博碩士論文 110521131 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:3.145.115.135
姓名 劉沚宜(Chih-Yi Liu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 微型化三頻毫米波被動電路設計
(Miniaturized Tri-band Millimeter-wave Passive Circuit Design)
相關論文
★ 用於行動上網裝置之智慧型陣列天線★ 吸收式帶止濾波器之研製
★ 一維及二維切換式波束掃描陣列天線★ 寬頻微型化六埠網路接收機
★ 具有良好選擇度的寬頻吸收式帶止濾波器★ 微小化吸收式帶止濾波器之通帶改善
★ 共面波導帶通濾波器之研製★ 微帶耦合線帶通濾波器與雙工器研製
★ 宇宙微波背景輻射陣列望遠鏡接收機 之校準信號源研製★ K-Band及Q-Band毫米波帶通濾波器設計
★ 薄膜製程射頻被動元件設計★ 微波帶通低雜訊放大器設計
★ 積體式微波帶通濾波器之研製★ 應用於高位元率無線傳輸系統之V頻段漸進式開槽天線陣列
★ 以多重耦合線實現多功能帶通濾波器★ 以單刀雙擲帶通濾波器實現高整合度射頻前端收發系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-6-11以後開放)
摘要(中) 本論文以毫米波頻段之三頻積體化被動電路為研究目標,提出使用三頻橋式T線圈(Bridged-T Coil, BTC)等效三頻傳輸線的設計方法,成功實現積體化之三頻分支線耦合器及威爾金森功率分配器。本研究在已有的三頻橋式T線圈設計理論基礎上進行設計公式的簡化,並探討提升設計自由度的方式,所完成之微型化三頻分支線耦合器以WIPD製程實現,其操作頻率為9.1 / 18.5 / 24.2 GHz,電路面積僅1.792 mm × 1.544 mm,於第一操作頻率9.1 GHz之電氣尺寸為0.068λ₀ × 0.059λ₀;於第三操作頻率24.2 GHz之電氣尺寸則為0.146λ₀ × 0.126λ₀。此外,並分別以WIPD製程與TN90GUTM製程實現微型化三頻威爾金森功率分配器,其中以WIPD實現之微型化三頻威爾金森功率分配器操作頻率為16 / 37 / 47.4 GHz,電路面積僅0.852 mm × 0.855 mm,於第一操作頻率16 GHz之電氣尺寸為0.0454λ₀ × 0.0456λ₀;於第三操作頻率47.4 GHz之電氣尺寸則為0.135λ₀ × 0.135λ₀。而以TN90GUTM製程實現之微型化三頻威爾金森功率分配器之操作頻率為13.1 / 36 / 47.3 GHz,電路面積僅0.61 mm × 0.46 mm,於第一操作頻率13.1 GHz之電氣尺寸為0.0267λ₀ × 0.0201λ₀,於第三操作頻率47.3 GHz之電氣尺寸則為0.0962λ₀ × 0.0725λ₀,相較於既有之相關設計,均成功達成大幅縮減電路面積之目的。
摘要(英) This paper aims to the development of tri-band integrated passive components in the millimeter-wave frequency range. The design methodology of utilizing the bridged-T coil (BTC) to implement tri-band transmission line equivalent is proposed, leading to the successful realization of miniature tri-band branch-line couplers and Wilkinson power dividers. Building upon existing theory of tri-band BTC design, this study simplifies design equations and explores practical methods to enhance design flexibility. Specifically, the proposed miniature tri-band branch-line coupler operating at 9.1/18.5/24.2 GHz is realized using the WIPD process with a circuit area of only 1.792 mm × 1.544 mm. The corresponding electrical sizes at the first and third operating frequencies are 0.068λ₀ × 0.059λ₀ and 0.146λ₀ × 0.126λ₀, respectively. Additionally, the WIPD and TN90GUTM processes are used to implement the proposed miniature tri-band Wilkinson power dividers. The proposed tri-band Wilkinson power divider in WIPD operates at 16/37/47.4 GHz, and it features a compact circuit area of 0.852 mm × 0.855 mm. The corresponding electrical sizes at the first and third operating frequencies are 0.0454λ₀ × 0.0456λ₀ and 0.135λ₀ × 0.135λ₀, respectively. On the other hand, the proposed miniature tri-band Wilkinson power divider in TN90GUTM operates at 13.1/36/47.3 GHz, and the circuit size is only 0.61 mm × 0.46 mm. The corresponding electrical sizes at the first and third operating frequencies are 0.0267λ₀ × 0.0201λ₀ and 0.0962λ₀ × 0.0725λ₀, respectively. Compared to existing designs, the proposed tri-band passive components all achieve significant reduction in circuit area.
關鍵字(中) ★ 微型化
★ 三頻
★ 毫米波
★ 分支線耦合器
★ 威爾金森功率分配器
關鍵字(英) ★ Miniaturized
★ Tri-band
★ Millimeter-wave
★ branch-line couple
★ Wilkinson power divider
論文目次 論文摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 V
表目錄 VIII
第一章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 3
1.3 章節介紹 6
第二章 三頻橋式T線圈設計限制及自由度 7
2.1 設計限制 7
2.2 設計自由度 16
2.3 結果與討論 20
第三章 積體化三頻電路實作 21
3.1 微型化三頻分支線耦合器 21
3.1.1 電路架構及三頻橋式T線圈設計 21
3.1.2 三頻耦合器電路實作與量測 46
3.2 微型化三頻威爾金森功率分配器 53
3.2.1 電路架構 53
3.2.2 以WIPD實現微型化三頻威爾金森功率分配器 58
3.2.3 以TN90GUTM實現微型化三頻威爾金森功率分配器 68
3.3 結果與討論 81
第四章 總結與未來展望 88
參考文獻 90
參考文獻 [1] 廖涎佐, "以橋式T線圈實現微型化三頻分支線耦合器," 碩士論文 國立中央大 學, 2023.
[2] C. -Y. Liou, M. -S. Wu, J. -C. Yeh, Y. -Z. Chueh and S. -G. Mao, "A Novel Triple-Band Microstrip Branch-Line Coupler With Arbitrary Operating Frequencies," in IEEE Microwave and Wireless Components Letters, vol. 19, no. 11, pp. 683-685, Nov. 2009, doi: 10.1109/LMWC.2009.2031998.
[3] F. Lin and Q. Chu, "Tri-band branch-line coupler with T-type and additional port impedance transformers," Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation, 2012, pp. 1-2.
[4] H. Ren, J. Shao, M. Zhou, B. Arigong, J. Ding and H. Zhang, "Design of tri-band branch-line couplers using novel tri-band transmission lines," Texas Symposium on Wireless and Microwave Circuits and Systems, 2014, pp. 1-4, doi: 10.1109/WMCaS.2014.7015884.
[5] W. Feng, Y. Zhao, W. Che, H. Chen and W. Yang, "Dual-/tri-band branch line couplers with high power division isolation using coupled lines," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 65, no. 4, pp. 461-465, April 2018.
[6] M. Chongcheawchamnan, S. Patisang, M. Krairiksh, and I. D. Robertson, “Tri-band Wilkinson power divider using a threesection transmission-line transformer,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 8, pp. 452–454, Aug. 2006.
[7] A. Genc and R. Baktur, "Dual- and Triple-Band Wilkinson Power Dividers Based on Composite Right- and Left-Handed Transmission Lines," in IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 1, no. 3, pp. 327-334, March 2011, doi: 10.1109/TCPMT.2010.2104323.
[8] Zhebin Wang and Chan-Wang Park, "Multiband pi-shaped structure with resonators for tri-band wilkinson power divider and tri-band rat-race coupler," 2012 IEEE/MTT-S International Microwave Symposium Digest, Montreal, QC, Canada, 2012, pp. 1-3, doi: 10.1109/MWSYM.2012.6259462.
[9] R. Loeches-Sánchez, D. Psychogiou, D. Peroulis and R. Gómez-García, "A class of planar multi-band Wilkinson-type power divider with intrinsic filtering functionality," 2015 IEEE Radio and Wireless Symposium (RWS), San Diego, CA, USA, 2015, pp. 138-140, doi: 10.1109/RWS.2015.7129746.
[10] B. M. Abdelrahman, H. N. Ahmed and A. I. Nashed, "A Novel Tri-Band Wilkinson Power Divider for Multiband Wireless Applications," in IEEE Microwave and Wireless Components Letters, vol. 27, no. 10, pp. 891-893, Oct. 2017, doi: 10.1109/LMWC.2017.2746685.
[11] C. Liu, M. Wu, J. Yuan, K. L. Chung and Y. Li, "A Tri-band Wilkinson Power Divider Based on Triple Section Step-Impedance Resonator," 2020 IEEE 3rd International Conference on Electronic Information and Communication Technology (ICEICT), Shenzhen, China, 2020, pp. 765-767, doi: 10.1109/ICEICT51264.2020.9334186.
[12] C. -W. Tang and M. -G. Chen, "Design of Multipassband Microstrip Branch-Line Couplers With Open Stubs," in IEEE Transactions on Microwave Theory and Techniques, vol. 57, no. 1, pp. 196-204, Jan. 2009, doi: 10.1109/TMTT.2008.2008982.
[13] L. Piazzon, P. Saad, P. Colantonio, F. Giannini, K. Andersson and C. Fager, "Branch-Line Coupler Design Operating in Four Arbitrary Frequencies," in IEEE Microwave and Wireless Components Letters, vol. 22, no. 2, pp. 67-69, Feb. 2012, doi: 10.1109/LMWC.2011.2181349.
[14] A. M. Zaidi, M. T. Beg, B. K. Kanaujia and K. Rambabu, "Hexa-Band Branch Line Coupler and Wilkinson Power Divider for LTE 0.7 GHz, LTE 1.7 GHz, LTE 2.6 GHz, 3.9 GHz, Public Safety Band 4.9 GHz, and WLAN 5.8 GHz Frequencies," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 2, pp. 275-279, Feb. 2020, doi: 10.1109/TCSII.2019.2909577.
[15] 莊競輝, "單頻和雙頻帶可重組式微波被動元件," 碩士論文 國立中央大學, 2020.
[16] W. -T. Fang, E. -W. Chang and Y. -S. Lin, "Bridged-T Coil for Miniature Dual-Band Branch-Line Coupler and Power Divider Designs," in IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 2, pp. 889-901, Feb. 2018, doi: 10.1109/TMTT.2017.2756960.
[17] David M. Pozar , "Microwave Engineering 4rd edition," 2011 New York :John Wiley & Sons .p.343
[18] David M. Pozar , "Microwave Engineering 4rd edition," 2011 New York :John Wiley & Sons .p.314
指導教授 林祐生(Yo-Shen Lin) 審核日期 2024-6-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明