博碩士論文 110521033 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:3.145.50.27
姓名 梁育銓(Yu-Chuan Liang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 用於佈線後階段電壓降優化的強化學習框架
(A Reinforcement Learning Framework for IR-drop Optimization at Post Routing Stage)
相關論文
★ 晶圓圖之網格及稀疏缺陷樣態辨識★ 晶圓圖提取特徵參數錯誤樣態分析
★ 使用聚類過濾策略和 CNN 計算識別晶圓圖瑕疵樣態★ 新建晶圓圖相似性門檻以強化相似程度辨別能力
★ 一種可動態重新配置的4:2近似壓縮器用於補償老化★ 一個可靠的靜態隨機存取記憶體內運算結構: 設計指南與耐老化策略研究
★ 一個高效的老化偵測器部屬策略: 基於生成對抗網路的設計方法★ 考慮電壓衰退和繞線影響以優化電路時序之電源供應網絡精煉策略
★ 適用於提高自旋轉移力矩式磁阻隨機存取記憶體矩陣可靠度之老化偵測與緩解架構設計★ 8T 靜態隨機存取記憶體之內積運算引擎的老化威脅緩解策略: 從架構及運算角度來提出解決的方法
★ 用於響應穩定性的老化感知平行掃描鏈PUF設計★ 8T靜態隨機存取記憶體運算的老化檢測和容忍機制:適用於邏輯和 MAC 運算的應用
★ 使用擺置後的設計特徵及極限梯度提升演算法預測繞線後的繞線需求★ 基於強化學習的晶片佈局規劃的卷積神經網路與圖神經網路融合架構
★ 多核心系統的老化與瞬態錯誤感知任務部署策略:壽命延長且節能的框架★ 基於圖神經網絡(GNN)的內部節點控制(INC)和輸入向量控制(IVC)協同優化用於老化緩解
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-6-12以後開放)
摘要(中) 在現代的SOC (System On Chip)中,晶片內電網(PDN)扮演著重要的角色。晶片內電網的主要功能是有效分配電源給晶片上的每個元件,確保每個元件都能獲得充足穩定的電源供應。壓降反應(IR-drop)指的是由於晶片內電網的物理結構本身的電阻特性,所造成的從電源端(Current Source)到組件端(Current Sink)的電壓降現象,設計不夠完善的內電網容易導致過大的壓降反應,而過大的壓降反應往往伴隨電路的Timing Violation和Functional Failure…等可靠度方面的問題,這使得壓降反應現象成為IC design中不可忽視的問題。
晶片內電網的規劃通常處於Placement之前的Floorplan階段,因此,在沒有Placement、CTS、以及Routing資訊的前提之下,很難在Physical Design Flow的早期階段就設計出完美的晶片內電網,因此壓降反應是整個Physical Design Flow中經常會遇到的問題。在先前許多關於改善壓降反應的研究中,常見的做法是調整晶片內電網本身的物理結構,具體的實現方法可以是全局地或局部地提高PDN中Power stripes的寬度或密度,這種手法可以有效降低從電源端到組件端的等效電阻,進而降低這兩點之間的壓降反應。
但是隨著擺放與繞線(P&R)的階段往前推進,可用的繞線空間跟著減少,在有限的空間下調整晶片內電網的物理結構很有可能會影響到既有的Placement與Routing結果,換句話說,採用上述這種方法會需要經過多次Placement與Routing的迭代。對於具有上百萬甚至上千萬個標準單元的工業級的設計,儘管有最先進的EDA工具的輔助,不管是Placement或是Routing仍需要數十小時甚至是數天的時間,萬一壓降反應是在Physical Design Flow的末期階段才被診斷出來的話,回過頭去修改內電網的結構就會付出相當大的時間成本,意味著透過調整內電網的物理結構來降低壓降反應遲早會遇到瓶頸。
因此,本篇論文提出了一套透過強化學習的引導在Post-Routing階段添加額外電源線以改善IR-drop的架構。與大多數先前的研究相比,我們的方法具有以下優勢:(1)通過有效利用剩餘的繞線空間來添加電源線,避免了調整PDN主結構的需求,從而最大限度地保留了現有的P&R結果 (2)與啟發式算法相比,強化學習通過試錯不斷更新策略,提供了更好的找到全局最優解的機會。
摘要(英) In modern System On Chip (SOC) designs, the Power Delivery Network (PDN) plays a crucial role. Its primary function is to efficiently distribute power to every component on the chip, ensuring that each component receives an ample and stable power supply. IR-drop refers to the voltage drop phenomenon from the power source to the component due to the inherent resistance characteristics of the physical structure of the Power Delivery Network (PDN). Insufficiently designed PDN can lead to excessive IR-Drop, and such excessive IR-drop is often accompanied by reliability issues in the circuit, including timing violation and functional failure. This makes the IR-drop phenomenon an issue in IC design that cannot be ignored.
The planning of the PDN typically occurs in the floorplan stage before placement. Therefore, without placement, CTS, and routing information, it is challenging to design a perfect PDN at the early stage of the physical design flow. Hence, IR-drop is a common issue frequently encountered throughout the entire physical design flow. In many previous studies on improving IR-drop, a common approach is to adjust the physical structure of the PDN itself. This can be achieved by globally or locally increasing the width or density of power stripes. This technique effectively reduces the equivalent resistance from the power source to the component, thereby reducing the IR-Drop between these two points
However, as the P&R (Placement and Routing) stages progress, the available routing space decreases. Adjusting the physical structure of PDN within limited space may potentially impact the existing P&R results. In other words, adopting the aforementioned method would require multiple iterations of P&R. For industrial-scale designs with millions or even tens of millions of standard cells, despite the assistance of state-of-the-art EDA tools, both placement and routing still demand dozens of hours or even days. In the scenario where IR-drop is diagnosed in the late stages of P&R, going back to modify the physical structure of PDN would incur significant time costs, implying that the approach of adjusting the physical structure of the PDN itself to mitigate IR-Drop will inevitably encounter bottlenecks.
Therefore, this work proposes an approach to add extra power wires at the post-routing stage to improve IR-drop, with the help of reinforcement-learning. Compared to most previous works, our approach offers the following advantages: (1) By efficiently utilizing remaining routing spaces to add power wires, it avoids the need to adjust the main structure of the PDN, thus maximizing the preservation of existing P&R results. (2) In contrast to heuristic algorithms, reinforcement learning continuously updates strategies through trial and error, providing a better chance of finding the global optimal solution.
關鍵字(中) ★ 積體電路設計
★ 實體設計
★ 電壓降
★ 強化學習
關鍵字(英) ★ IC-Design
★ Physical Design
★ IR-drop
★ Reinforcement Learning
論文目次 摘要 I
ABSTRACT III
ACKNOWLEDGMENT IV
CONTENTS V
LIST OF FIGURES VI
LIST OF TABLES VII
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 BACKGROUND 4
2.1 PHYSICAL IMPLEMENTATION FLOW 4
2.2 MODIFIED NODAL ANALYSIS 5
2.3 REINFORCEMENT LEARNING 7
2.4 PREVIOUS WORKS OF PDN PLANNING & REFINEMENT 7
CHAPTER 3 PROPOSED METHOD 11
3.1 DATA PREPARING 11
3.2 RL TRAINING 12
3.2.1 An Example 12
3.2.2 Proposed Reinforcement Learning Framework 15
3.2.2.1 Overview of Flowchart (Figure 3.5) 15
3.2.2.2 State 16
3.2.2.3 Action 19
3.2.2.4 Reward 21
3.2.2.5 Reinforcement Learning Algorithm 22
CHAPTER 4 EXPERIMENT RESULTS 24
4.1 TRAINING SCHEDULE 24
4.2 TRAINING AND TESTING RESULTS 25
CHAPTER 5 CONCLUSIONS 29
REFERENCE 30
參考文獻 [1] Jai-Ming Lin, Yu-Tien Chen, Yang-Tai Kung, and Hao-Jia Lin. 2023. Voltage-Drop Optimization Through Insertion of Extra Stripes to a Power Delivery Network. In Proceedings of the 2023 International Symposium on Physical Design (ISPD 2023).
[2] V. A. Chhabria, A. B. Kahng, M. Kim, U. Mallappa, S. S. Sapatnekar and B. Xu, "Template-based PDN Synthesis in Floorplan and Placement Using Classifier and CNN Techniques," 2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC 2020).
[3] Wen-Hsiang Chang, Li-Yi Lin, Yu-Guang Chen, and Mango C.-T. Chao. 2020. Power distribution network generation for optimizing IR-drop aware timing. In Proceedings of the 39th International Conference on Computer-Aided Design (ICCAD 2020).
[4] W. -H. Chang, M. C. . -T. Chao and S. -H. Chen, "Practical Routability-Driven Design Flow for Multilayer Power Networks Using Aluminum-Pad Layer," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2014.
[5] X. Wang, Y. Cai, X. Hong and S. X. . -d. Tan, "Optimal Wire Sizing for Early Stage Power/Ground Grid Planning," International Conference on Communications, Circuits and Systems, (ICCCAS 2006).
[6] Kwok-Shing Leung, "SPIDER: simultaneous post-layout IR-drop and metal density enhancement with redundant fill," IEEE/ACM International Conference on Computer-Aided Design(ICCAD 2005).
[7] T. -W. Tseng, C. -T. Lin, C. -H. Lee, Y. -F. Chou and D. -M. Kwai, "A power delivery network (PDN) engineering change order (ECO) approach for repairing IR-drop failures after the routing stage," Technical Papers of 2014 International Symposium on VLSI Design, Automation and Test (VLSI-DAT 2014).
[8] J. Yoon, S. Chung and T. Kim, "Analyses of Power Staple Inserting Methodologies for Mitigating IR-Drops," 2021 18th International SoC Design Conference (ISOCC 2021).
[9] V. Konda and J. Tsitsiklis, “Actor-critic algorithms,” Advances in neural information processing systems, vol. 12, 1999
[10] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimization algorithms”, 2017
[11] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, Pieter Abbeel, “High Dimensional Continuous Control Using Generalized Advantage Estimation”, 2015
[12] Y. Bengio et al., “Curriculum learning,” in Proceedings of the 26th annual ICML, 2009.
指導教授 陳聿廣(Yu-Guang Chen) 審核日期 2024-6-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明