; Ramsahye, N. A.; Maurin, G.; Llewellyn, P. L.; Daturi, M.; Filinchuk, Y.; Leynaud, O.; Barnes, P. An explanation for the very large breathing effect of a metal–organic framework during CO2 adsorption. Advanced materials 2007, 19 (17), 2246-2251.
(37) Finsy, V.; Ma, L.; Alaerts, L.; De Vos, D.; Baron, G.; Denayer, J. Separation of CO2/CH4 mixtures with the MIL-53 (Al) metal–organic framework. Microporous and Mesoporous Materials 2009, 120 (3), 221-227.
(38) Boutin, A.; Coudert, F.-X.; Springuel-Huet, M.-A.; Neimark, A. V.; Férey, G.; Fuchs, A. H. The behavior of flexible MIL-53 (Al) upon CH4 and CO2 adsorption. The Journal of Physical Chemistry C 2010, 114 (50), 22237-22244.
(39) Tehrani, M. S.; Zare‐Dorabei, R. Highly efficient simultaneous ultrasonic-assisted adsorption of methylene blue and rhodamine B onto metal organic framework MIL-68(Al): central composite design optimization. RSC Advances 2016, 6, 27416-27425.
(40) Wu, S.-c.; You, X.; Yang, C.; Cheng, J. Adsorption behavior of methyl orange onto an aluminum-based metal organic framework, MIL-68(Al). Water science and technology : a journal of the International Association on Water Pollution Research 2017, 75 12, 2800-2810.
(41) Zlotea, C.; Campesi, R.; Cuevas, F.; Leroy, E.; Dibandjo, P.; Volkringer, C.; Loiseau, T.; Férey, G.; Latroche, M. Pd nanoparticles embedded into a metal-organic framework: synthesis, structural characteristics, and hydrogen sorption properties. Journal of the American Chemical Society 2010, 132 9, 2991-2997.
(42) Zhong, G.; Liu, D.; Zhang, J. Applications of porous metal–organic framework MIL-100 (M)(M= Cr, Fe, Sc, Al, V). Crystal Growth & Design 2018, 18 (12), 7730-7744.
(43) Srirambalaji, R.; Hong, S.; Natarajan, R.; Yoon, M.; Hota, R.; Kim, Y.; Ho Ko, Y.; Kim, K. Tandem catalysis with a bifunctional site-isolated Lewis acid-Brønsted base metal-organic framework, NH2-MIL-101(Al). Chemical communications 2012, 48 95, 11650-11652.
(44) Pérez‐Cejuela, H. M.; Carrasco‐Correa, E. J.; Shahat, A.; Simó‐Alfonso, E. F.; Herrero‐Martínez, J. M. Incorporation of metal‐organic framework amino‐modified MIL‐101 into glycidyl methacrylate monoliths for nano LC separation. Journal of separation science 2019, 42 (4), 834-842.
(45) Alvarez, E.; Guillou, N.; Martineau, C.; Bueken, B.; Van de Voorde, B.; Le Guillouzer, C.; Fabry, P.; Nouar, F.; Taulelle, F.; De Vos, D. E.; et al. The structure of the aluminum fumarate metal-organic framework A520. Angewandte Chemie 2015, 54 12, 3664-3668.
(46) Kummer, H.; Jeremias, F.; Warlo, A.; Füldner, G.; Fröhlich, D.; Janiak, C.; Gläser, R.; Henninger, S. K. A Functional Full-Scale Heat Exchanger Coated with Aluminum Fumarate Metal–Organic Framework for Adsorption Heat Transformation. Industrial & Engineering Chemistry Research 2017, 56, 8393-8398.
(47) Wang, Y.; Qu, Q.; Liu, G.; Battaglia, V. S.; Zheng, H. Aluminum fumarate-based metal organic frameworks with tremella-like structure as ultrafast and stable anode for lithium-ion batteries. Nano Energy 2017, 39, 200-210.
(48) Tan, B.; Luo, Y.; Liang, X.; Wang, S.; Gao, X.; Zhang, Z.; Fang, Y. In situ synthesis and performance of aluminum fumarate metal–organic framework monolithic adsorbent for water adsorption. Industrial & Engineering Chemistry Research 2019, 58 (34), 15712-15720.
(49) Koeller, K. M.; Wong, C.-H. Enzymes for chemical synthesis. Nature 2001, 409 (6817), 232-240.
(50) van Dongen, S. F.; Elemans, J. A.; Rowan, A. E.; Nolte, R. J. Processive catalysis. Angewandte Chemie International Edition 2014, 53 (43), 11420-11428.
(51) Strohmeier, G. A.; Pichler, H.; May, O.; Gruber-Khadjawi, M. Application of designed enzymes in organic synthesis. Chemical reviews 2011, 111 (7), 4141-4164.
(52) Franssen, M. C.; Steunenberg, P.; Scott, E. L.; Zuilhof, H.; Sanders, J. P. Immobilised enzymes in biorenewables production. Chemical Society Reviews 2013, 42 (15), 6491-6533.
(53) Homaei, A. A.; Sariri, R.; Vianello, F.; Stevanato, R. Enzyme immobilization: an update. Journal of chemical biology 2013, 6, 185-205.
(54) Klibanov, A. M. Immobilized enzymes and cells as practical catalysts. Science 1983, 219 (4585), 722-727.
(55) Guisan, J. M. Immobilization of enzymes and cells; Springer, 2006.
(56) Sassolas, A.; Blum, L. J.; Leca-Bouvier, B. D. Immobilization strategies to develop enzymatic biosensors. Biotechnology advances 2012, 30 3, 489-511.
(57) Ju-xi, H. Research progress in lipase immobilization. Science and Technology of Food Industry 2011.
(58) Norouzian, D. Enzyme immobilization: the state of art in biotechnology. Iranian Journal of Biotechnology 2003, 1, 197-206.
(59) Garcia-Quinto, E.; Aranda-Cañada, R.; García-García, P.; Fernández-Lorente, G. Use of potential immobilized enzymes for the modification of liquid foods in the food industry. Processes 2023, 11 (6), 1840.
(60) Lian, X.; Fang, Y.; Joseph, E.; Wang, Q.; Li, J.; Banerjee, S.; Lollar, C.; Wang, X.; Zhou, H.-C. Enzyme–MOF (metal–organic framework) composites. Chemical Society Reviews 2017, 46 (11), 3386-3401.
(61) Liang, J.; Liang, K. Biocatalytic metal–organic frameworks: prospects beyond bioprotective porous matrices. Advanced Functional Materials 2020, 30 (27), 2001648.
(62) Shieh, F.-K.; Wang, S.-C.; Yen, C.-I.; Wu, C.-C.; Dutta, S.; Chou, L.-Y.; Morabito, J. V.; Hu, P.; Hsu, M.-H.; Wu, K. C.-W. Imparting functionality to biocatalysts via embedding enzymes into nanoporous materials by a de novo approach: size-selective sheltering of catalase in metal–organic framework microcrystals. Journal of the American Chemical Society 2015, 137 (13), 4276-4279.
(63) Liao, F.-S.; Lo, W.-S.; Hsu, Y.-S.; Wu, C.-C.; Wang, S.-C.; Shieh, F.-K.; Morabito, J. V.; Chou, L.-Y.; Wu, K. C.-W.; Tsung, C.-K. Shielding against unfolding by embedding enzymes in metal–organic frameworks via a de novo approach. Journal of the American Chemical Society 2017, 139 (19), 6530-6533.
(64) Wei, T.-H.; Wu, S.-H.; Huang, Y.-D.; Lo, W.-S.; Williams, B. P.; Chen, S.-Y.; Yang, H.-C.; Hsu, Y.-S.; Lin, Z.-Y.; Chen, X.-H. Rapid mechanochemical encapsulation of biocatalysts into robust metal–organic frameworks. Nature communications 2019, 10 (1), 5002.
(65) Xia, H.; Li, N.; Zhong, X.; Jiang, Y. Metal-organic frameworks: a potential platform for enzyme immobilization and related applications. Frontiers in Bioengineering and Biotechnology 2020, 8, 695.
(66) Mayer, S. F.; Kroutil, W.; Faber, K. Enzyme-initiated domino (cascade) reactions. Chemical Society Reviews 2001, 30, 332-339.
(67) Schrittwieser, J. H.; Velikogne, S.; Hall, M.; Kroutil, W. Artificial Biocatalytic Linear Cascades for Preparation of Organic Molecules. Chemical reviews 2018, 118 1, 270-348.
(68) Sperl, J. M.; Sieber, V. Multienzyme Cascade Reactions Status and Recent Advances. Acs Catalysis 2018, 8 (3), 2385-2396.
(69) Hwang, E. T.; Lee, S. Multienzymatic Cascade Reactions via Enzyme Complex by Immobilization. ACS Catalysis 2019.
(70) Walsh, C. T.; Moore, B. S. Enzymatic Cascade Reactions in Biosynthesis. Angewandte Chemie 2019, 58 21, 6846-6879.
(71) Manoochehri, H.; Hosseini, N. F.; Saidijam, M.; Taheri, M.; Rezaee, H.; Nouri, F. A review on invertase: Its potentials and applications. Biocatalysis and agricultural biotechnology 2020, 25, 101599.
(72) Kulshrestha, S.; Tyagi, P.; Sindhi, V.; Yadavilli, K. S. Invertase and its applications – A brief review. Journal of Pharmacy Research 2013, 7, 792-797.
(73) Kotwal, S. M.; Shankar, V. Immobilized invertase. Biotechnology advances 2009, 27 4, 311-322.
(74) Veana, F.; Flores-gallegos, A. C.; González-Montemayor, Á.-M.; Michel-Michel, M. R.; López-López, L. I.; Aguilar-Zárate, P.; Ascacio-Valdés, J. A.; Rodríguez‐Herrera, R. Invertase: An Enzyme with Importance in Confectionery Food Industry. 2018.
(75) Michaelis, L.; Menten, M. L. Die kinetik der invertinwirkung. Biochem. z 1913, 49 (333-369), 352.
(76) Elango, D.; Rajendran, K.; Van der Laan, L.; Sebastiar, S.; Raigne, J. G.; Thaiparambil, N. A.; El haddad, N.; Raja, B.; Wang, W.; Ferela, A.; et al. Raffinose Family Oligosaccharides: Friend or Foe for Human and Plant Health? Frontiers in Plant Science 2022, 13.
(77) Xu, G.; Xing, W.; Li, T.; Ma, Z.; Liu, C.; Jiang, N.; Luo, L. Effects of dietary raffinose on growth, non‐specific immunity, intestinal morphology and microbiome of juvenile hybrid sturgeon (Acipenser baeri Brandt ♀ × A. schrenckii Brandt ♂). Fish & Shellfish Immunology 2018, 72, 237–246.
(78) Kanwal, F.; Ren, D.; Kanwal, W.; Ding, M.; Su, J.; Shang, X. The potential role of non-digestible Raffinose family oligosaccharides as prebiotics. Glycobiology 2023.
(79) Casimiro, M. H.; Ferreira, L. M.; Leal, J. P.; Pereira, C. C. L.; Monteiro, B. Ionizing radiation for preparation and functionalization of membranes and their biomedical and environmental applications. Membranes 2019, 9 (12), 163.
(80) Swinehart, D. F. The beer-lambert law. Journal of chemical education 1962, 39 (7), 333.
(81) Salame, P. H.; Pawade, V. B.; Bhanvase, B. A. Characterization tools and techniques for nanomaterials. In Nanomaterials for green energy, Elsevier, 2018; pp 83-111.
(82) Tehranipoor, M.; Nalla Anandakumar, N.; Farahmandi, F. Scanning Electron Microscope Training. In Hardware Security Training, Hands-on!, Springer International Publishing, 2023; pp 293-318.
(83) Bragg, W. L. The structure of some crystals as indicated by their diffraction of X-rays. Proceedings of the Royal Society of London. Series A, Containing papers of a mathematical and physical character 1913, 89 (610), 248-277.
(84) Bragg, W. H.; Bragg, W. L. X rays and crystal structure; Bell, 1915.
(85) Epp, J. X-ray diffraction (XRD) techniques for materials characterization. In Materials characterization using nondestructive evaluation (NDE) methods, Elsevier, 2016; pp 81-124.
(86) Fischer, E. R.; Hansen, B. T.; Nair, V.; Hoyt, F. H.; Dorward, D. W. Scanning Electron Microscopy. Current Protocols in Microbiology 2012, 25.
(87) Akhtar, K.; Khan, S. A.; Khan, S. B.; Asiri, A. M. Scanning Electron Microscopy: Principle and Applications in Nanomaterials Characterization. 2018.
(88) Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry 1976, 72 (1-2), 248-254.
(89) Lever, M. Colorimetric and fluorometric carbohydrate determination with p-hydroxybenzoic acid hydrazide. Biochemical medicine 1973, 7 2, 274-281.
(90) Schägger, H. Tricine–sds-page. Nature protocols 2006, 1 (1), 16-22.
指導教授 謝發坤(Fa-Kuen Shieh) 審核日期 2024-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明