參考文獻 |
AbaeiKoupaei, N., & Al Osman, H. (2023). A Multi-Modal Stacked Ensemble Model for Bipolar Disorder Classification. IEEE Transactions on Affective Computing, 14(1), 236–244. https://doi.org/10.1109/TAFFC.2020.3047582
Aich, A., & Parde, N. (2022). Are You Really Okay? A Transfer Learning-based Approach for Identification of Underlying Mental Illnesses. In A. Zirikly, D. Atzil-Slonim, M. Liakata, S. Bedrick, B. Desmet, M. Ireland, A. Lee, S. MacAvaney, M. Purver, R. Resnik, & A. Yates (Eds.), Proceedings of the Eighth Workshop on Computational Linguistics and Clinical Psychology (pp. 89–104). Association for Computational Linguistics. https://doi.org/10.18653/v1/2022.clpsych-1.8
Baevski, A., Zhou, H., Mohamed, A., & Auli, M. (2020). wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations (arXiv:2006.11477). arXiv. https://doi.org/10.48550/arXiv.2006.11477
Baki, P., Kaya, H., Çiftçi, E., Güleç, H., & Salah, A. A. (2022). A Multimodal Approach for Mania Level Prediction in Bipolar Disorder. IEEE Transactions on Affective Computing, 13(4), 2119–2131. https://doi.org/10.1109/TAFFC.2022.3193054
Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324
Ceccarelli, F., & Mahmoud, M. (2022). Multimodal temporal machine learning for Bipolar Disorder and Depression Recognition. Pattern Analysis and Applications, 25(3), 493–504. https://doi.org/10.1007/s10044-021-01001-y
Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785–794. https://doi.org/10.1145/2939672.2939785
Church, K. W. (2017). Word2Vec. Natural Language Engineering, 23(1), 155–162. https://doi.org/10.1017/S1351324916000334
Cohan, A., Desmet, B., Yates, A., Soldaini, L., MacAvaney, S., & Goharian, N. (2018). SMHD: A Large-Scale Resource for Exploring Online Language Usage for Multiple Mental Health Conditions (arXiv:1806.05258). arXiv. http://arxiv.org/abs/1806.05258
Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297. https://doi.org/10.1007/BF00994018
Cover, T., & Hart, P. (1967). Nearest neighbor pattern classification. IEEE Transactions on Information Theory, 13(1), 21–27. https://doi.org/10.1109/TIT.1967.1053964
Cummins, N., Scherer, S., Krajewski, J., Schnieder, S., Epps, J., & Quatieri, T. F. (2015). A review of depression and suicide risk assessment using speech analysis. Speech Communication, 71, 10–49. https://doi.org/10.1016/j.specom.2015.03.004
Dai, H.-J., Su, C.-H., Lee, Y.-Q., Zhang, Y.-C., Wang, C.-K., Kuo, C.-J., & Wu, C.-S. (2021). Deep Learning-Based Natural Language Processing for Screening Psychiatric Patients. Frontiers in Psychiatry, 11, 533949. https://doi.org/10.3389/fpsyt.2020.533949
Deng, J. J., Leung, C. H. C., & Li, Y. (2021). Multimodal Emotion Recognition Using Transfer Learning on Audio and Text Data. In O. Gervasi, B. Murgante, S. Misra, C. Garau, I. Blečić, D. Taniar, B. O. Apduhan, A. M. A. C. Rocha, E. Tarantino, & C. M. Torre (Eds.), Computational Science and Its Applications – ICCSA 2021 (pp. 552–563). Springer International Publishing. https://doi.org/10.1007/978-3-030-86970-0_39
Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding (arXiv:1810.04805). arXiv. http://arxiv.org/abs/1810.04805
Eyben, F., Scherer, K. R., Schuller, B. W., Sundberg, J., Andre, E., Busso, C., Devillers, L. Y., Epps, J., Laukka, P., Narayanan, S. S., & Truong, K. P. (2016). The Geneva Minimalistic Acoustic Parameter Set (GeMAPS) for Voice Research and Affective Computing. IEEE Transactions on Affective Computing, 7(2), 190–202. https://doi.org/10.1109/TAFFC.2015.2457417
Farrús, M., Codina-Filbà, J., & Escudero, J. (2021). Acoustic and prosodic information for home monitoring of bipolar disorder. Health Informatics Journal, 27(1), 146045822097275. https://doi.org/10.1177/1460458220972755
Gkotsis, G., Oellrich, A., Hubbard, T., Dobson, R., Liakata, M., Velupillai, S., & Dutta, R. (2016). The language of mental health problems in social media. Proceedings of the Third Workshop on Computational Lingusitics and Clinical Psychology, 63–73. https://doi.org/10.18653/v1/W16-0307
Grande, I., Berk, M., Birmaher, B., & Vieta, E. (2016). Bipolar disorder. The Lancet, 387(10027), 1561–1572. https://doi.org/10.1016/S0140-6736(15)00241-X
Grollmisch, S., Cano, E., Kehling, C., & Taenzer, M. (2021). Analyzing the Potential of Pre-Trained Embeddings for Audio Classification Tasks. 2020 28th European Signal Processing Conference (EUSIPCO), 790–794. https://doi.org/10.23919/Eusipco47968.2020.9287743
Guidi, A., Schoentgen, J., Bertschy, G., Gentili, C., Scilingo, E. P., & Vanello, N. (2017). Features of vocal frequency contour and speech rhythm in bipolar disorder. Biomedical Signal Processing and Control, 37, 23–31. https://doi.org/10.1016/j.bspc.2017.01.017
Harvey, D., Lobban, F., Rayson, P., Warner, A., & Jones, S. (2022). Natural Language Processing Methods and Bipolar Disorder: Scoping Review. JMIR Mental Health, 9(4), e35928. https://doi.org/10.2196/35928
He, L., & Cao, C. (2018). Automated depression analysis using convolutional neural networks from speech. Journal of Biomedical Informatics, 83, 103–111. https://doi.org/10.1016/j.jbi.2018.05.007
Hershey, S., Chaudhuri, S., Ellis, D. P. W., Gemmeke, J. F., Jansen, A., Moore, R. C., Plakal, M., Platt, D., Saurous, R. A., Seybold, B., Slaney, M., Weiss, R. J., & Wilson, K. (2017). CNN Architectures for Large-Scale Audio Classification (arXiv:1609.09430). arXiv. https://doi.org/10.48550/arXiv.1609.09430
Hirschfeld, R. M. (2014). Differential diagnosis of bipolar disorder and major depressive disorder. Journal of Affective Disorders, 169, S12–S16. https://doi.org/10.1016/S0165-0327(14)70004-7
Hsu, W.-N., Bolte, B., Tsai, Y.-H. H., Lakhotia, K., Salakhutdinov, R., & Mohamed, A. (2021). HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units (arXiv:2106.07447). arXiv. https://doi.org/10.48550/arXiv.2106.07447
Hu, Y.-H., Chen, K., Chang, I.-C., & Shen, C.-C. (2020). Critical Predictors for the Early Detection of Conversion From Unipolar Major Depressive Disorder to Bipolar Disorder: Nationwide Population-Based Retrospective Cohort Study. JMIR Medical Informatics, 8(4), e14278. https://doi.org/10.2196/14278
Huang, Y.-H., Chen, Y.-H., Alvarado, F. H. C., Lee, S.-R., Wu, S.-I., Lai, Y., & Chen, Y.-S. (2019). Leveraging Linguistic Characteristics for Bipolar Disorder Recognition with Gender Differences (arXiv:1907.07366). arXiv. http://arxiv.org/abs/1907.07366
Jan, Z., AI-Ansari, N., Mousa, O., Abd-alrazaq, A., Ahmed, A., Alam, T., & Househ, M. (2021). The Role of Machine Learning in Diagnosing Bipolar Disorder: Scoping Review. Journal of Medical Internet Research, 23(11), e29749. https://doi.org/10.2196/29749
Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., & Stoyanov, V. (2019). RoBERTa: A Robustly Optimized BERT Pretraining Approach (arXiv:1907.11692). arXiv. https://doi.org/10.48550/arXiv.1907.11692
Maxhuni, A., Muñoz-Meléndez, A., Osmani, V., Perez, H., Mayora, O., & Morales, E. F. (2016). Classification of bipolar disorder episodes based on analysis of voice and motor activity of patients. Pervasive and Mobile Computing, 31, 50–66. https://doi.org/10.1016/j.pmcj.2016.01.008
McIntyre, R. S., Berk, M., Brietzke, E., Goldstein, B. I., López-Jaramillo, C., Kessing, L. V., Malhi, G. S., Nierenberg, A. A., Rosenblat, J. D., Majeed, A., Vieta, E., Vinberg, M., Young, A. H., & Mansur, R. B. (2020). Bipolar disorders. The Lancet, 396(10265), 1841–1856. https://doi.org/10.1016/S0140-6736(20)31544-0
Meyer, F., & Meyer, T. D. (2009). The misdiagnosis of bipolar disorder as a psychotic disorder: Some of its causes and their influence on therapy. Journal of Affective Disorders, 112(1–3), 174–183. https://doi.org/10.1016/j.jad.2008.04.022
Mundt, J. C., Vogel, A. P., Feltner, D. E., & Lenderking, W. R. (2012). Vocal Acoustic Biomarkers of Depression Severity and Treatment Response. Biological Psychiatry, 72(7), 580–587. https://doi.org/10.1016/j.biopsych.2012.03.015
Pan, S. J., & Yang, Q. (2010). A Survey on Transfer Learning. IEEE Transactions on Knowledge and Data Engineering, 22(10), 1345–1359. https://doi.org/10.1109/TKDE.2009.191
Pan, W., Deng, F., Wang, X., Hang, B., Zhou, W., & Zhu, T. (2023). Exploring the ability of vocal biomarkers in distinguishing depression from bipolar disorder, schizophrenia, and healthy controls. Frontiers in Psychiatry, 14, 1079448. https://doi.org/10.3389/fpsyt.2023.1079448
Pennington, J., Socher, R., & Manning, C. (2014). Glove: Global Vectors for Word Representation. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 1532–1543. https://doi.org/10.3115/v1/D14-1162
Phillips, M. L., & Kupfer, D. J. (2013). Bipolar disorder diagnosis: Challenges and future directions. The Lancet, 381(9878), 1663–1671. https://doi.org/10.1016/S0140-6736(13)60989-7
Podcastle: All-in-One Podcast Software. (n.d.). Retrieved June 10, 2024, from https://podcastle.ai/
Rotenberg, L. D. S., Borges-Júnior, R. G., Lafer, B., Salvini, R., & Dias, R. D. S. (2021). Exploring machine learning to predict depressive relapses of bipolar disorder patients. Journal of Affective Disorders, 295, 681–687. https://doi.org/10.1016/j.jad.2021.08.127
Rude, S., Gortner, E.-M., & Pennebaker, J. (2004). Language use of depressed and depression-vulnerable college students. Cognition & Emotion, 18(8), 1121–1133. https://doi.org/10.1080/02699930441000030
Sharma, G., Umapathy, K., & Krishnan, S. (2020). Trends in audio signal feature extraction methods. Applied Acoustics, 158, 107020. https://doi.org/10.1016/j.apacoust.2019.107020
Singh, T., & Rajput, M. (2006). Misdiagnosis of Bipolar Disorder. Psychiatry (Edgmont), 3(10), 57–63.
Syed, Z. S., Ali, S., & Latif, A. (2020). Deep Acoustic Embeddings for Identifying Parkinsonian Speech. International Journal of Advanced Computer Science and Applications, 11(10). https://doi.org/10.14569/IJACSA.2020.0111089
TAIDE. (2024, May 21). https://huggingface.co/taide
Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C. C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., … Scialom, T. (2023). Llama 2: Open Foundation and Fine-Tuned Chat Models (arXiv:2307.09288). arXiv. https://doi.org/10.48550/arXiv.2307.09288
Wang, B., Wu, Y., Taylor, N., Lyons, T., Liakata, M., Nevado-Holgado, A. J., & Saunders, K. E. A. (2021). Learning to Detect Bipolar Disorder and Borderline Personality Disorder with Language and Speech in Non-Clinical Interviews (arXiv:2008.03408). arXiv. http://arxiv.org/abs/2008.03408
Wang, Q., Dai, S., Xu, B., Lyu, Y., Zhu, Y., Wu, H., & Wang, H. (2022). Building Chinese Biomedical Language Models via Multi-Level Text Discrimination (arXiv:2110.07244). arXiv. https://doi.org/10.48550/arXiv.2110.07244
Weiss, K., Khoshgoftaar, T. M., & Wang, D. (2016). A survey of transfer learning. Journal of Big Data, 3(1), 9. https://doi.org/10.1186/s40537-016-0043-6
World mental health report: Transforming mental health for all. (n.d.). Retrieved December 10, 2023, from https://www.who.int/publications-detail-redirect/9789240049338
Yang, L., Li, Y., Chen, H., Jiang, D., Oveneke, M. C., & Sahli, H. (2018). Bipolar Disorder Recognition with Histogram Features of Arousal and Body Gestures. Proceedings of the 2018 on Audio/Visual Emotion Challenge and Workshop, 15–21. https://doi.org/10.1145/3266302.3266308
Zaman, K., Sah, M., Direkoglu, C., & Unoki, M. (2023). A Survey of Audio Classification Using Deep Learning. IEEE Access, 11, 106620–106649. https://doi.org/10.1109/ACCESS.2023.3318015
Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong, H., & He, Q. (2021). A Comprehensive Survey on Transfer Learning. Proceedings of the IEEE, 109(1), 43–76. https://doi.org/10.1109/JPROC.2020.3004555 |