博碩士論文 111226001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:18.188.59.124
姓名 劉柏廷(Po-Ting Liu)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 光合色素分析儀與演算法開發
(Photosynthesis pigment analyzer and algorithm development)
相關論文
★ 腦電波傅利葉特徵頻譜之研究★ 光電星雲生物晶片之製作
★ 電場控制器光學應用★ 手機照相鏡頭設計
★ 氣功靜坐法對於人體生理現象影響之研究★ 針刺及止痛在大鼠模型的痛覺量測系統
★ 新光學三角量測系統與應用★ 離軸式光學變焦設計
★ 腦電波量測與應用★ Fresnel lens應用之量測
★ 線型光學式三角量測系統與應用★ 非接觸式電場感應系統
★ 應用田口法開發LED燈具設計★ 巴金森氏症雷射線三角量測系統
★ 以Sol-Gel法製備高濃度TiO2用於染料敏化太陽能電池光電極之特性研究★ 生產線上之影像量測系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 北美對於娛樂大麻與醫療大麻的推動,促使高經濟作物的種植盛行,進而帶動LED植物燈以及相關種植設備的發展與導入,加上極端天氣變化頻繁以及疫情因素,更推升高經濟作物的市場需求。本論文針對高經濟價值之食用植物為標的,希望結合感測器與AI演算法開發出智慧型非破壞手持式光合色素分析儀,以建立LED照射光譜與光合色素的關聯性。所開發出的感測裝置可應用於預估植物生長情況,提供植物工廠栽種者於種植時的參考。
本研究使用番茄、萵苣、羽衣甘藍及皇宮菜為樣本。以HPLC量測結果作為基準,比對由手持式光合色素分析儀感測得到的葉綠素a、葉綠素b、β胡蘿蔔素、葉黃素四個光合色素之比例。感測所得的訊號,透過訊號特徵提取與AI模型的建立,提高非破壞手持式光合色素分析儀的精準度,根據實驗結果顯示,本儀器所量測到的各個經濟作物之數據與HPLC所量測到的結果差異皆在10%以內,證明以光合色素分析的方法測定植物營養素的準確率高達90%以上,符合原先之設計目標。
摘要(英) The promotion of recreational and medical marijuana in North America has spurred the widespread cμLtivation of high-value crops, driving the development and adoption of LED grow lights and related equipment. Additionally, frequent extreme weather and the pandemic have further increased market demand for these crops. This paper focuses on developing a smart, non-destructive, handheld chlorophyll analyzer using sensors and AI algorithms to establish the correlation between LED light spectra and chlorophyll content. The device can estimate plant growth conditions, providing usefμL data for plant factory growers.
Tomatoes, lettuce, kale, and choy sum were used as samples. HPLC measurements served as the benchmark, against which the proportions of chlorophyll a, chlorophyll b, beta-carotenoids, and xanthophylls measured by the handheld analyzer were compared. By extracting signal features and building AI models, the accuracy of the analyzer was improved. Experimental resμLts show that the data from the analyzer differed from HPLC resμLts by less than 10%, achieving an accuracy rate of over 90%, which meets the initial design goals.
關鍵字(中) ★ 智慧農業
★ 物聯網
★ 人工智能
★ 光合色素
關鍵字(英) ★ Smart Agriculture
★ IoT
★ AI
★ Photosynthetic Pigments
論文目次 目錄
摘要 I
ABSTRACT II
致謝 III
目錄 IV
圖目錄 VII
表目錄 XI
第一章 緒論 1
1-1. 研究背景 1
1-2. 研究動機 1
1-3. 研究貢獻 2
第二章 文獻回顧 3
2-1. 簡介色素分析儀 3
2-2. 現階段色素分析儀之侷限性 5
2-3. 人工智慧—機器學習 7
2-3-1. 監督式學習 9
2-3-2. 非監督式學習 10
2-3-3. 增強式學習 11
2-3-4. 半監督式學習 12
2-3-5. 梯度提升模型 13
2-3-6. 隨機森林模型 14
2-3-7. 超參數 16
第三章 理論 19
3-1. 光合作用機制 19
3-2. 光合色素 22
3-2-1. 光合色素吸收光譜 24
3-2-2. 光合色素比例 24
3-3. 光合色素分析儀 27
3-4. 植物葉片吸收度量測 31
3-5. 定量分析 32
3-5-1. 植物色素萃取 32
3-5-2. 紫外/可見光譜儀 33
3-5-3. HPLC ( Jasco HPLC ) 36
3-6. 製作檢量線以獲取實際光合色素比例 39
3-7. 機器學習模型的挑選與訓練 40
第四章 實驗 57
4-1. 實驗架構 57
4-2. 實驗流程 59
4-2-1. 植物葉片樣本取樣與光合色素分析儀樣品機量 59
4-2-2. 植物色素萃取 61
4-2-3. HPLC量測配置與流程 64
4-2-4. 標準品檢量線的製備 67
4-2-5. 純物質的判定 71
4-2-6. 離群值的篩選 73
4-3. 實驗結果與討論 75
4-3-1. 光合色素分析儀量測結果 75
4-3-2. 標準樣品檢量線與滯留時間量測結果 78
4-3-3. 植物樣品色素濃度量測 82
4-3-4. 數值模型建立與訓練結果 92
第五章 研究結論與未來展望 124
參考文獻 126
參考文獻 參考文獻
[1]. Hartmut K. Lichtenthaler, Claus Buschmann. (2001). Chlorophylls and Carotenoids: Measurement and Characterization by UV-VIS Spectroscopy. Current Protocols in Food Analytical Chemistry (UNIT F4.3).
[2]. Online resourses:葉綠素a https://www.photochemcad.com/databases/common-compounds/chlorins-bacteriochlorins/chlorophyll-a
[3]. Online resourses:葉綠素b https://www.photochemcad.com/databases/common-compounds/chlorins-bacteriochlorins/chlorophyll-b
[4]. Online resourses:β胡蘿蔔素https://www.photochemcad.com/databases/common-compounds/polyenes-polyynes/beta-carotene
[5]. Ria Fritz, Wolfgang Ruth and Udo Kragl. (2009). Assessment of acetone as an alternative to acetonitrile in peptide analysis by liquid chromatography/mass spectrometry. Rapid Commun. Mass Spectrom., 23.
[6]. Mouna Abid, He ́la Yaich, Salma Cheikhrouhou, Ibtihel Khemakhem, Mohamed Bouaziz, Hamadi Attia, M. A. Ayadi. (2017). Antioxidant properties and phenolic profile characterization by LC–MS/MS of selected Tunisian pomegranate peels. J Food Sci Technol.
[7]. Sabina Lachowicz, Jan Oszmiański, Aneta Wojdyło, Tomasz CebμLak, Lidia Hirnle, Maciej Siewiński. (2019). UPLC-PDA-Q/TOF-MS identification of bioactive compounds and on-line UPLC-ABTS assay in Fallopia japonica Houtt and Fallopia sachalinensis (F.Schmidt) leaves and rhizomes grown in Poland. European Food Research and Technology.
[8]. Morna Anamaria. (2015). CHLOROPHYLL AND CAROTENOID CONTENT IN LETTUCE (Lactuca Sativa L.) AND NETTLE LEAVES (Urtica Dioica L.). Analele Universităţii din Oradea, FascicμLa: Ecotoxicologie, Zootehnie şi Tehnologii de Industrie Alimntară.
[9]. Samuoliene, Giedre & Viršilė, Akvilė & Brazaitytė, Aušra & J., Jankauskienė & Duchovskis, Pavelas & Bliznikas, Zenonas & Arturas, Zukauskas. (2009). The benefits of red LEDs: improved nutritional quality due to accelerated senescence in lettuce. Sodininkystė ir daržininkystė. 28. 111-120.
[10]. Lin Zhua and Yu-Qing Zhang. (2014). Identification and analysis of the pigment composition and sources in the colored cocoon of the silkworm, Bombyx mori, by HPLC-DAD. Journal of Insect Science: Vol.14.
[11]. Marina Pérez-Llorca and Sergi Munné-Bosch (2018). What Is the Minimal Optimal Sample Size for Plant Ecophysiological Studies? Plant Physiology , November 2018, Vol. 178, pp. 953–955.
[12]. Online Resource:Complete Machine Learning Guide to Parameter Tuning in Gradient Boosting (GBC) in Python (https://www.analyticsvidhya.com/blog/2016/02/complete-guide-parameter-tuning-gradient-boosting-gbm-python/)
[13]. Online Resource:Random Forest Hyperparameter Tuning: Processes Explained with Coding(https://www.upgrad.com/blog/random-forest-hyperparameter-tuning)
[14]. D.P. Kroese, Z.I. Botev, T. Taimre, R. Vaisman. Data Science and Machine Learning: Mathematical and Statistical Methods, Chapman and Hall/CRC, Boca Raton, 2019.
[15]. Rebeca Cruz ,PaμLa Baptista,Sara Cunha,José Alberto Pereira and Susana Casal,” Carotenoids of Lettuce (Lactuca sativa L.) Grown on
Soil Enriched with Spent Coffee Grounds”, 7 February 2012
[16]. Patricia Esquivel, María Viñas, Christof B. Steingass, Maike Gruschwitz, Eric Guevara, Reinhold Carle, Ralf M. Schweiggert and Víctor M. Jiménez,” Coffee (Coffea arabica L.) by-Products as a Source of Carotenoids and Phenolic Compounds—Evaluation of Varieties With Different Peel Color”, 21 October 2020
[17]. Thomas Müller, Stefan Vergeiner, Bernhard Kräutler "Structure elucidation of chlorophyll catabolites (phyllobilins) by ESI-mass spectrometry—Pseudo-molecμLar ions and fragmentation analysis of a nonfluorescent chlorophyll catabolite (NCC), "International Journal of Mass Spectrometry Volumes 365–366, 15 May 2014, Pages 48-55
[18]. Jie Zhou, You Wu, Piaopiao Long, Chi-Tang Ho, Yijun Wang, Zhipeng Kan, Luting Cao, Liang Zhang*, and Xiaochun Wan*,“LC-MS-Based Metabolomics Reveals the Chemical Changes of Polyphenols during High-Temperature Roasting of Large-Leaf Yellow Tea”, November 28, 2018
[19]. Man-Hai Liu ,Yi-Fen Li and Bing-Huei Chen,"Preparation of Chlorophyll NanoemμLsion from Pomelo Leaves and Its Inhibition Effect on Melanoma Cells A375,"Plants 2021, 10(8), 1664
[20]. Bahareh Nowruzi and Jouni Jokela,"Identification of Four Different Chlorophyll Allomers of Nostoc Sp. by Liquid Chromatography-Mass Spectrometer,"Received: April 23, 2019; Accepted: May 14, 2019; Published: May 16, 2019
[21]. Online resourses:田口法(https://www.researchmfg.com/2022/04/taguchi-methods-2/ )
[22]. Online resourses:TCS3200 (https://html.alldatasheet.com/html-pdf/454462/TAOS/TCS3200/96/1/TCS3200.html)
[23]. Online resources : How Important is Absorbance Linearity?
(https://www.oceanoptics.com/blog/how-important-is-absorbance-linearity/)
[24]. Kate Maxwell, Giles N. Johnson, Chlorophyll fluorescence—a practical guide, Journal of Experimental Botany, Volume 51, Issue 345, April 2000, Pages 659–668, https://doi.org/10.1093/jexbot/51.345.659
[25]. Mishra, A.N. (2018). Chlorophyll Fluorescence: A Practical Approach to Study Ecophysiology of Green Plants. In: Sánchez-Moreiras, A., Reigosa, M. (eds) Advances in Plant Ecophysiology Techniques. Springer, Cham, https://doi.org/10.1007/978-3-319-93233-0_5
[26]. Fernandez-Jaramillo, A.A.; Duarte-Galvan, C.; Contreras-Medina, L.M.; Torres-Pacheco, I.; Romero-Troncoso, R.d.J.; Guevara-Gonzalez, R.G.; Millan-Almaraz, J.R. Instrumentation in Developing Chlorophyll Fluorescence Biosensing: A Review. Sensors 2012, 12, 11853-11869. https://doi.org/10.3390/s120911853
指導教授 張榮森(Rong-Seng Chang) 審核日期 2024-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明