博碩士論文 110521091 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:3.20.239.211
姓名 王嘉泰(Chia-Tai Wang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 虛擬實境中雙人協作任務對於腦電波活動之互動性影響
(The Brainwave Interaction of Dual-Person Collaborative Tasks in a Virtual Reality Environmental Game)
相關論文
★ 使用梳狀濾波器於相位編碼之穩態視覺誘發電位腦波人機介面★ 應用電激發光元件於穩態視覺誘發電位之腦波人機介面判斷
★ 智慧型手機之即時生理顯示裝置研製★ 多頻相位編碼之閃光視覺誘發電位驅動大腦人機介面
★ 以經驗模態分解法分析穩態視覺誘發電位之大腦人機界面★ 利用經驗模態分解法萃取聽覺誘發腦磁波訊號
★ 明暗閃爍視覺誘發電位於遙控器之應用★ 使用整體經驗模態分解法進行穩態視覺誘發電位腦波遙控車即時控制
★ 使用模糊理論於穩態視覺誘發之腦波人機介面判斷★ 利用正向模型設計空間濾波器應用於視覺誘發電位之大腦人機介面之雜訊消除
★ 智慧型心電圖遠端監控系統★ 使用隱馬可夫模型於穩態視覺誘發之腦波人機介面判斷 與其腦波控制遙控車應用
★ 使用類神經網路於肢體肌電訊號進行人體關節角度預測★ 使用等階集合法與影像不均勻度修正於手指靜脈血管影像切割
★ 應用小波編碼於多通道生理訊號傳輸★ 結合高斯混合模型與最大期望值方法於相位編碼視覺腦波人機介面之目標偵測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-1-1以後開放)
摘要(中) 人類是社會性生物,其中在社會互動中協作互動是種不可或缺的一部分,在以往研究人類之間的協作互動時一般採取行為上的研究,然而在協作互動背後的神經活動卻相對地少被研究,因此本研究旨在深入探討雙人協作任務中參與者的腦部活動是否呈現出關聯性及探討實驗中的神經活動。本研究使用腦電圖(Electroencephalogram,EEG)記錄了兩位參與者在虛擬實境(Virtual Reality,VR)中共同執行協作任務期間的腦部活動,事後分析中首先將事件間隔以1秒當作閥值切割不同協作下的行為,最後評估了參與者之間腦部活動的同步性、參與者不同身分的腦部活動的個別差異性及不同協作下的差異性。研究結果顯示,在雙人協作任務中,參與者的腦部活動呈現出一定程度的同步性,我們發現在 α 頻帶中的額葉、中央及頂葉中發現顯著性,在 β_1 頻帶中的中央及頂葉中發現顯著性,在 β_3 頻帶中大部分的右半腦感興趣的腦區(Regions Of Interest,ROI)中存在差異性,而在 β_2 中大部分的ROI存在差異性;而在雙人協作任務中參與者不同身分的腦部活動呈現出不一樣的活動差異,我們先將受試者對分成領導者及跟隨者並發現領導者在大部分ROI中有差異性,而跟隨者中發現不同頻帶中存在差異性。在 β_1 /α 中除了右額葉外中存在差異性;在 β_2 /α 中的t < 1秒時除了F4外所有ROI都有差異性,而在t >1秒時只有C3、P3、P4有差異性;在 β_3 /α 中只有Fz及頂葉區有差異。總體而言,本研究提供了初步證據,認為雙人協作任務中的腦部同步可能與任務執行有關。這為進一步探索協作與腦部活動之間的關係提供了基礎,同時也突顯了需要更深入研究以解釋這種複雜關係的必要性。
摘要(英) Human beings are social animals, among whom collaborative interaction in social settings is an indispensable part. Previously, research on human collaborative interactions typically focused on behavioral studies. However, the neural activities underlying these collaborative interactions have been relatively understudied. Therefore, this research aims to delve into whether there is a correlation in brain activity among participants in a dyadic collaborative task and to explore the neural activities during the experiment. In this study, we used Electroencephalogram (EEG) to record the brain activities of two participants engaged in a collaborative task within a Virtual Reality (VR) environment. In the post-analysis, we first segmented the behaviors under different collaborations by using a 1 second interval as a threshold, and then assessed the synchrony of brain activity between participants, the individual differences in brain activity of participants with different roles, and the variability under different collaborations. The results showed that, in the dyadic collaborative tasks, the participants′ brain activities exhibited a certain degree of synchrony. We found significant synchrony in the α band in the frontal, central, and parietal lobes, in the 〖 β〗_1 band in the central and parietal lobes, and variability in most regions of interest (ROI) in the right hemisphere in the〖 β〗_3 band, and in most ROIs in the 〖 β〗_2 band. Moreover, the brain activities of participants with different roles in the dyadic collaborative tasks showed different patterns of activity. Dividing the subjects into leaders and followers, we found differences in most ROIs in leaders, while in followers, differences were found across different bands. In the β_1/α band, except for the right frontal lobe, differences were found; in the β_2/α band, differences were found in all ROIs except F4 when t < 1 second, and only in C3, P3, P4 when t > 1 second; in the 〖 β〗_3/α band, only Fz and the parietal region showed differences. Overall, this study provides preliminary evidence that brain synchrony in dyadic collaborative tasks may be related to task performance. This lays the foundation for further exploration of the relationship between collaboration and brain activity, while also highlighting the need for more in-depth research to explain this complex relationship
關鍵字(中) ★ 腦同步
★ 合作
★ 面對面協作
★ 腦電圖
★ 虛擬實境
關鍵字(英)
論文目次 中文摘要 i
Abstract ii
目錄 iv
圖目錄 vi
表目錄 viii
第一章 緒論 1
1-1 研究背景與目的 1
1-2 論文章節結構 4
第二章 研究設計與方法 5
2-1 受試者 5
2-2 系統架構及設備 5
2-3 實驗任務及流程 8
2-3-1 任務 8
2-3-2 流程 9
2-4 數據處理 13
2-5 分析方法 15
第三章 結果 17
3-1 任務表現 17
3-2 休息和雙人受試的PLV比較 18
3-3 領導者和跟隨者PSD比例比較 21
3-4 任務表現與PLV的差異 25
3-5 任務表現與PSD比例的差異 28
第四章 討論 32
第五章 結論與未來展望 35
第六章 參考文獻 36
參考文獻 D. W. Johnson, R. T. Johnson, M. B. Stanne, and A. Garibaldi, "Impact of group processing on achievement in cooperative groups," The Journal of Social Psychology, vol. 130, no. 4, pp. 507-516 %@ 0022-4545, 1990.
[2] R. Hari and M. V. Kujala, "Brain basis of human social interaction: from concepts to brain imaging," Physiological reviews, vol. 89, no. 2, pp. 453-479 %@ 0031-9333, 2009.
[3] L. Schilbach et al., "Toward a second-person neuroscience1," Behavioral and brain sciences, vol. 36, no. 4, pp. 393-414 %@ 0140-525X, 2013.
[4] M. Teplan, "Fundamentals of EEG measurement," Measurement science review, vol. 2, no. 2, pp. 1-11, 2002.
[5] P. Zarjam, J. Epps, and N. H. Lovell, "Beyond subjective self-rating: EEG signal classification of cognitive workload," IEEE Transactions on Autonomous Mental Development, vol. 7, no. 4, pp. 301-310 %@ 1943-0604, 2015.
[6] Z. Mohammadi, J. Frounchi, and M. Amiri, "Wavelet-based emotion recognition system using EEG signal," Neural Computing and Applications, vol. 28, pp. 1985-1990 %@ 0941-0643, 2017.
[7] A. R. Hassan and A. Subasi, "A decision support system for automated identification of sleep stages from single-channel EEG signals," Knowledge-Based Systems, vol. 128, pp. 115-124 %@ 0950-7051, 2017.
[8] L. S. Vidyaratne and K. M. Iftekharuddin, "Real-time epileptic seizure detection using EEG," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 25, no. 11, pp. 2146-2156 %@ 1534-4320, 2017.
[9] A. Lenartowicz and S. K. Loo, "Use of EEG to diagnose ADHD," Current psychiatry reports, vol. 16, pp. 1-11 %@ 1523-3812, 2014.
[10] K. Yun, K. Watanabe, and S. Shimojo, "Interpersonal body and neural synchronization as a marker of implicit social interaction," Scientific reports, vol. 2, no. 1, pp. 959 %@ 2045-2322, 2012.
[11] I. Gumilar et al., "A comparative study on inter-brain synchrony in real and virtual environments using hyperscanning," Computers & Graphics, vol. 94, pp. 62-75 %@ 0097-8493, 2021.
[12] L. Schwartz et al., "Technologically-assisted communication attenuates inter-brain synchrony," Neuroimage, vol. 264, pp. 119677 %@ 1053-8119, 2022.
[13] V. Wikström et al., "Inter-brain synchronization occurs without physical co-presence during cooperative online gaming," Neuropsychologia, vol. 174, pp. 108316 %@ 0028-3932, 2022.
[14] Y. Hu, Y. Pan, X. Shi, Q. Cai, X. Li, and X. Cheng, "Inter-brain synchrony and cooperation context in interactive decision making," Biological psychology, vol. 133, pp. 54-62 %@ 0301-0511, 2018.
[15] H. Liu, C. Zhao, F. Wang, and D. Zhang, "Inter-brain amplitude correlation differentiates cooperation from competition in a motion-sensing sports game," Social cognitive and affective neuroscience, vol. 16, no. 6, pp. 552-564 %@ 1749-5016, 2021.
[16] G. Dumas, J. Nadel, R. Soussignan, J. Martinerie, and L. Garnero, "Inter-brain synchronization during social interaction," PloS one, vol. 5, no. 8, pp. e12166 %@ 1932-6203, 2010.
[17] M. Kawasaki, K. Kitajo, and Y. Yamaguchi, "Sensory-motor synchronization in the brain corresponds to behavioral synchronization between individuals," Neuropsychologia, vol. 119, pp. 59-67 %@ 0028-3932, 2018.
[18] L. R. R. Gianotti, F. M. Dahinden, T. Baumgartner, and D. Knoch, "Understanding individual differences in domain-general prosociality: A resting EEG study," Brain topography, vol. 32, pp. 118-126 %@ 0896-0267, 2019.
[19] G. Vecchiato et al., "High-resolution EEG analysis of power spectral density maps and coherence networks in a proportional reasoning task," Brain topography, vol. 26, pp. 303-314 %@ 0896-0267, 2013.
[20] J. Kamiński, A. Brzezicka, M. Gola, and A. Wróbel, "Beta band oscillations engagement in human alertness process," International Journal of Psychophysiology, vol. 85, no. 1, pp. 125-128 %@ 0167-8760, 2012.
[21] S.-O. Kim, J.-E. Jeong, Y.-A. Oh, H.-R. Kim, and S.-A. Park, "Comparing concentration levels and emotional states of children using electroencephalography during horticultural and nonhorticultural activities," HortScience, vol. 56, no. 3, pp. 324-329 %@ 0018-5345, 2021.
[22] S. Schapkin, J. Raggatz, M. Hillmert, and I. Böckelmann, "EEG correlates of cognitive load in a multiple choice reaction task," Acta neurobiologiae experimentalis, vol. 80, no. 1, pp. 76-89 %@ 1689-0035, 2020.
[23] H. Masaki, M. Ohira, H. Uwano, and K.-i. Matsumoto, "A quantitative evaluation on the software use experience with electroencephalogram," 2011, pp. 469-477 %@ 3642217079: Springer.
[24] M. A. Schier, "Changes in EEG alpha power during simulated driving: a demonstration," International Journal of Psychophysiology, vol. 37, no. 2, pp. 155-162 %@ 0167-8760, 2000.
[25] R. Druta, C. Druta, P. Negirla, and I. Silea, "A review on methods and systems for remote collaboration," Applied Sciences, vol. 11, no. 21, pp. 10035 %@ 2076-3417, 2021.
[26] B. Ens et al., "Revisiting collaboration through mixed reality: The evolution of groupware," International Journal of Human-Computer Studies, vol. 131, pp. 81-98 %@ 1071-5819, 2019.
[27] Y. P. Zinchenko et al., "Virtual reality is more efficient in learning human heart anatomy especially for subjects with low baseline knowledge," New Ideas in Psychology, vol. 59, pp. 100786 %@ 0732-118X, 2020.
[28] J. W. Choi et al., "Neural applications using immersive virtual reality: A review on EEG studies," IEEE Transactions on Neural Systems and Rehabilitation Engineering %@ 1534-4320, 2023.
[29] B. Wan, Q. Wang, K. Su, C. Dong, W. Song, and M. Pang, "Measuring the impacts of virtual reality games on cognitive ability using EEG signals and game performance data," IEEE Access, vol. 9, pp. 18326-18344 %@ 2169-3536, 2021.
[30] J. Li, Y. Jin, S. Lu, W. Wu, and P. Wang, "Building environment information and human perceptual feedback collected through a combined virtual reality (VR) and electroencephalogram (EEG) method," Energy and Buildings, vol. 224, pp. 110259 %@ 0378-7788, 2020.
[31] Online. URL: . Available: https://www.photonengine.com/pun
[32] S. Palmisano and R. Constable, "Reductions in sickness with repeated exposure to HMD-based virtual reality appear to be game-specific," Virtual Reality, vol. 26, no. 4, pp. 1373-1389 %@ 1359-4338, 2022.
[33] B. Keshavarz and J. F. Golding, "Motion sickness: current concepts and management," Current opinion in neurology, vol. 35, no. 1, pp. 107-112 %@ 1350-7540, 2022.
[34] O. M. Solomon Jr, "PSD computations using Welch’s method," NASA STI/Recon Technical Report N, vol. 92, p. 23584, 1991.
[35] F. R. Kschischang, "The hilbert transform," University of Toronto, vol. 83, p. 277, 2006.
[36] Y. Dasdemir, E. Yildirim, and S. Yildirim, "Analysis of functional brain connections for positive–negative emotions using phase locking value," Cognitive neurodynamics, vol. 11, no. 6, pp. 487-500 %@ 1871-4080, 2017.
[37] I. Susnoschi Luca, F. D. Putri, H. Ding, and A. Vuckovič, "Brain synchrony in competition and collaboration during multiuser neurofeedback-based gaming," Frontiers in Neuroergonomics, vol. 2, pp. 29 %@ 2673-6195, 2021.
[38] J. Toppi et al., "Investigating cooperative behavior in ecological settings: an EEG hyperscanning study," PloS one, vol. 11, no. 4, pp. e0154236 %@ 1932-6203, 2016.
[39] M. Shiraishi and S. Shimada, "Inter-brain synchronization during a cooperative task reflects the sense of joint agency," Neuropsychologia, vol. 154, pp. 107770 %@ 0028-3932, 2021.
[40] B. Pesaran, M. J. Nelson, and R. A. Andersen, "Free choice activates a decision circuit between frontal and parietal cortex," Nature, vol. 453, no. 7193, pp. 406-409 %@ 0028-0836, 2008.
[41] G. Zhou, M. Bourguignon, L. Parkkonen, and R. Hari, "Neural signatures of hand kinematics in leaders vs. followers: A dual-MEG study," NeuroImage, vol. 125, pp. 731-738 %@ 1053-8119, 2016.
[42] M. A. Goodale and A. D. Milner, "Separate visual pathways for perception and action," Trends in neurosciences, vol. 15, no. 1, pp. 20-25 %@ 0166-2236, 1992.
[43] Y. Chen and X. Huang, "Modulation of alpha and beta oscillations during an n-back task with varying temporal memory load," Frontiers in psychology, vol. 6, pp. 2031 %@ 1664-1078, 2016.
指導教授 李柏磊 審核日期 2024-3-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明