博碩士論文 111423011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:18.119.108.165
姓名 黃郁涵(Yu-Han Huang)  查詢紙本館藏   畢業系所 資訊管理學系
論文名稱 基於顧客評論觀點揭示組織調整策略和顧客體驗 優化:以 Covid-19 餐飲業為例
(Leveraging Customer Reviews to Unveil Organizational Strategy Adjustments and Customer Experience Optimization: A Case Study of the COVID-19 Impact on the Restaurant)
相關論文
★ 以機器學習技術為基礎建構新生兒孕育健康狀態預測模型★ 電子病歷縮寫消歧與一對多分類任務
★ 使用文字探勘與深度學習技術建置中風後肺炎之預測模型★ 精準社群廣告投資策略:以機器學習技術為基礎之社會影響力管理模式
★ 智慧活躍老化之實現:以資料驅動為基礎之AI長者在地交友推薦模式★ 整合深度學習技術與SOR理論之資訊情緒傳遞性探索:新聞生成特質與資訊情感傳播行為
★ 基於混合過濾的電影推薦系統★ 以 Reddit 使用者生成內容探討糖尿病照護社會支持
★ 防範於未然:基於機器學習技術之網路入侵偵測系統★ 可靠度驗證實驗室導入人工智慧技術的可行性探討 -以A公司為例
★ 智慧共同照護之實現: 以資料驅動為基礎之 AI 糖尿病個案管理模式★ Non-Touch Cooperation: An Interactive Mechanism Design Based on Mid-Air Gestures
★ 基於 UGC 的反脆弱社交口碑策略:以臺灣飯店業為例★ 基於機器學習技術之誘導式評論過濾機制:以餐廳評論為例
★ 資料驅動的球隊經營:NBA球隊競爭力與抱團策略之研究★ 網路購物詐欺偵測系統:結合社群網路行為的方法
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-7-1以後開放)
摘要(中) 在當今網際網路和社交媒體興盛的時代,社群平台上的用戶生成內容,無論是正面或負 面的評論,都對消費者的決策過程產生深遠影響。COVID-19 大流行作為一個典型的黑天鵝 事件,不僅突顯了業者面臨的重大、不可預測的挑戰,同時也強調了解消費者的真實需求, 以維持業務連續性和成長的迫切性。本研究將採用主題建模技術來分析消費者評論對於餐廳 的關鍵方面,並運用基於方面的情感分析深入探討疫情不同階段對餐飲業帶來的挑戰和長期 影響。研究中將消費者評論中的句子歸類到相應的方面和情感類別,並分析了餐廳實施的應 急策略及資訊科技策略對消費者體驗的具體影響。透過詳細分析消費者評論,本研究旨在揭 示 COVID-19 不同階段下消費者行為的長期變化,以及餐廳如何透過創新策略滿足這些不斷 演變的需求。本研究展示了餐飲業在逆境中不僅能維持運營,還能發掘成長機會,展現出反 脆弱性。研究結果不僅為餐飲業面對未來挑戰提供了策略指導,也強調了在逆境中尋求成長 與進步的重要性,為業者未來遇到類似困境做好準備提供了寶貴的洞見。
摘要(英) In today′s era of booming internet and social media, user-generated content on social platforms, whether positive or negative, has a profound impact on consumer decision-making processes. COVID-19, a typical black swan event, not only highlighted the significant and unpredictable challenges faced by the restaurant but also emphasized the urgency of understanding real consumer needs to maintain business continuity and growth. This study employs topic modeling to analyze key aspects of consumer reviews and uses aspect-based sentiment analysis to deeply explore the impacts and long-term consequences of the pandemic at different stages on the restaurant. The research categorizes sentences in consumer reviews into corresponding aspects and emotional categories and examines the specific effects of contingency and information technology strategies implemented by restaurants on customer experience. Through a detailed analysis of consumer reviews, this study aims to reveal the long-term changes in consumer behavior during different stages of COVID-19 and how restaurants can meet these evolving needs through innovative strategies. The study demonstrates how the restaurant can not only sustain operations but also find growth opportunities and show resilience in adversity. The findings not only provide strategic guidance for the restaurant to face future challenges but also highlight the importance of seeking growth and progress in adversity, offering valuable insights for businesses to prepare for similar difficulties in the future.
關鍵字(中) ★ 黑天鵝理論
★ COVID-19
★ 主題建模
★ 情感分析
★ 反脆弱性
關鍵字(英) ★ Black Swan Theory
★ COVID-19
★ Topic Modeling
★ Sentiment Analysis
★ Antifragility
論文目次 摘要............................................i
Abstract........................................ii
誌謝.............................................iii
Table of Contents................................iv
List of Figures..................................ix
List of Table....................................xiii
I. Introduction..................................1
II. Literature Review........................13
III. Methodology..............................24
IV. Result and Discussion....................54
V. Conclusion and Contribution..............125
VI. References...............................130
參考文獻 Abdullah, R., & Sarno, R. (2021). Aspect Based Sentiment Analysis for Explicit and Implicit Aspects in Restaurant Review using Grammatical Rules, Hybrid Approach, and SentiCircle. International Journal of Intelligent Engineering & Systems, 14(5).
Adak, A., Pradhan, B., & Shukla, N. (2022). Sentiment analysis of customer reviews of food delivery services using deep learning and explainable artificial intelligence: Systematic review. Foods, 11(10), 1500.
Alamoudi, E. S., & Alghamdi, N. S. (2021). Sentiment classification and aspect-based sentiment analysis on yelp reviews using deep learning and word embeddings. Journal of Decision Systems, 30(2-3), 259-281.
Ali, R. H., Pinto, G., Lawrie, E., & Linstead, E. J. (2022). A large-scale sentiment analysis of tweets pertaining to the 2020 US presidential election. Journal of Big Data, 9(1), 79.
Alqaryouti, O., Siyam, N., Abdel Monem, A., & Shaalan, K. (2024). Aspect-based sentiment analysis using smart government review data. Applied Computing and Informatics, 20(1/2), 142-161.
Antipova, T. (2020). Coronavirus pandemic as black swan event. Paper presented at the International conference on integrated science.
Asani, E., Vahdat-Nejad, H., & Sadri, J. (2021). Restaurant recommender system based on sentiment analysis. Machine Learning with Applications, 6, 100114.
Asghar, N. (2016). Yelp dataset challenge: Review rating prediction. arXiv preprint arXiv:1605.05362.
Aziz, S., Dowling, M., Hammami, H., & Piepenbrink, A. (2022). Machine learning in finance: A topic modeling approach. European Financial Management, 28(3), 744-770.
Bansal, A., & Kumar, N. (2022). Aspect-based sentiment analysis using attribute extraction of hospital reviews. New Generation Computing, 40(4), 941-960.
Behdenna, S., Barigou, F., & Belalem, G. (2018). Document level sentiment analysis: a survey. EAI endorsed transactions on context-aware systems and applications, 4(13), e2-e2.
Bestvater, S. E., & Monroe, B. L. (2023). Sentiment is not stance: Target-aware opinion classification for political text analysis. Political Analysis, 31(2), 235-256.
Bhatia, P., Ji, Y., & Eisenstein, J. (2015). Better document-level sentiment analysis from rst discourse parsing. arXiv preprint arXiv:1509.01599.
Bilgihan, A., Seo, S., & Choi, J. (2018). Identifying restaurant satisfiers and dissatisfiers: Suggestions from online reviews. Journal of Hospitality Marketing & Management, 27(5), 601-625.
Birjali, M., Kasri, M., & Beni-Hssane, A. (2021). A comprehensive survey on sentiment analysis: Approaches, challenges and trends. Knowledge-Based Systems, 226, 107134.
Blei, D. M. (2011). Introduction to Probabilistic Topic Models. P Communications of the ACM.
Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of machine Learning research, 3(Jan), 993-1022.
Botjes, E., van den Berg, M., van Gils, B., & Mulder, H. (2021). Attributes relevant to antifragile organizations. Paper presented at the 2021 IEEE 23rd Conference on Business Informatics (CBI).
Cao, I., Liu, Z., Karamanolakis, G., Hsu, D., & Gravano, L. (2021). Quantifying the effects of COVID-19 on restaurant reviews. Paper presented at the Proceedings of the Ninth International Workshop on Natural Language Processing for Social Media.
Cerasoli, M., Amato, C., & Ravagnan, C. (2022). An antifragile strategy for Rome post-Covid mobility. Transportation Research Procedia, 60, 338-345.
Chan, S. W., & Chong, M. W. (2017). Sentiment analysis in financial texts. Decision Support Systems, 94, 53-64.
Chen, C., Teng, Z., & Zhang, Y. (2020). Inducing target-specific latent structures for aspect sentiment classification. Paper presented at the Proceedings of the 2020 conference on empirical methods in natural language processing (EMNLP).
Chen, T., Samaranayake, P., Cen, X., Qi, M., & Lan, Y.-C. (2022). The impact of online reviews on consumers’ purchasing decisions: Evidence from an eye-tracking study. Frontiers in Psychology, 13, 865702.
Cobianchi, L., Dal Mas, F., Peloso, A., Pugliese, L., Massaro, M., Bagnoli, C., & Angelos, P. (2020). Planning the full recovery phase: an antifragile perspective on surgery after COVID-19. Annals of Surgery, 272(6), e296.
Consoli, S., Barbaglia, L., & Manzan, S. (2022). Fine-grained, aspect-based sentiment analysis on economic and financial lexicon. Knowledge-Based Systems, 247, 108781.
Corvello, V., Verteramo, S., Nocella, I., & Ammirato, S. (2022). Thrive during a crisis: the role of digital technologies in fostering antifragility in small and medium-sized enterprises. Journal of Ambient Intelligence and Humanized Computing, 1-13.
Daugherty, T., Eastin, M. S., & Bright, L. (2008). Exploring consumer motivations for creating user-generated content. Journal of interactive advertising, 8(2), 16-25.
De Battisti, F., Ferrara, A., & Salini, S. (2015). A decade of research in statistics: A topic model approach. Scientometrics, 103, 413-433.
Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.
Donthu, N., & Gustafsson, A. (2020). Effects of COVID-19 on business and research. In (Vol. 117, pp. 284-289): Elsevier.
Edara, D. C., Vanukuri, L. P., Sistla, V., & Kolli, V. K. K. (2023). Sentiment analysis and text categorization of cancer medical records with LSTM. Journal of Ambient Intelligence and Humanized Computing, 14(5), 5309-5325.
Ekawati, D., & Khodra, M. L. (2017). Aspect-based sentiment analysis for Indonesian restaurant reviews. Paper presented at the 2017 International Conference on Advanced Informatics, Concepts, Theory, and Applications (ICAICTA).
Esposito, B., Sessa, M. R., Sica, D., & Malandrino, O. (2022). Service innovation in the restaurant sector during COVID-19: digital technologies to reduce customers′ risk perception. The TQM Journal, 34(7), 134-164.
Fang, X., & Zhan, J. (2015). Sentiment analysis using product review data. Journal of Big Data, 2(1), 1-14.
Fatouros, G., Soldatos, J., Kouroumali, K., Makridis, G., & Kyriazis, D. (2023). Transforming sentiment analysis in the financial domain with ChatGPT. Machine Learning with Applications, 14, 100508.
Feuerriegel, S., & Pröllochs, N. (2021). Investor reaction to financial disclosures across topics: An application of latent Dirichlet allocation. Decision Sciences, 52(3), 608-628.
Fotiadis, A., Polyzos, S., & Huan, T.-C. T. (2021). The good, the bad and the ugly on COVID-19 tourism recovery. Annals of tourism research, 87, 103117.
Ghasemaghaei, M., Eslami, S. P., Deal, K., & Hassanein, K. (2018). Reviews’ length and sentiment as correlates of online reviews’ ratings. Internet Research, 28(3), 544-563.
Glaeser, E. L., Kim, H., & Luca, M. (2017). Nowcasting the local economy: Using Yelp data to measure economic activity. Retrieved from
Gojali, S., & Khodra, M. L. (2016). Aspect based sentiment analysis for review rating prediction. Paper presented at the 2016 International Conference On Advanced Informatics: Concepts, Theory And Application (ICAICTA).
Guo, Y., Barnes, S. J., & Jia, Q. (2017). Mining meaning from online ratings and reviews: Tourist satisfaction analysis using latent dirichlet allocation. Tourism management, 59, 467-483.
Haque, T. U., Saber, N. N., & Shah, F. M. (2018). Sentiment analysis on large scale Amazon product reviews. Paper presented at the 2018 IEEE international conference on innovative research and development (ICIRD).
Hicks, A., Comp, S., Horovitz, J., Hovarter, M., Miki, M., & Bevan, J. L. (2012). Why people use Yelp. com: An exploration of uses and gratifications. Computers in Human Behavior, 28(6), 2274-2279.
Hsiang, S., Allen, D., Annan-Phan, S., Bell, K., Bolliger, I., Chong, T., . . . Krasovich, E. (2020). The effect of large-scale anti-contagion policies on the COVID-19 pandemic. Nature, 584(7820), 262-267.
Huang, J., Rogers, S., & Joo, E. (2014). Improving restaurants by extracting subtopics from yelp reviews. iConference 2014 (Social Media Expo).
Infante, A., & Mardikaningsih, R. (2022). The Potential of social media as a Means of Online Business Promotion. Journal of Social Science Studies (JOS3), 2(2), 45-49.
Iskamto, D., & Rahmalia, K. F. (2023). Customer Review, Influencer Endorsement, and Purchase Intention: The Moderating Role of Brand Image. Shirkah: Journal of Economics and Business, 8(3), 234-251.
Jelodar, H., Wang, Y., Yuan, C., Feng, X., Jiang, X., Li, Y., & Zhao, L. (2019). Latent Dirichlet allocation (LDA) and topic modeling: models, applications, a survey. Multimedia Tools and Applications, 78, 15169-15211.
Karmakar, S., Sivakumar, N., & Pillai, A. S. (2023). Exploring Satisfaction Level of Customers in Restaurants by Using Latent Dirichlet Allocation (LDA) Algorithm. Paper presented at the 2023 International Conference on Inventive Computation Technologies (ICICT).
Khine, W. L. K., & Aung, N. T. T. (2019). Applying deep learning approach to targeted aspect-based sentiment analysis for restaurant domain. Paper presented at the 2019 International Conference on Advanced Information Technologies (ICAIT).
Kim, E. E. K. (2017). The impact of restaurant service experience valence and purchase involvement on consumer motivation and intention to engage in eWOM. Journal of Quality Assurance in Hospitality & Tourism, 18(3), 259-281.
Kim, Y.-J., & Kim, H.-S. (2022). The impact of hotel customer experience on customer satisfaction through online reviews. Sustainability, 14(2), 848.
Kostromitina, M., Keller, D., Cavusoglu, M., & Beloin, K. (2021). “His lack of a mask ruined everything.” Restaurant customer satisfaction during the COVID-19 outbreak: An analysis of Yelp review texts and star-ratings. International journal of hospitality management, 98, 103048.
Lee, M., Rodgers, S., & Kim, M. (2009). Effects of valence and extremity of eWOM on attitude toward the brand and website. Journal of Current Issues & Research in Advertising, 31(2), 1-11.
Leong, C.-M., Loi, A. M.-W., & Woon, S. (2022). The influence of social media eWOM information on purchase intention. Journal of Marketing Analytics, 1-13.
Li, H., Bruce, X., Li, G., & Gao, H. (2023). Restaurant survival prediction using customer-generated content: An aspect-based sentiment analysis of online reviews. Tourism management, 96, 104707.
Liu, J., Yu, Y., Mehraliyev, F., Hu, S., & Chen, J. (2022). What affects the online ratings of restaurant consumers: a research perspective on text-mining big data analysis. International Journal of Contemporary Hospitality Management, 34(10), 3607-3633.
Liu, Z., & Park, S. (2015). What makes a useful online review? Implication for travel product websites. Tourism management, 47, 140-151.
Lopes, A. I., Dens, N., De Pelsmacker, P., & Malthouse, E. C. (2023). Managerial response strategies to eWOM: A framework and research agenda for webcare. Tourism management, 98, 104739.
Lu, H.-M., Wei, C.-P., & Hsiao, F.-Y. (2016). Modeling healthcare data using multiple-channel latent Dirichlet allocation. Journal of biomedical informatics, 60, 210-223.
Luca, M. (2016). Reviews, reputation, and revenue: The case of Yelp. com. Com (March 15, 2016). Harvard Business School NOM Unit Working Paper(12-016).
Luo, Y., & Xu, X. (2021). Comparative study of deep learning models for analyzing online restaurant reviews in the era of the COVID-19 pandemic. International journal of hospitality management, 94, 102849.
Ma, D., Li, S., Wu, F., Xie, X., & Wang, H. (2019). Exploring sequence-to-sequence learning in aspect term extraction. Paper presented at the Proceedings of the 57th annual meeting of the association for computational linguistics.
Manzoor, U., Baig, S. A., Hashim, M., & Sami, A. (2020). Impact of social media marketing on consumer’s purchase intentions: the mediating role of customer trust. International Journal of Entrepreneurial Research, 3(2), 41-48.
Mehraliyev, F., Chan, I. C. C., & Kirilenko, A. P. (2022). Sentiment analysis in hospitality and tourism: a thematic and methodological review. International Journal of Contemporary Hospitality Management, 34(1), 46-77.
Mehta, P., & Pandya, S. (2020). A review on sentiment analysis methodologies, practices and applications. International Journal of Scientific and Technology Research, 9(2), 601-609.
Mimura, N., Yasuhara, K., Kawagoe, S., Yokoki, H., & Kazama, S. (2011). Damage from the Great East Japan Earthquake and Tsunami-a quick report. Mitigation and adaptation strategies for global change, 16, 803-818.
Mishev, K., Gjorgjevikj, A., Vodenska, I., Chitkushev, L. T., & Trajanov, D. (2020). Evaluation of sentiment analysis in finance: from lexicons to transformers. IEEE access, 8, 131662-131682.
Mubarok, M. S., Adiwijaya, A., & Aldhi, M. D. (2017). Aspect-based sentiment analysis to review products using Naïve Bayes. Paper presented at the AIP conference proceedings.
Mueller, J., & Stewart, M. G. (2016). The curse of the Black Swan. Journal of Risk Research, 19(10), 1319-1330.
Mukhopadhyay, S., Pandey, R., & Rishi, B. (2023). Electronic word of mouth (eWOM) research–a comparative bibliometric analysis and future research insight. Journal of Hospitality and Tourism Insights, 6(2), 404-424.
Nakayama, M., & Wan, Y. (2019). The cultural impact on social commerce: A sentiment analysis on Yelp ethnic restaurant reviews. Information & Management, 56(2), 271-279.
Nandy, M., Lodh, S., & Tang, A. (2021). Lessons from Covid-19 and a resilience model for higher education. Industry and Higher Education, 35(1), 3-9.
Napitu, F., Bijaksana, M. A., Trisetyarso, A., & Heryadi, Y. (2017). Twitter opinion mining predicts broadband internet′s customer churn rate. Paper presented at the 2017 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom).
Nazir, A., Rao, Y., Wu, L., & Sun, L. (2020). Issues and challenges of aspect-based sentiment analysis: A comprehensive survey. IEEE Transactions on Affective Computing, 13(2), 845-863.
Norris, C. L., Taylor Jr, S., & Taylor, D. C. (2021). Pivot! How the restaurant industry adapted during COVID-19 restrictions. International Hospitality Review, 35(2), 132-155.
Park, S., Strover, S., Choi, J., & Schnell, M. (2023). Mind games: A temporal sentiment analysis of the political messages of the Internet Research Agency on Facebook and Twitter. new media & society, 25(3), 463-484.
Patil, D. R., & Rane, N. L. (2023). Customer experience and satisfaction: importance of customer reviews and customer value on buying preference. International Research Journal of Modernization in Engineering Technology and Science, 5(3), 3437-3447.
Perera, I., & Caldera, H. (2017). Aspect based opinion mining on restaurant reviews. Paper presented at the 2017 2nd IEEE International Conference on Computational Intelligence and Applications (ICCIA).
Pröllochs, N., & Feuerriegel, S. (2020). Business analytics for strategic management: Identifying and assessing corporate challenges via topic modeling. Information & Management, 57(1), 103070.
Rajput, A. (2020). Natural language processing, sentiment analysis, and clinical analytics. In Innovation in health informatics (pp. 79-97): Elsevier.
Risselada, H., de Vries, L., & Verstappen, M. (2018). The impact of social influence on the perceived helpfulness of online consumer reviews. European Journal of Marketing, 52(3/4), 619-636.
Sartorio, F. S., Aelbrecht, P., Kamalipour, H., & Frank, A. (2021). Towards an antifragile urban form: a research agenda for advancing resilience in the built environment. Urban design international, 26, 135-158.
Schlebbe, K. (2023). Uses and gratifications of a tablet computer for children: an analysis of online customer reviews. Online Information Review, 47(4), 714-731.
Serrano-Guerrero, J., Olivas, J. A., Romero, F. P., & Herrera-Viedma, E. (2015). Sentiment analysis: A review and comparative analysis of web services. Information Sciences, 311, 18-38.
Shini, G., & Srividhya, V. (2023). Implicit aspect based sentiment analysis for restaurant review using LDA topic modeling and ensemble approach. International Journal of Advanced Technology and Engineering Exploration, 10(102), 554.
Shirsat, V. S., Jagdale, R. S., & Deshmukh, S. (2017). Document level sentiment analysis from news articles. Paper presented at the 2017 international conference on computing, Communication, Control and Automation (ICCUBEA).
Shivaprasad, T., & Shetty, J. (2017). Sentiment analysis of product reviews: A review. Paper presented at the 2017 International conference on inventive communication and computational technologies (ICICCT).
Singal, M. (2012). Effect of consumer sentiment on hospitality expenditures and stock returns. International journal of hospitality management, 31(2), 511-521.
Song, H. J., Yeon, J., & Lee, S. (2021). Impact of the COVID-19 pandemic: Evidence from the US restaurant industry. International journal of hospitality management, 92, 102702.
Sukma, E. A., Hidayanto, A. N., Pandesenda, A. I., Yahya, A. N., Widharto, P., & Rahardja, U. (2020). Sentiment analysis of the new indonesian government policy (omnibus law) on social media twitter. Paper presented at the 2020 International Conference on Informatics, Multimedia, Cyber and Information System (ICIMCIS).
Syaifudin, Y. W., & Puspitasari, D. (2017). Twitter data mining for sentiment analysis on peoples feedback against government public policy. Matter Int. J. Sci. Technol, 3(1), 110-122.
Taleb, N. N. (2007). The black swan: The impact of the highly improbable (Vol. 2): Random house.
Taleb, N. N. (2012). Antifragile: how to live in a world we don′t understand (Vol. 3): Allen Lane London.
Tran, B. X., Nghiem, S., Sahin, O., Vu, T. M., Ha, G. H., Vu, G. T., . . . Tam, W. (2019). Modeling research topics for artificial intelligence applications in medicine: latent Dirichlet allocation application study. Journal of medical Internet research, 21(11), e15511.
Uslu, A. (2020). The relationship of service quality dimensions of restaurant enterprises with satisfaction, behavioral intention, eWOM and the moderator effect of atmosphere. Tourism & Management Studies, 16(3), 23-35.
Valle-Cruz, D., Fernandez-Cortez, V., López-Chau, A., & Sandoval-Almazán, R. (2022). Does twitter affect stock market decisions? financial sentiment analysis during pandemics: A comparative study of the h1n1 and the covid-19 periods. Cognitive computation, 14(1), 372-387.
Verhellen, Y., Dens, N., & De Pelsmacker, P. (2013). Consumer responses to brands placed in Youtube movies: the effect of prominence and celebrity endorser expertise. Journal of electronic commerce research.-Long Beach, Calif.,[200-], currens, 14(4), 287-303.
Verma, D., Dewani, P. P., Behl, A., & Dwivedi, Y. K. (2023). Understanding the impact of eWOM communication through the lens of information adoption model: A meta-analytic structural equation modeling perspective. Computers in Human Behavior, 143, 107710.
Vikram, M., Anantharaman, A., & BS, S. (2019). An approach for multimodal medical image retrieval using latent dirichlet allocation. Paper presented at the Proceedings of the ACM India joint international conference on data science and management of data.
Wang, B., Shen, T., Long, G., Zhou, T., & Chang, Y. (2021). Eliminating sentiment bias for aspect-level sentiment classification with unsupervised opinion extraction. arXiv preprint arXiv:2109.02403.
Wankhade, M., Rao, A. C. S., & Kulkarni, C. (2022). A survey on sentiment analysis methods, applications, and challenges. Artificial Intelligence Review, 55(7), 5731-5780.
Yang, H., Zhang, C., & Li, K. (2022). PyABSA: A Modularized Framework for Reproducible Aspect-based Sentiment Analysis. arXiv preprint arXiv:2208.01368.
Yang, P., & Wang, X. (2020). COVID-19: a new challenge for human beings. Cellular & molecular immunology, 17(5), 555-557.
Yono, K., Sakaji, H., Matsushima, H., Shimada, T., & Izumi, K. (2020). Construction of macroeconomic uncertainty indices for financial market analysis using a supervised topic model. Journal of Risk and Financial Management, 13(4), 79.
Yue, L., Chen, W., Li, X., Zuo, W., & Yin, M. (2019). A survey of sentiment analysis in social media. Knowledge and Information Systems, 60, 617-663.
Zhai, Y., Song, X., Chen, Y., & Lu, W. (2022). A study of mobile medical app user satisfaction incorporating theme analysis and review sentiment tendencies. International Journal of Environmental Research and Public Health, 19(12), 7466.
Zhao, P., Hou, L., & Wu, O. (2020). Modeling sentiment dependencies with graph convolutional networks for aspect-level sentiment classification. Knowledge-Based Systems, 193, 105443.
Zibarzani, M., Abumalloh, R. A., Nilashi, M., Samad, S., Alghamdi, O., Nayer, F. K., . . . Akib, N. A. M. (2022). Customer satisfaction with Restaurants Service Quality during COVID-19 outbreak: A two-stage methodology. Technology in Society, 70, 101977.
Zucco, C., Liang, H., Di Fatta, G., & Cannataro, M. (2018). Explainable sentiment analysis with applications in medicine. Paper presented at the 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM).
指導教授 曾筱珽(Hsiao-Ting Tseng) 審核日期 2024-7-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明