參考文獻 |
[1] A. W. Jenike, "Gravity flow of bulk solids". Bulletin No. 108, Utah Engineering Experiment Station, Univ. of Utah, Vol., 1961.
[2] A. W. Jenike, "Storage and flow of solids". Bulletin No. 123, Utah State University, Vol., 1964.
[3] I. Zuriguel, D. Maza, A. Janda, R. C. Hidalgo, and A. Garcimartín, "Velocity fluctuations inside two and three dimensional silos". Granular Matter, Vol. 21: pp. 1-9, 2019.
[4] K. To, P.-Y. Lai, and H. Pak, "Jamming of granular flow in a two-dimensional hopper". Physical Review Letters, Vol. 86(1): pp. 71, 2001.
[5] E. Rabinovich, H. Kalman, and P. F. Peterson, "Granular material flow regime map for planar silos and hoppers". Powder Technology, Vol. 377: pp. 597-606, 2021.
[6] J. Härtl, J. Ooi, and J. Theuerkauf. "A numerical study of the influence of particle friction and wall friction on silo flow". in Proceedings of the 4th International Symposium Reliable Flow of Particulate Solids (RELPOWFLOW IV), Tromsø, Norway. 2008.
[7] S. Ding, S. De Silva, and G. Enstad, "Effect of passive inserts on the granular flow from silos using numerical solutions". Particulate Science and Technology, Vol. 21(3): pp. 211-226, 2003.
[8] P. Tang and V. Puri, "Methods for minimizing segregation: a review". Particulate Science and Technology, Vol. 22(4): pp. 321-337, 2004.
[9] C. Lozano, G. Lumay, I. Zuriguel, R. Hidalgo, and A. Garcimartín, "Breaking arches with vibrations: the role of defects". Physical Review Letters, Vol. 109(6): pp. 068001, 2012.
[10] D. Gella, D. Maza, and I. Zuriguel. "Influence of particle size in silo discharge". in EPJ Web of Conferences. 2017. EDP Sciences.
[11] D. Gella, D. Maza, and I. Zuriguel, "Role of particle size in the kinematic properties of silo flow". Physical Review E, Vol. 95(5): pp. 052904, 2017.
[12] M. Zaki and M. S. Siraj, "Study of a flat-bottomed cylindrical silo with different orifice shapes". Powder Technology, Vol. 354: pp. 641-652, 2019.
[13] J.-U. Böhrnsen, H. Antes, M. Ostendorf, and J. Schwedes, "Silo discharge: measurement and simulation of dynamic behavior in bulk solids". Chemical Engineering & Technology: Industrial Chemistry‐Plant Equipment‐Process Engineering‐Biotechnology, Vol. 27(1): pp. 71-76, 2004.
[14] M. A. Madrid and L. A. Pugnaloni, "Velocity profiles in forced silo discharges". Granular Matter, Vol. 21(3): pp. 76, 2019.
[15] N. Govender, D. N. Wilke, P. Pizette, and N.-E. Abriak, "A study of shape non-uniformity and poly-dispersity in hopper discharge of spherical and polyhedral particle systems using the Blaze-DEM GPU code". Applied Mathematics and Computation, Vol. 319: pp. 318-336, 2018.
[16] N. Shah, B. Carballo-Ramirez, S. K. Birwa, N. Easwar, and S. Tewari, "Effect of Wall Friction on 2D Hopper Flow". arXiv Preprint arXiv:2103.09144, Vol., 2021.
[17] Q. Zheng, B. Xia, R. Pan, and A. Yu, "Prediction of mass discharge rate in conical hoppers using elastoplastic model". Powder Technology, Vol. 307: pp. 63-72, 2017.
[18] J. R. Darias, M. A. Madrid, and L. A. Pugnaloni, "Differential equation for the flow rate of discharging silos based on energy balance". Physical Review E, Vol. 101(5): pp. 052905, 2020.
[19] S. Zhang, P. Lin, C.-L. Wang, Y. Tian, J.-F. Wan, and L. Yang, "Investigating the influence of wall frictions on hopper flows". Granular Matter, Vol. 16: pp. 857-866, 2014.
[20] L. Babout, K. Grudzien, E. Maire, and P. J. Withers, "Influence of wall roughness and packing density on stagnant zone formation during funnel flow discharge from a silo: An X-ray imaging study". Chemical Engineering Science, Vol. 97: pp. 210-224, 2013.
[21] Y. Yu and H. Saxén, "Discrete element method simulation of properties of a 3D conical hopper with mono-sized spheres". Advanced Powder Technology, Vol. 22(3): pp. 324-331, 2011.
[22] Y. Li, N. Gui, X. Yang, J. Tu, and S. Jiang, "Effect of friction on pebble flow pattern in pebble bed reactor". Annals of Nuclear Energy, Vol. 94: pp. 32-43, 2016.
[23] L. Fullard, A. Godfrey, M. Manaf, C. Davies, A. Cliff, and M. Fukuoka, "Mixing experiments in 3D-printed silos; the role of wall friction and flow correcting inserts". Advanced Powder Technology, Vol. 31(5): pp. 1915-1923, 2020.
[24] T. Pongo, B. Fan, D. Hernández-Delfin, J. Török, R. Stannarius, R. C. Hidalgo, and T. Börzsönyi, "The role of the particle aspect ratio in the discharge of a narrow silo". New Journal of Physics, Vol. 24(10): pp. 103036, 2022.
[25] T. Börzsönyi, E. Somfai, B. Szabó, S. Wegner, P. Mier, G. Rose, and R. Stannarius, "Packing, alignment and flow of shape-anisotropic grains in a 3D silo experiment". New Journal of Physics, Vol. 18(9): pp. 093017, 2016.
[26] S. Wang, M. Zhuravkov, and S. Ji, "Granular flow of cylinder-like particles in a cylindrical hopper under external pressure based on DEM simulations". Soft Matter, Vol. 16(33): pp. 7760-7777, 2020.
[27] Q. Zheng and A. Yu, "Finite element investigation of the flow and stress patterns in conical hopper during discharge". Chemical Engineering Science, Vol. 129: pp. 49-57, 2015.
[28] Y. L. Dai, X. J. Liu, and D. Xia, "Flow characteristics of three typical granular materials in near 2D moving beds". Powder Technology, Vol. 373: pp. 220-231, 2020.
[29] D. Geldart, E. Abdullah, A. Hassanpour, L. Nwoke, and I. Wouters, "Characterization of powder flowability using measurement of angle of repose". China Particuology, Vol. 4(3-4): pp. 104-107, 2006.
[30] M. Alizadeh, A. Hassanpour, M. Pasha, M. Ghadiri, and A. Bayly, "The effect of particle shape on predicted segregation in binary powder mixtures". Powder Technology, Vol. 319: pp. 313-322, 2017.
[31] E. Stamhuis and W. Thielicke, "PIVlab–towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB". Journal of Open Research Software, Vol. 2(1): pp. 30, 2014.
[32] L. Sarno, A. Carravetta, Y.-C. Tai, R. Martino, M. Papa, and C.-Y. Kuo, "Measuring the velocity fields of granular flows–Employment of a multi-pass two-dimensional particle image velocimetry (2D-PIV) approach". Advanced Powder Technology, Vol. 29(12): pp. 3107-3123, 2018.
[33] C. J. Brown and J. Nielsen, "Silos: Fundamentals of theory, behaviour and design". CRC Press, 1998.
[34] I. Oldal and F. Safranyik, "Extension of silo discharge model based on discrete element method". Journal of Mechanical Science and Technology, Vol. 29: pp. 3789-3796, 2015. |