博碩士論文 110888004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:18.220.210.111
姓名 吳智偉(Chih-Wei Wu)  查詢紙本館藏   畢業系所 生醫科學與工程學系
論文名稱 新冠肺炎預後的人工智慧模型與單一醫學中心的肺癌篩檢成效
(An artificial intelligence-based prognostic model of COVID-19 and a single-center experience of lung cancer screening)
相關論文
★ 整合深度學習方法預測年齡以及衰老基因之研究★ 運用深度學習方法預測阿茲海默症惡化與腦中風手術存活
★ 運用深度學習方法預測癌症種類及存活死亡與治癒復發★ 基於檢驗數值的糖尿病腎病變預測模型
★ 機械循環拉伸對肺癌細胞功能的影響之研究★ 整合多種基因組型態資料預測肺腺癌患者存活之研究
★ 以系統生物學策略探討臍帶血來源之造血幹細胞分子調控網路★ TP53突變對具有EGFR突變的非小細胞肺癌患者帶來的影響
★ 以系統生物學方法探討肺腺癌抗藥性成因★ 機械循環拉伸力對3D培養肺癌細胞之影響
★ PM2.5對人類心肺細胞的影響★ 尼曼匹克症轉錄體學研究
★ 體外仿生肺肝纖維化3D模型研究★ 肝纖維化細胞與動物模型以轉錄體資料分析比較
★ 基於深度學習之皮膚病兆切割之研究★ 體外仿生心臟衰竭三維模型研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 背景: 台灣缺乏關於第一波新冠肺炎疫情的研究。本篇研究新冠肺炎重症的死亡危險因子與建立胸部X光的人工智慧的判讀模型。
方法: 本篇回溯性分析在西元二零二一年五月十五日至七月十五日之間在台北慈濟醫院的病歷資料。所有個案皆為插管使用呼吸器的病患。每一位病患都收錄四張胸部X光片,分別為第一張,插管前,插管後以及最嚴重。我們以移動網路第三版的方法來訓練人工智慧判讀模型,並且以交叉驗證方法來評估模型的表現。
結果: 本篇總共收錄了六十四位病患。整體死亡率為百分之四十五。從症狀發生到插管平均為八日。使用升壓藥,嚴重的X光指標(BRIXIA評分系統)是死亡的危險因子。人工智慧模型有準確的死亡預測能力,其四類X光的預測準確度值分別為0.88,0.92,0.92,0.94。
結論:呼吸衰竭而插管的新冠肺炎病患有高死亡率。使用升壓藥,嚴重的X光指標是死亡的危險因子。人工智慧模型有準確的死亡預測能力。
摘要(英) Background: The data of the first episode of the COVID-19 pandemic in Taiwan is scarce. We researched the risk factors of death among mechanically-ventilated patients with COVID-19 in Taiwan during the first episode of COVID-19. In addition, we are inspired to create a new artificial-intelligence-based death prognostication model by utilization of chest X-ray.
Method: We retrospectively extracted the medical data of patients with COVID-19 at Taipei Tzu Chi Hospital from May 15th to July 15th in 2021. We recruited patients who received invasive mechanical ventilation. The chest X-ray images of each recruited patient were assigned into four groups (first, before-intubation, post-intubation, and worst). The BRIXIA and percent opacification scores were reviewed by two pulmonologists. To set up a prognostication model, we used the MobilenetV3-Small model with “ImageNet” pretrained weights, followed by high Dropout regularization layers. We practiced the model with Five-Fold Cross-Validation to assess model efficacy.
Result: We finally recruited sixty-four patients. The overall death rate was forty-five percent. The median days since symptom commencement to endotracheal intubation was eight. Age, inferior academic degree, occurrence of COVID-19 complications, and a more severe achievement of the worst chest X-ray were linked to a higher death risk. The accuracy of the first, pre-intubation, post-intubation, and worst chest X-ray by the artificial-intelligence model were 0.88, 0.92, 0.92, and 0.94 respectively.
關鍵字(中) ★ 新冠肺炎
★ 人工智慧
★ 胸部X光檢查
★ 預後
★ 死亡率
★ 加護病房
關鍵字(英) ★ COVID-19
★ Artificial intelligence
★ Chest X-rays
★ Prognosis
★ Mortality
★ Intensive care unit
論文目次 第ㄧ部分: 新冠肺炎預後的人工智慧模型 頁次
中文提要..............................................i
英文提要..............................................ii
目錄.................................................iv
圖目錄................................................v
表目錄...............................................vi
一、 緒論......................................1
二、 研究內容與方法..............................8
2-1 收案條件與資料搜集..........................8
2-2 胸部X光影像分類............................9
2-3 藥物治療準則...............................9
三、 資料統計分析的方法..........................11
3-1 生物統計分析..............................11
3-2 人工智慧方法..............................11
3-3 人工智慧的數據準備.........................12
3-4 倫理道德聲明..............................13
四、 研究結果..................................14
五、 討論.....................................16
六、 結論.....................................20
七、 參考文獻..................................21
八、 圖片.....................................25
九、 表格.....................................28
附錄一 BRIXIA score的範例........................37
附錄二 人工智能運算的數據準備.......................42
附錄三 新冠肺炎重症患者的其他疾病自然史..............44
附錄四 新冠台灣人工智慧預測死亡模型的其他效能指標......45

第二部分: 單一醫學中心的肺癌篩檢成效 頁次
中文提要..............................................i
英文提要.............................................ii
目錄.................................................iv
圖目錄................................................v
表目錄...............................................vi
一、 緒論......................................1
二、 研究內容與方法..............................7
2-1 收案條件與資料搜集..........................7
2-2 電腦斷層影像追蹤流程........................8
2-3 影像判讀與處理.............................8
三、 資料統計分析的方法...........................10
3-1 生物統計分析...............................10
3-2 倫理道德聲明...............................10
四、 研究結果...................................11
五、 討論......................................14
六、 結論......................................20
七、 參考文獻...................................21
八、 圖片......................................24
九、 表格......................................28
參考文獻 〔1〕M. Cascella, M. Rajnik, A. Aleem, S. C. Dulebohn, R.D. Napoli, Features, Evaluation, and Treatment of Coronavirus (COVID-19)., StatPearls Publishing, Last Update: August 18, 2023.
〔2〕台灣疾病管制中心。https://www.cdc.gov.tw/ at.
〔3〕Z.J. Lim and A. Subramaniam, “Case fatality rates for patients with COVID-19 requiring invasive mechanical ventilation. A meta-analysis.” American Journal of Respiratory and Critical Care Medicine, Vol 54, AMER THORACIC SOC, January 2021, pp. 54-66.
〔4〕A.Y. I and Y. Higashi, “Chest radiograph scoring alone or combined with other risk scores for predicting outcomes in COVID-19.” Radiology, Vol 302, No 2, RADIOLOGICAL SOC NORTH AMERICA (RSNA), February 2022, pp. 460-469.
〔5〕M. Balbi and A. Caroli, “Chest X-ray for predicting mortality and the need for ventilatory support in COVID-19 patients presenting to the emergency department.” European Radiology, Vol 31, SPRINGER, April 2021, pp. 1999-2012.
〔6〕A. Borghesi and R. Maroldi, “COVID-19 outbreak in Italy: experimental chest X-ray scoring system for quantifying and monitoring disease progression.” Radiologia Medica, Vol 125, No 5, SPRINGER-VERLAG ITALIA SRL, May 2020, pp. 509-513.
〔7〕C.J. Nicholson and L. Wooster, “Estimating risk of mechanical ventilation and in-hospital mortality among adult COVID-19 patients admitted to Mass General Brigham: the VICE and DICE scores.” EClinicalMedicine, Vol 33, ELSEVIER, March 2021, pp. 100765.
〔8〕S.R. Knight and A. Ho, “Risk stratification of patients admitted to hospital with covid-19 using the ISARIC WHO Clinical Characterisation Protocol: development and validation of the 4C Mortality Score.” British Medical Journal, Vol 370, BMJ PUBLISHING GROUP, September 2020, pp. m3339.
〔9〕P. Horby and W.S. Lim, “Dexamethasone in hospitalized patients with covid-19.” New England Journal of Medicine, Vol 384, No 8, MASSACHUSETTS MEDICAL SOC, February 2021, pp. 693-704.
〔10〕P. Horby and M. Campbell, “Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial.” Lancet, Vol 397, No 10285, ELSEVIER SCIENCE INC, May 2021, pp. 1637-1645.
〔11〕Y. Gu and D. Wang, “PaO2/FiO2 and IL-6 are risk factors of mortality for intensive care COVID-19 patients.” Scientific Reports, Vol 11, NATURE PORTFOLIO, April 2021, pp. 7334.
〔12〕E.C. Somers and G.A. Eschenauer, “Tocilizumab for treatment of mechanically ventilated patients with COVID-19.” Clinical Infectious Diseases, Vol 73, OXFORD UNIV PRESS INC, July 2020, pp. e445-e454.
〔13〕M.T.U. Schuijt and M.J. Schultz, “PRoVENT–COVID Collaborative Group Association of intensity of ventilation with 28-day mortality in COVID-19 patients with acute respiratory failure: insights from the PRoVENT-COVID study.” Critical Care, Vol 25, BMC, August 2021, pp. 283.
〔14〕SGLH. Nijbroek and L. Hol, “Low tidal volume ventilation is associated with mortality in COVID-19 patients—insights from the PRoVENT-COVID study.” Journal of Critical Care, Vol 70, W B SAUNDERS CO-ELSEVIER INC, August 2022, pp. 154047.
〔15〕M.C. Shelhamer and P.D. Wesson, “Prone positioning in moderate to severe acute respiratory distress syndrome due to COVID-19: a cohort study and analysis of physiology.” Journal of Intensive Care Medicine, Vol 36, SAGE PUBLICATIONS INC, February 2021, pp. 241-252.
〔16〕S.C. Auld and C.S. Mark, “ICU and ventilator mortality among critically ill adults with coronavirus disease 2019.” Critical Care Medicine, Vol 48, LIPPINCOTT WILLIAMS & WILKINS, September 2020, pp. e799-e804.
〔17〕A.A. Mutair and A.A. Mutairi, “Clinical predictors of COVID-19 mortality among patients in intensive care units: a retrospective study.” International Journal of General Medicine, Vol 14, DOVE MEDICAL PRESS LTD, July 2021, pp. 3719-3728.
〔18〕Z. Jiao and J.W. Choi, “Prognostication of patients with COVID-19 using artificial intelligence based on chest x-rays and clinical data: a retrospective study.” Lancet Digital Health, Vol 3, ELSEVIER, May 2021, pp. e286-e294.
〔19〕P. Soda and N.C. D′Amico, “AIforCOVID: predicting the clinical outcomes in patients with COVID-19 applying AI to chest-X-rays. An Italian multicentre study.” Medical Image Analysis, Vol 74, ELSEVIER, December 2021, pp. 102216.
〔20〕I. Dayan and H.R. Roth, “Federated learning for predicting clinical outcomes in patients with COVID-19.” Nature Medicine, Vol 27, NATURE PORTFOLIO, October 2021, pp. 1735-1743.
〔21〕B.H.S. van der Velden and H.J. Kuijf, “Explainable artificial intelligence (XAI) in deep learning-based medical image analysis.” Medical Image Analysis, Vol 79, ELSEVIER, July 2022, pp. 102470.
指導教授 許藝瓊(Yi-Chiung Hsu) 審核日期 2024-7-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明