參考文獻 |
[1] S. L. Lee et al., “Modernizing Pharmaceutical Manufacturing: from Batch to Continuous Production,” J Pharm Innov, vol. 10, no. 3, pp. 191–199, Sep. 2015, doi: 10.1007/s12247-015-9215-8.
[2] K. P. Cole and M. D. Johnson, “Continuous flow technology vs. the batch-by-batch approach to produce pharmaceutical compounds,” Expert Rev Clin Pharmacol, vol. 11, no. 1, pp. 5–13, Jan. 2018, doi: 10.1080/17512433.2018.1413936.
[3] A. I. Malik and B. Sarkar, “Disruption management in a constrained multi-product imperfect production system,” J Manuf Syst, vol. 56, pp. 227–240, Jul. 2020, doi: 10.1016/j.jmsy.2020.05.015.
[4] P. F. E. Adipraja, C.-C. Chang, W.-J. Wang, and D. Liang, “Prediction of per-batch yield rates in production based on maximum likelihood estimation of per-machine yield rates,” J Manuf Syst, vol. 62, pp. 249–262, Jan. 2022, doi: 10.1016/j.jmsy.2021.11.015.
[5] Jianxin Jiao, M. M. Tseng, Qinhai Ma, and Yi Zou, “Generic Bill-of-Materials-and-Operations for High-Variety Production Management,” Concurrent Engineering, vol. 8, no. 4, pp. 297–321, Dec. 2000, doi: 10.1177/1063293X0000800404.
[6] J. E. See, “Visual Inspection Reliability for Precision Manufactured Parts,” Human Factors: The Journal of the Human Factors and Ergonomics Society, vol. 57, no. 8, pp. 1427–1442, Dec. 2015, doi: 10.1177/0018720815602389.
[7] S. F. Beckert and W. S. Paim, “Critical analysis of the acceptance criteria used in measurement systems evaluation,” International Journal of Metrology and Quality Engineering, vol. 8, p. 23, Oct. 2017, doi: 10.1051/ijmqe/2017016.
[8] A. S. Nookabadi and J. E. Middle, “An integrated quality assurance information system for the design‐to‐order manufacturing environment,” The TQM Magazine, vol. 18, no. 2, pp. 174–189, Mar. 2006, doi: 10.1108/09544780610647883.
[9] D. Powell, M. C. Magnanini, M. Colledani, and O. Myklebust, “Advancing zero defect manufacturing: A state-of-the-art perspective and future research directions,” Comput Ind, vol. 136, p. 103596, Apr. 2022, doi: 10.1016/j.compind.2021.103596.
[10] S. Patel, B. G. Dale, and P. Shaw, “Set‐up time reduction and mistake proofing methods: an examination in precision component manufacturing,” The TQM Magazine, vol. 13, no. 3, pp. 175–179, Jun. 2001, doi: 10.1108/09544780110385528.
[11] F. Psarommatis, J. Sousa, J. P. Mendonça, and D. Kiritsis, “Zero-defect manufacturing the approach for higher manufacturing sustainability in the era of industry 4.0: a position paper,” Int J Prod Res, vol. 60, no. 1, pp. 73–91, Jan. 2022, doi: 10.1080/00207543.2021.1987551.
[12] L. Biggio and I. Kastanis, “Prognostics and Health Management of Industrial Assets: Current Progress and Road Ahead,” Front Artif Intell, vol. 3, Nov. 2020, doi: 10.3389/frai.2020.578613.
[13] Y. J. Qu, X. G. Ming, Z. W. Liu, X. Y. Zhang, and Z. T. Hou, “Smart manufacturing systems: state of the art and future trends,” The International Journal of Advanced Manufacturing Technology, vol. 103, no. 9–12, pp. 3751–3768, Aug. 2019, doi: 10.1007/s00170-019-03754-7.
[14] S. Cofre-Martel, E. Lopez Droguett, and M. Modarres, “Big Machinery Data Preprocessing Methodology for Data-Driven Models in Prognostics and Health Management,” Sensors, vol. 21, no. 20, p. 6841, Oct. 2021, doi: 10.3390/s21206841.
[15] Y. A. Yucesan, A. Dourado, and F. A. C. Viana, “A survey of modeling for prognosis and health management of industrial equipment,” Advanced Engineering Informatics, vol. 50, p. 101404, Oct. 2021, doi: 10.1016/j.aei.2021.101404.
[16] S. Sundaram and A. Zeid, “Smart Prognostics and Health Management (SPHM) in Smart Manufacturing: An Interoperable Framework,” Sensors, vol. 21, no. 18, p. 5994, Sep. 2021, doi: 10.3390/s21185994.
[17] Z. M. Çınar, A. Abdussalam Nuhu, Q. Zeeshan, O. Korhan, M. Asmael, and B. Safaei, “Machine Learning in Predictive Maintenance towards Sustainable Smart Manufacturing in Industry 4.0,” Sustainability, vol. 12, no. 19, p. 8211, Oct. 2020, doi: 10.3390/su12198211.
[18] F. Tao, Q. Qi, A. Liu, and A. Kusiak, “Data-driven smart manufacturing,” J Manuf Syst, vol. 48, pp. 157–169, Jul. 2018, doi: 10.1016/j.jmsy.2018.01.006.
[19] T. Li et al., “WaveletKernelNet: An Interpretable Deep Neural Network for Industrial Intelligent Diagnosis,” IEEE Trans Syst Man Cybern Syst, vol. 52, no. 4, pp. 2302–2312, Apr. 2022, doi: 10.1109/TSMC.2020.3048950.
[20] A. Lokrantz, E. Gustavsson, and M. Jirstrand, “Root cause analysis of failures and quality deviations in manufacturing using machine learning,” Procedia CIRP, vol. 72, pp. 1057–1062, 2018, doi: 10.1016/j.procir.2018.03.229.
[21] H. Fei, W. Chaojun, and F. Shu-Kai S, “Fault Detection and Root Cause Analysis of a Batch Process via Novel Nonlinear Dissimilarity and Comparative Granger Causality Analysis,” Ind Eng Chem Res, vol. 58, no. 47, pp. 21842–21854, Nov. 2019, doi: 10.1021/acs.iecr.9b04471.
[22] N. Yu, Q. Xu, and H. Wang, “Wafer Defect Pattern Recognition and Analysis Based on Convolutional Neural Network,” IEEE Transactions on Semiconductor Manufacturing, vol. 32, no. 4, pp. 566–573, Nov. 2019, doi: 10.1109/TSM.2019.2937793.
[23] J. O’Leary, K. Sawlani, and A. Mesbah, “Deep Learning for Classification of the Chemical Composition of Particle Defects on Semiconductor Wafers,” IEEE Transactions on Semiconductor Manufacturing, vol. 33, no. 1, pp. 72–85, Feb. 2020, doi: 10.1109/TSM.2019.2963656.
[24] B. Steenwinckel et al., “FLAGS: A methodology for adaptive anomaly detection and root cause analysis on sensor data streams by fusing expert knowledge with machine learning,” Future Generation Computer Systems, vol. 116, pp. 30–48, Mar. 2021, doi: 10.1016/j.future.2020.10.015.
[25] Y. S. Cho and S. B. Kim, “Quality-Discriminative Localization of Multisensor Signals for Root Cause Analysis,” IEEE Trans Syst Man Cybern Syst, vol. 52, no. 7, pp. 4374–4387, Jul. 2022, doi: 10.1109/TSMC.2021.3096529.
[26] P. F. E. Adipraja, C.-C. Chang, H.-S. Yang, W.-J. Wang, and D. Liang, “Detecting Low-Yield Machines in Batch Production Systems Based on Observed Defective Pieces,” IEEE Trans Syst Man Cybern Syst, pp. 1–12, 2024, doi: 10.1109/TSMC.2024.3374393.
[27] R. R. Mohan, K. Thiruppath, R. Venkatrama, and S. Raghuraman, “Quality Improvement through First Pass Yield using Statistical Process Control Approach,” Journal of Applied Sciences, vol. 12, no. 10, pp. 985–991, May 2012, doi: 10.3923/jas.2012.985.991.
[28] Q. Su, L. Liu, and D. E. Whitney, “A Systematic Study of the Prediction Model for Operator-Induced Assembly Defects Based on Assembly Complexity Factors,” IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, vol. 40, no. 1, pp. 107–120, Jan. 2010, doi: 10.1109/TSMCA.2009.2033030.
[29] J. C. Soares, S. Sousa, and A. Tereso, “Industry practices on the rework of defective products: survey results,” The TQM Journal, vol. 32, no. 6, pp. 1177–1196, Apr. 2020, doi: 10.1108/TQM-06-2019-0162.
[30] H. Zhou and C. R. Weinberg, “Modeling Conception as an Aggregated Bernoulli Outcome with Latent Variables via the EM Algorithm,” Biometrics, vol. 52, no. 3, p. 945, Sep. 1996, doi: 10.2307/2533055.
[31] K. Lange, “A Gradient Algorithm Locally Equivalent to the Em Algorithm,” Journal of the Royal Statistical Society: Series B (Methodological), vol. 57, no. 2, pp. 425–437, Jul. 1995, doi: 10.1111/j.2517-6161.1995.tb02037.x.
[32] R. Dwivedi, N. Ho, K. Khamaru, M. J. Wainwright, M. I. Jordan, and B. Yu, “Singularity, misspecification and the convergence rate of EM,” The Annals of Statistics, vol. 48, no. 6, Dec. 2020, doi: 10.1214/19-AOS1924.
[33] C. Biernacki, G. Celeux, and G. Govaert, “Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture models,” Comput Stat Data Anal, vol. 41, no. 3–4, pp. 561–575, Jan. 2003, doi: 10.1016/S0167-9473(02)00163-9.
[34] W. Xiang, A. Karfoul, C. Yang, H. Shu, and R. Le Bouquin Jeannès, “An exact line search scheme to accelerate the EM algorithm: Application to Gaussian mixture models identification,” J Comput Sci, vol. 41, p. 101073, Mar. 2020, doi: 10.1016/j.jocs.2019.101073.
[35] E. Shireman, D. Steinley, and M. J. Brusco, “Examining the effect of initialization strategies on the performance of Gaussian mixture modeling,” Behav Res Methods, vol. 49, no. 1, pp. 282–293, Feb. 2017, doi: 10.3758/s13428-015-0697-6.
[36] M. Ouzineb, F. Z. Mhada, R. Pellerin, and I. El Hallaoui, “Optimal planning of buffer sizes and inspection station positions,” Prod Manuf Res, vol. 6, no. 1, pp. 90–112, Jan. 2018, doi: 10.1080/21693277.2017.1422812.
[37] M. Chincholkar and J. W. Herrmann, “Estimating manufacturing cycle time and throughput in flow shops with process drift and inspection,” Int J Prod Res, vol. 46, no. 24, pp. 7057–7072, Dec. 2008, doi: 10.1080/00207540701513893.
[38] H. Cho and C. Kirch, “Bootstrap confidence intervals for multiple change points based on moving sum procedures,” Comput Stat Data Anal, vol. 175, p. 107552, Nov. 2022, doi: 10.1016/j.csda.2022.107552.
[39] P. Hall, “On the Number of Bootstrap Simulations Required to Construct a Confidence Interval,” The Annals of Statistics, vol. 14, no. 4, Dec. 1986, doi: 10.1214/aos/1176350169.
[40] P. Hall, The Bootstrap and Edgeworth Expansion. in Springer Series in Statistics. New York, NY: Springer New York, 1992. doi: 10.1007/978-1-4612-4384-7.
[41] M. R. Chernick, Bootstrap Methods: A Guide for Practitioners and Researchers, Second Edi. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. doi: 10.1002/9780470192573.
[42] C. Karras, A. Karras, M. Avlonitis, I. Giannoukou, and S. Sioutas, “Maximum Likelihood Estimators on MCMC Sampling Algorithms for Decision Making,” in Artificial Intelligence Applications and Innovations. AIAI 2022 IFIP WG 12.5 International Workshops, vol. 652, I. Maglogiannis, L. Iliadis, J. Macintyre, and P. Cortez, Eds., Springer International Publishing, 2022, pp. 345–356. doi: 10.1007/978-3-031-08341-9_28. |