博碩士論文 104481002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:3.148.221.111
姓名 沈明義(Ming-Yi Shen)  查詢紙本館藏   畢業系所 企業管理學系
論文名稱 臺灣犯罪率與人口結構、環境特徵、經濟活動之 關聯性分析
(Analytical Study of Crime Rates in Taiwan: A Comprehensive Analysis of Population Structure, Environmental Characteristics and Economical activities)
相關論文
★ 二氧化鈦技術生命週期之研究★ 整體後勤業參與同步工程於產品開發績效關係之研究—以中科院為例
★ 筆記型電腦之IFA/PIFA天線技術生命週期分析★ 國籍航空公司經營績效分析-以資料包絡分析方法分析
★ 從專利分析看3D IC技術與市場發展★ 影響企業導入電子發票系統成效之因素探討
★ 影響企業導入數位學習成功因素之探討-以個案公司為例★ 產品生命週期管理系統導入成功要素之探討--以S科技公司為例--
★ 組織創新能力影響因素研究★ 製 造 業 閒 置 資 產 轉 售 平 台 製造業閒置資產轉售平台-以廣達電腦股份有限公司為例
★ 供應商先行者優勢探討-以宸鴻科技為例★ 團隊領導者創新特質與開放式創新專案關係之研究
★ 從商業生態系統談樞紐者策略-以Apple 與Nokia 為例★ 個人電腦的競爭與發展策略-以台灣電子產業為例
★ 應用兩階段資料包絡分析法評估高級職業學校之經營績效★ ERP導入的促進因素:使用者觀點
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 摘要
犯罪的管理,是政府治理上一項重要的課題。一個城市犯罪率的呈現,往往代表城市治理的重要指標。影響犯罪行為發生的因素很多,不同地區可能產生的外在環境因素會有不同,而犯罪手法、類型及防治的手段亦隨之相異。因此,有必要對於不同影響犯罪的成因予以探討。本研究除承續學者過去研究成果之外,還會建立可能產生犯罪影響的構面,藉由犯罪學理論的發展及實證研究,討論犯罪發生率與社會環境變動所具有的主要特徵間的關聯性。本研究係運用20年間,20個縣市的縱斷面資料,建構迴歸模型,檢驗各縣市人口結構特性、城市經濟活動指標及環境污染指標等三個構面與犯罪率的關係。研究結果發現,經濟失業率、二氧化硫含量均與犯罪呈正向關係;且縣市之自有住宅持有率比例愈高,則犯罪率愈低。本研究之統計分析,係透過擷取臺灣20縣市社會環境三項構面資料所完成的縱橫迴歸分析模型(Panel Regression Model)結果,檢視人口結構及外在環境特徵與犯罪率之關係,從而擬具治安策略建議,以提供政府相關機關作為擬訂犯罪預防政策及訂定打擊犯罪之治安策略作為之參考。
摘要(英) Abstract
The administration of crime holds significant importance in government governance, with a city′s crime rate serving as a crucial indicator of urban governance. Numerous factors influence the occurrence of criminal behavior, and these factors can vary across different regions due to diverse external environmental influences. Consequently, the methods, types, and preventive measures for crime differ accordingly. There is a need to delve into the various causes of criminal activities. This study investigated factors that influence crime, utilizing the development of criminological theory and empirical research. This research employed longitudinal cross-sectional data spanning from 1998 to 2020, encompassing 20 counties and cities in Taiwan. A panel multi-regression model was constructed to assess the relationship between population structure characteristics, urban economic activity indicators, environmental pollution indicators, and the crime rate. The empirical results revealed a positive association between economic unemployment rates and sulfur dioxide content with crime. Additionally, a higher proportion of owner-occupied housing in a county or city was found to result in a lower crime rate. The findings of this study can aid in crafting recommendations for public security strategies, offering government agencies valuable insights for developing crime prevention policies and formulating effective public security strategies to combat criminal activities.
關鍵字(中) ★ 犯罪率
★ 人口結構
★ 暴力犯罪
★ 竊盜犯罪
★ 縱橫迴歸模型
關鍵字(英) ★ Crime rate
★ population structure
★ violent crime
★ theft crime
★ Panel Regression Model
論文目次 Table of Contents
Chinese Abstract i
English Abstract ii
Acknowledgements iii
Table of Contents iv
List of Figures v
List of Tables vi
I. Introduction 1
1-1 Crime in Taiwan 2
1-2 Influencing factors 6
1-4 Definition of terms 10
1-5 Research flowchart 12
Ⅱ. Literature Review 14
2-1 Interdisciplinary approaches in contemporary criminology 15
2-2 Review of theory development 16
2-3 Crime rate and environmental variables 23
2-4 Demographic influences on crime rates in Taiwan 34
Ⅲ. Research Method 38
3-1 Panel regression model 38
3-2 Panel quantile regression model 40
Ⅳ. Empirical Results and Discussion 42
4-1 Correlation coefficient analysis 42
4-2 Data sources 43
4-3 Multiple regression analysis 45
Ⅴ. Conclusions and Implications 59
5-1 Conclusions 59
5-2 Suggestions and policy recommendations: 62
5-3 Research limitations 63
References 65
參考文獻 References
[1] Li, K. (2021). The Research of Unrealized Offense′ Judgment Standard. Frontiers in Science and Engineering, 1(6), 101-106.
[2] Xu, Y. (2020). Past Research and Future Prospect of Unethical Pro-Organizational Behaviors. International Journal of Social Science and Education Research, 3(11), 158-161
[3] Schofield, P. (2019). «The first steps rightly directed in the track of legislation»: Jeremy Bentham on Cesare Beccaria’s Essay on Crimes and Punishments. Diciottesimo Secolo, 4, 65-74.
[4] Gane, M. (2006). Auguste Comte. Taylor & Francis.
[5] Laws, D. R. (2020). Criminal Statistics and the Identification of Populations. In A History of the Assessment of Sex Offenders: 1830–2020 (pp. 15-28). Emerald Publishing Limited.
[6] Cohen, L. E., & Felson, M. (1979). On estimating the social costs of national economic policy: A critical examination of the Brenner study. Social indicators research, 251-259.
[7] Becker, G. S. (1962). Irrational behavior and economic theory. Journal of political economy, 70(1), 1-13.
[8] Durkheim, E. (1972). Emile Durkheim: selected writings. Cambridge University Press.
[9] Whitehead, P. (2010). Exploring modern probation: Social theory and organisational complexity. Policy Press.
[10] Helfgott, J. B. (2013). Criminal psychology and criminal behavior. Criminal psychology, 3-42.
[11] McConnell, C. R., Brue, S. L., & Flynn, S. M. (2018). Microeconomics: principles, problems, and policies. McGraw-Hill.
[12] Newman, O. (1997). Creating defensible space. Diane Publishing.
[13] McNeeley, S. (2015). Lifestyle-routine activities and crime events. Journal of Contemporary Criminal Justice, 31(1), 30-52.
[14] Brantingham, P. J., & Brantingham, P. L. (1981). Environmental criminology. (No Title).
[15] Dabbs Jr, J. M., & Ruback, R. B. (1987). Dimensions of group process: Amount and structure of vocal interaction. In Advances in experimental social psychology (Vol. 20, pp. 123-169). Academic Press.
[16] Matsueda, R. L. (1988). The current state of differential association theory. Crime & Delinquency, 34(3), 277-306.
[17] Merton, R. K. (1957). Strain theory. Readings in deviant behavior. New York: HarperCollins College Publishers.
[18] Omer, S., & Jabeen, S. (2016). Exploring Karl Marx Conflict Theory in Education: Are Pakistani Private Schools Maintaining Status Quo?. Bulletin of Education and Research, 38(2), 195-202.
[19] Gobert, J. J. (1977). Victim precipitation. Columbia law review, 77(4), 511-553.
[20] Feinberg, J. (1986). Wrongful life and the counterfactual element in harming. Social Philosophy and Policy, 4(1), 145-178.
[21] Shaw, C. R., & McKay, H. D. (1942). Juvenile delinquency and urban areas.
[22] De Albuquerque, K., & McElroy, J. L. (2001). Tourist harassment: Barbados survey results. Annals of Tourism Research, 28(2), 477-492.
[23] Glueck, S., & Glueck, E. (1950). Unraveling juvenile delinquency. Juv. Ct. Judges J., 2, 32.
[24] Andresen, M. A. (2014). Environmental criminology: Evolution, theory, and practice. Routledge.
[25] Zhu, Q., Zhang, F., Liu, S., Wang, L., & Wang, S. (2022). Static or dynamic? Characterize and forecast the evolution of urban crime distribution. Expert Systems with Applications, 190, 116115.
[26] Becker, G. S. (1968). Crime and punishment: An economic approach. Journal of political economy, 76(2), 169-217.
[27] Blackmore, F. L. E. (2003). A panel data analysis of crime in South Africa. South African Journal of Economic and Management Sciences, 6(3), 439-458.
[28] Worrall, J. L. (2005). Reconsidering the relationship between welfare spending and serious crime: A panel data analysis with implications for social support theory. Justice quarterly, 22(3), 364-391.
[29] Ihlanfeldt, K., & Mayock, T. (2010). Panel data estimates of the effects of different types of crime on housing prices. Regional Science and Urban Economics, 40(2-3), 161-172.
[30] Omotor, D. G. (2010). Demographic and Socio-economic determinants of crimes in Nigeria (A panel data analysis). The Journal of Applied Business and Economics, 11(1), 181.
[31] Lombardo, R., & Falcone, M. (2011). Crime and Economic Performance. A cluster analysis of panel data on Italy’s NUTS 3 regions. Università della Calabria, Dipartimento di Economia, Statistica e Finanza (Ex Dipartimento di Economia e Statistica).
[32] Saridakis, G., & Spengler, H. (2012). Crime, deterrence and unemployment in Greece: A panel data approach. The Social Science Journal, 49(2), 167-174.
[33] Shabbir, M. Q., Khan, A. A., & Khan, S. R. (2017). Brand loyalty brand image and brand equity: the mediating role of brand awareness. International journal of innovation and applied studies, 19(2), 416.
[34] Latimaha, R., Bahari, Z., & Ismail, N. A. (2019). Middle Income Household Spending Patterns on Housing in Malaysian State Capital Cities: Where Does All the Money Go? (Corak Perbelanjaan Kumpulan Pendapatan Menengah ke atas Perumahan di Bandar-Bandar Malaysia: Ke Manakah Wang Tersebut Dibelanjakan?). Jurnal Ekonomi Malaysia, 53, 2.
[35] Alario, M. (2000). Urban and ecological planning in Chicago: Science, policy and dissent. Journal of Environmental Planning and Management, 43(4), 489-504.
[36] Harcourt, B. E. (1998). Reflecting on the subject: A critique of the social influence conception of deterrence, the broken windows theory, and order-maintenance policing New York style. Mich. L. Rev., 97, 291.
[37] Ferri, E. (1917). Criminal sociology (Vol. 9). Little, Brown.
[38] Park, R. E., & Burgess, E. W. (2019). The city. University of Chicago Press.
[39] Acemoglu, D., Akcigit, U., Alp, H., Bloom, N., & Kerr, W. (2018). Innovation, reallocation, and growth. American Economic Review, 108(11), 3450-91.
[40] Alba, R. D., Logan, J. R., & Bellair, P. E. (1994). Living with crime: The implications of racial/ethnic differences in suburban location. Social Forces, 73(2), 395-434.
[41] Ali, U., Ormal, L., & Ahmad, F. (2018). Impact of Free Cash Flow on Profitability of the Firms in Automobile Sector of Germany. Journal of Economics and Management Sciences, 1(1).
[42] Arkolakis, C., Ramondo, N., Rodríguez-Clare, A., & Yeaple, S. (2018). Innovation and production in the global economy. American Economic Review, 108(8), 2128-73.
[43] Audretsch, D. B., & Belitski, M. (2020). The role of R&D and knowledge spillovers in innovation and productivity. European Economic Review, 123, 103391.
[44] Baba, M., Mahmood, R., & Halipah, A. (2017). The moderating role of environmental turbulence on the relationship between organizational learning and firm innovativeness. International Journal of Management Research and Reviews, 7(2), 148.
[45] Bloom, M., & Milkovich, G. T. (1998). Relationships among risk, incentive pay, and organizational performance. Academy of Management journal, 41(3), 283-297.
[46] Bong, K. H., & Park, J. (2020). Expanding organic relationships between R&D, innovation, and productivity: evidence from Korean SMEs. Asian Journal of Technology Innovation, 1-18.
[47] Bontis, N., Keow, W. C. C., & Richardson, S. (2000). Intellectual capital and business performance in Malaysian industries. Journal of intellectual capital.
[48] Breitung, J., & Das, S. (2005). Panel unit root tests under cross‐sectional dependence. Statistica Neerlandica, 59(4), 414-433.
[49] Carboni, O. A., & Medda, G. (2020). Linkages between R&D, innovation, investment and export performance: evidence from European manufacturing firms. Technology Analysis & Strategic Management, 1-14.
[50] Dess, G. G., & BeaInnovation, D. W. (1984). Dimension of Organizational Task Environment. Administrative Science Quarterly, vol. 29, Mar., p268-279.
[51] Dickey, D. A., & Fuller, W. A. (1979). Distribution of the estimators for autoregressive time series with a unit root. Journal of the American statistical association, 74(366a), 427-431.
[52] Drobetz, W., & Grüninger, M. C. (2007). Corporate cash holdings: Evidence from Switzerland. Financial Markets and Portfolio Management, 21(3), 293-324.
[53] Duffy, J. (2000). Measuring customer capital. Strategy & Leadership.
[54] Ek, R., & Guerin, S. (2011). Is there a right level of working capital? Journal of Corporate Treasury Management, 4(2).
[55] Fama, E. F., & Jensen, M. C. (1983). Separation of ownership and control. The Journal of Law and Economics, 26(2), 301-325.
[56] Frisch, R. (1965). Theory of Production. Rand-McNally, Chicago, IL.
[57] García-Ramos, R., & Díaz, B. D. (2020). Board structure and firm financial performance: a qualitative comparative analysis. Long Range Planning, 102017.
[58] González, A., Teräsvirta, T., & van Dijk, D. V. (2005). Panel quantile regression models. Working Study Series in Economics and Finance: Stockholm School of Economics 604.
[59] González, A., Teräsvirta, T., and van Dijk, D.V. (2005). Panel quantile regression models. Working Study Series in Economics and Finance: Stockholm School of Economics 604.
[60] Gourio, F., & Rudanko, L. (2014). Customer capital. Review of Economic Studies, 81(3), 1102-1136.
[61] Granger, C. W., & Terasvirta, T. (1993). Modelling non-linear economic relationships. OUP Catalogue.
[62] Guiso, L., & Rustichini, A. (2017). Understanding the scale and profitability of firms: The role of a biological factor. Research in Economics.
[63] Guruswamy, D., & Marew, A. (2017). Determinants of profitability performance of insurance firms: a case study of selected insurance firms in Ethiopia. Journal on Management, 12(2).
[64] Hanoch, G. (1975). The elasticity of scale and the shape of average costs, American Economic Review 65, 492-497.
[65] Hansen, B. E. (1999). Threshold effects in non-dynamic panels: Estimation, testing, and inference. Journal of econometrics, 93(2), 345-368.
[66] Hung, K. P., & Chou, C. (2013). The impact of open innovation on firm performance: The moderating effects of internal R&D and environmental turbulence. Technovation, 33(10-11), 368-380.
[67] Im, K. S., Pesaran, M. H., & Shin, Y. (1997). Testing for Unit Roots in Heterogeneous Panels”, Mimeo, Department of Applied Economics, University of Cambridge.
[68] Jansen, E. S., & Teräsvirta, T. (1996). Testing parameter constancy and super exogeneity in econometric equations. Oxford Bulletin of Economics and Statistics, 58(4), 735-763.
[69] John, K., & Senbet, L. W. (1998). Corporate governance and board effectiveness. Journal of Banking & Finance, 22(4), 371-403.
[70] Kaplan, R.S. (1983). Measuring Manufacturing Performance: A New Challenge for Managerial Accounting Research. The Accounting Review, V.68-4, 686-705.
[71] Khan, A., Qureshi, M. A., & Davidsen, P. I. (2020). A system dynamics model of capital structure policy for firm value maximization. Systems Research and Behavioral Science.
[72] Kim, K. (2018). Diminishing returns to R&D investment on innovation in manufacturing SMEs: Do the technological intensity of industry matter? International Journal of Innovation Management, 1850056.
[73] Kren, L., & Kerr, J. L. (1993). The effect of behaviour monitoring and uncertainty on the use of performance-contingent compensation. Accounting and Business Research, 23(90), 159-167.
[74] Le, B., Sakchutchawarn, S., & Martin, S. (2018). Firm scale, price to book, and government ownership effects: evidence from stock markets in Vietnam.
[75] Levin, A., Lin, C. F., & Chu, C. S. J. (2002). Unit root tests in panel data: asymptotic and finite-sample properties. Journal of econometrics, 108(1), 1-24.
[76] Little, W., Vyain, S., Scaramuzzo, G., Cody-Rydzewski, S., Griffiths, H., Strayer, E., & Keirns, N. (2014). Introduction to Sociology-1st Canadian edition. BC Campus: Victoria, BC, Canada.
[77] Lundbergh, S., Teräsvirta, T., & Van Dijk, D. (2003). Time-varying quantile autoregressive models. Journal of Business & Economic Statistics, 21(1), 104-121.
[78] Luukkonen, R., Saikkonen, P., & Teräsvirta, T. (1988). Testing linearity against quantile autoregressive models. Biometrika, 75(3), 491-499.
[79] Maddala, G.S., and Wu, S. (1999). A comparative study of unit root tests with panel data and a new simple test. Oxford Bulletin of Economics and Statistics, 61, 631-652.
[80] Miller, K. D., & Bromiley, P. (1990). Strategic risk and corporate performance: An analysis of alternative risk measures. Academy of Management journal, 33(4), 756-779.
[81] Montani, F., Vandenberghe, C., Khedhaouria, A., & Courcy, F. (2019). Examining the inverted U-shaped relationship between workload and innovative work behavior: The role of work engagement and mindfulness. Human Relations, 0018726718819055.
[82] Mueller, E., & Tighe, J. R. (2013). The affordable housing reader. Routledge.
[83] Pastor, L., and Stambaugh, R.F. (2012). On the scale of active management. Journal of Political Economy, 120, 740-781.
[84] Patel, P., & Pavitt, K. (1995). Patterns of technological activity: their measurement and interpretation. Handbook of the Economics of Innovation and Technological Change, 14-51.
[85] Pedersen, E. R. G., Gwozdz, W., & Hvass, K. K. (2018). Exploring the relationship between business model innovation, corporate sustainability, and organisational values within the fashion industry. Journal of Business Ethics, 149(2), 267-284.
[86] Sampson, R. J., Raudenbush, S. W., & Earls, F. (1997). Neighborhoods and violent crime: A multilevel study of collective efficacy. science, 277(5328), 918-924.
[87] Schumpeter, J. A. (2000). Entrepreneurship as innovation.
[88] Sheng, Y., Zhao, S., Nossal, K., and Zhang, D. (2014). Productivity and farm scale in Australian agriculture: reinvestigating the returns to scale. Australian Journal of Agricultural and Resource Economics, 59(1), 16-38.
[89] Sikveland, M., & Zhang, D. (2020). Determinants of capital structure in the Norwegian salmon aquaculture industry. Marine Policy, 119, 104061.
[90] Sonmez, R., and Rowings, J.E. (1998). Construction labor productivity modeling with neural networks. Journal of Construction Engineering and Management, 124(6), 498-504.
[91] Stewart, T. A., & Kirsch, S. L. (1991). BRAINPOWER Intellectual capital is becoming corporate America′s most valuable scale and can be its sharpest competitive weapon, the challenge is to find what you have and use it. FORTUNE Magazine, June 3, (1991).
[92] Sung, S. Y., Choi, J. N., & Kang, S. C. (2017). Incentive pay and firm performance: moderating roles of procedural justice climate and environmental turbulence. Human Resource Management, 56(2), 287-305.
[93] Teräsvirta, T. (1994). Specification, estimation, and evaluation of quantile autoregressive models. Journal of the american Statistical association, 89(425), 208-218.
[94] Welsch, H. (2007). Macroeconomics and life satisfaction: Revisiting the "misery index". Journal of Applied Economics, 10(2), 237
[95] Wilden, R., & Gudergan, S. P. (2015). The impact of dynamic capabilities on operational marketing and technological capabilities: investigating the role of environmental turbulence. Journal of the Academy of Marketing Science, 43(2), 181-199.
指導教授 洪秀婉(Shiu-Wan Hung) 審核日期 2024-5-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明