博碩士論文 110521128 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:3.145.115.135
姓名 廖弘智(Hong-Zhi Liao)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用於第五代無線通訊之結合Cold-FET預失真線性化電路互補式金氧半導體堆疊式功率放大器暨25%責任週期I/Q發射機研製
(Implementations on CMOS Stacked Power Amplifier with Cold-FET Predistortion Linearizer and 25% Duty Cycle I/Q Transmitter for Fifth-Generation Wireless Communication Applications)
相關論文
★ 應用於筆記型電腦數位電視單極天線之研製★ 應用於數位機上盒與纜線數據機之電纜多媒體傳輸標準多工濾波器
★ 印刷共面波導饋入式多頻帶與超寬頻天線設計★ 微波存取全球互通頻段前向匯入式功率放大器與高效率Class F類功率放大器暨壓控振盪器電路之研製
★ 應用於矽基功率放大器與混頻器之傳輸線型變壓器研究★ 應用於V-頻段射頻收發機前端電路之低功耗源極注入式混頻器之研製
★ 應用積體電路上方後製程與整合被動元件於互補式金氧半導體製程之系統封裝研究★ 應用fT-倍頻電路架構於毫米波壓控振盪器與注入鎖定除頻器之研製
★ 應用傳輸線型變壓器於X/K–Ka/V頻段全積體整合之寬頻互補式金氧半導體功率放大器研製★ 應用於K / V 頻段低功耗混頻器之研製
★ 應用於K/V頻段之低功耗CMOS低雜訊放大器之研究★ 應用於5-GHz CMOS射頻前端電路之低電壓自偏壓式混頻器與高線性化功率放大器之研製
★ 應用於 K 頻段射頻接收機之寬頻低功耗 CMOS 低雜訊放大器之研製★ 應用磁耦合變壓器於K頻段之低功耗互補式金氧半導體壓控振盪器研製
★ 應用於K頻段之單向化全積體整合功率放大器與應用於V頻段之寬頻功率放大器研製★ 應用於C/X頻段全積體整合之互補式金氧半導體寬頻低功耗降頻器與寬頻功率混頻器之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-5-1以後開放)
摘要(中) 本論文使用台灣積體電路製造股份有限公司018-µm CMOS 製程設計應用於 n77-n79 頻段之結合 Cold-FET 線化電路之互補式金氧半導體堆疊式功率放大器以及應用於 n79 頻段之 25%責任週期之 I/Q 發射機之設計。
第一顆提出應用於 n77-n79 頻段之結合 Cold-FET 線性化電路之互補式金氧半導體功率放大器,使用堆疊式架構改善 CMOS 製程電晶體本身低崩潰電壓及高膝部電壓之限制,改善電路整體輸出功率,電路匹配採用對稱式磁耦合共振腔變壓器進行設計,達到寬頻之效果,並且在驅動級放大器前置入 Cold-FET 線性化器電路,透過線性化之啟動,使得電路達到增益擴展的效果,達成拉近輸出 1-dB 增益壓縮點功率與輸出飽和功率之間的距離。其操作頻寬為 2.9 - 5 GHz,最大傳輸增益為 21.8 dB,最大輸出功率為27.24 dBm,1-dB 增益壓縮點輸出功率在開啟線性化器後為 26.72 dBm,最高附加效率為 25.57%,晶片面積為 3.69 mm2(2.7 mm × 1.37 mm)
第二顆晶片提出應用於 n79 頻段之四分之一責任週期之 I/Q 發射機電路,本地震盪端口使用電流模態邏輯除頻器後接上方波緩衝器產生四相位訊號,混頻後訊號透過 I/Q路徑直接結合方式求得上邊帶頻率。量測時固定本地震盪驅動訊號為 6 dBm時,操作頻帶為 3 - 4.3 GHz,量測到最大轉換增益為 8.6 dB,輸出 1-dB增益壓縮點功率為 4.61 dBm,輸出三階截斷點為 8.92 dBm,發射機之最佳載波抑制量為 45.3 dBc,最佳邊帶抑制量為44.6 dBc,晶片面積為 1.59 mm2(1.6 mm × 0.98 mm)。
摘要(英) This thesis introduces the design of a complementary metal-oxide-semiconductor (CMOS) stacked power amplifier tailored for the n77-n79 frequency bands, integrating a unified ColdFET linearization circuit. The implementation utilizes Taiwan Semiconductor Manufacturing Company′s (tsmc™) 018-µm CMOS process. Furthermore, it presents a 25% duty cycle I/Q
transmitter intended for the n79 frequency band.
The first chip demonstrates a CMOS power amplifier for the n77-n79 frequency bands, which employed a stacked architecture to overcome inherent limitations in the CMOS process, such as the low breakdown voltage and high knee voltage of the transistors. This configuration significantly enhances the overall circuit output power.
Notably, a symmetrically coupledresonator transformer is incorporated for circuit matching, enabling broadband performance. Integration of a Cold-FET linearization circuit before the driver amplifier facilitates gain expansion, reducing the gap between the output 1-dB gain compression point power and the output saturation power. Operating within the bandwidth of 2.9 - 5 GHz, the chip achieves a
maximum gain of 21.8 dB, a maximum output power of 27.24 dBm, a 1-dB gain compression point output power of 26.72 dBm and a peak power added efficiency of 25.57% as post linearizer activation. The chip′s physical footprint measures 3.69 mm² (2.7 mm × 1.37 mm).
The second chip focuses on a 25% duty cycle I/Q transmitter circuit tailored for the n79 frequency band. The local oscillator port employs a current-mode logic divider followed by a iii square wave buffer to generate quadrature-phase signals. The mixed signal, achieved through direct combination in the I/Q path, produces the upper sideband frequency. Operating within the range of 3 - 4.3 GHz with an optimal local oscillator drive signal of 6 dBm, this chip achieves a maximum conversion gain of 8.6 dB, a 1-dB gain compression point output power of 4.61 dBm, and a third-order intercept point of 8.92 dBm. Impressively, the transmitter demonstrates excellent carrier suppression of 45.3 dBc and sideband suppression of 44.6 dBc.The chip occupies an area of 1.59 mm² (1.6 mm × 0.98 mm).
關鍵字(中) ★ 功率放大器
★ 冷場效電晶體
★ IQ發射機
★ 四分之一責任週期
關鍵字(英) ★ Power amplifier
★ Cold-FET transistor
★ IQ transmitter
★ 25% duty cycle
論文目次 摘要 .............................................................................................................................................i
Abstract....................................................................................................................................... ii
致謝 ........................................................................................................................................... iv
目錄 ........................................................................................................................................... vi
圖目錄 ......................................................................................................................................viii
表目錄 ....................................................................................................................................... xi
第一章 緒論 ........................................................................................................................1
1-1 研究動機 ................................................................................................................1
1-2 研究成果 ................................................................................................................2
1-3 章節簡介 ................................................................................................................2
第二章 結合 Cold-FET 線性化器之互補式金氧半導體堆疊式功率放大器 ..................3
2-1 研究現況 ................................................................................................................3
2-2 堆疊式功率放大器架構簡介 ................................................................................6
2-3 磁耦合共振腔簡介 ................................................................................................8
2-4 Cold-FET 線性化結構簡介 ................................................................................. 11
2-5 應用於 n77~n79 頻段之結合 Cold-FET 線性化器之堆疊式功率放大器.......14
2-5-1 電路圖 ......................................................................................................14
2-5-2 電晶體偏壓選擇 ......................................................................................15
2-5-3 輸出匹配網路設計 ..................................................................................17
2-5-4 級間與輸入匹配網路設計 ......................................................................23
2-5-5 Cold-FET 預失真電路設計 ....................................................................30
2-5-6 電路模擬與量測結果 ..............................................................................31
2-5-7 結果比較與討論 ......................................................................................48
第三章 應用於 n79 頻段之 25%責任週期之 I/Q 發射機...............................................52
3-1 研究現況 ..............................................................................................................52
3-2 電路架構與設計原理 ..........................................................................................53
3-2-1 IQ 訊號產生器-除頻器電路設計...........................................................58
3-2-2 發射機混頻器選擇-電流模態被動混頻器.............................................61
3-2-3 中頻反向式緩衝放大器 ..........................................................................69
3-2-4 驅動功率放大器 ......................................................................................72
3-2-5 量測與模擬比較 ......................................................................................77
3-2-6 結果比較與討論 ......................................................................................87
第四章 結論 ......................................................................................................................91
4-1 總結 ......................................................................................................................91
4-2 未來研究方向 ......................................................................................................92
參考文獻 ..................................................................................................................................93
參考文獻 [1] 3GPP. 5G NR; User Equipment (UE) radio transmission and reception; (3GPP TS 38.101-
1 version 15.3.0 Release 15).
[2] S. Pornpromlikit, J. Jeong, C. D. Presti, A. Scuderi and P. M. Asbeck, "A watt-level
stacked-FET linear power amplifier in silicon-on-insulator CMOS," IEEE Transactions
on Microwave Theory and Techniques, vol. 58, no. 1, pp. 57-64, Jan. 2010.
[3] H. -W. Choi, S. Choi, J. -T. Lim and C. -Y. Kim, "1-W, high-gain, high-efficiency, and
compact sub-GHz linear power amplifier employing a 1:1 transformer balun in 180-nm
CMOS," IEEE Microwave and Wireless Components Letters, vol. 30, no. 8, pp. 779-781,
Aug. 2020.
[4] H. -F. Wu, Q. -F. Cheng, X. -G. Li and H. -P. Fu, "Analysis and design of an
ultrabroadband stacked power amplifier in CMOS technology," IEEE Transactions on
Circuits and Systems II: Express Briefs, vol. 63, no. 1, pp. 49-53, Jan. 2016.
[5] Y. -C. Lee, T. -Y. Chen and J. Y. -C. Liu, "An adaptively biased stacked power amplifier
without output matching network in 90-nm CMOS," in 2017 IEEE MTT-S International
Microwave Symposium (IMS), 2017, pp. 1667-1690.
[6] J. A. Jayamon, J. F. Buckwalter and P. M. Asbeck, "Multigate-cell stacked FET design
for millimeter-wave CMOS power amplifiers," IEEE Journal of Solid-State Circuits, vol.
51, no. 9, pp. 2027-2039, Sept. 2016.
[7] N. Rostomyan, J. A. Jayamon and P. M. Asbeck, "15 GHz Doherty power amplifier with
RF predistortion linearizer in CMOS SOI," IEEE Transactions on Microwave Theory
and Techniques, vol. 66, no. 3, pp. 1339-1348, March 2018.
[8] J. Park, S. Kang and S. Hong, "Design of a Ka-band cascode power amplifier linearized
with cold-FET interstage matching network," IEEE Transactions on Microwave Theory
94
and Techniques, vol. 69, no. 2, pp. 1429-1438, Feb. 2021.
[9] K. Kao, Y. Hsu, K. Chen and K. Lin, "Phase-delay cold-FET pre-distortion linearizer for
millimeter-wave CMOS power amplifiers," IEEE Transactions on Microwave Theory
and Techniques, vol. 61, no. 12, pp. 4505-4519, Dec. 2013.
[10] K. Onizuka, H. Ishihara, M. Hosoya, S. Saigusa, O. Watanabe and S. Otaka, "A 1.9 GHz
CMOS power amplifier with embedded linearizer to compensate AM-PM distortion,"
133 IEEE Journal of Solid-State Circuits, vol. 47, no. 8, pp. 1820-1827, Aug. 2012.
[11] S. N. Ali, P. Agarwal, S. Gopal and D. Heo, "Transformer-based predistortion linearizer
for high linearity and high modulation efficiency in mm-wave 5G CMOS power
amplifiers," IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 7, pp.
3074-3087, July 2019.
[12] D. Jung, H. Zhao and H. Wang, "A CMOS highly linear Doherty power amplifier with
multigated transistors," IEEE Transactions on Microwave Theory and Techniques, vol.
67, no. 5, pp. 1883-1891, May 2019.
[13] J. A. Jayamon, J. F. Buckwalter and P. M. Asbeck, "Multigate-cell stacked FET design
for millimeter-wave CMOS power amplifiers," IEEE Journal of Solid-State Circuits, vol.
51, no. 9, pp. 2027-2039, Sept. 2016.
[14] C. Li, C. Kuo and M. Kuo, "A 1.2-V 5.2-mW 20–30-GHz wideband receiver front-end in
0.18-?m CMOS," IEEE Transactions on Microwave Theory and Techniques, vol. 60, no.
11, pp. 3502-3512, Nov. 2012.
[15] C. Alexander and M. Sadiku, Fundamentals of Electric Circuits, 2nd ed. New York:
McGraw-Hill, 2004.
[16] H. Jia, C. C. Prawoto, B. Chi, Z. Wang and C. P. Yue, "A full Ka-band power amplifier
with 32.9% PAE and 15.3-dBm power in 65-nm CMOS," IEEE Transactions on Circuits
and Systems I: Regular Papers, vol. 65, no. 9, pp. 2657-2668, Sept. 2018.
[17] J. Lee and S. Hong, "A 24–30 GHz 31.7% fractional bandwidth power amplifier with an
95
adaptive capacitance linearizer," IEEE Transactions on Circuits and Systems II: Express
Briefs, vol. 68, no. 4, pp. 1163-1167, April 2021.
[18] K. P. Jung, H. S. Son, J. H. Kim and C. S. Park, "Efficient 60-GHz power amplifier with
134 adaptive AM-AM and AM-PM distortions compensation in 65-nm CMOS process,"
IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 7, pp. 3045-3055,
July 2020.
[19] J.-H. Tsai, H.-Y. Chang, P.-S. Wu, Y.-L. Lee, T.-W. Huang, and H. Wang, “Design and
analysis of a 44-GHz MMIC low-loss built-in linearizer for high-linearity medium power
amplifiers,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 6, pp. 2487–2496, Jun.
2006.
[20] T. Yao et al., "Algorithmic design of CMOS LNAs and PAs for 60-GHz radio," IEEE
Journal of Solid-State Circuits, vol. 42, no. 5, pp. 1044-1057, May 2007.
[21] F. Wang and H. Wang, "A broadband linear ultra-compact mm-wave power amplifier
with distributed-balun output network: analysis and design," IEEE Journal of Solid-State
Circuits, vol. 56, no. 8, pp. 2308-2323, Aug. 2021.
[22] Pin-Cheng Huang, Zuo-Min Tsai, Kun-You Lin, Huei Wang, "A High-Efficiency,
Broadband CMOS Power Amplifier for Cognitive Radio Applications," IEEE Trans.
Microw. Theory Tech., vol. 58, no. 12, Dec 2010.
[23] Jeng-Han Tsai, "A 5.3-GHz 30.1-dBm Fully Integrated CMOS Power Amplifier With
High-Power Built-In Linearizer," IEEE Microwave and Wireless Components Letters,
vol. 33, no. 4, April 2023.
[24] Yezi Dong, Luhong Mao, Sheng Xie, "Fully Integrated Class-J Power Amplifier in
Standard CMOS Technology" IEEE Microwave and Wireless Components Letters, vol.
27, no.1 2017.
[25] Ting Guo, Lu, Kai Tang, Chuanshi Yang, Bo Yu, Yuanjin Zheng," A Floating-Body
Transistor-Based Power Amplifier for Sub-6-GHz 5G Applications in SOI CMOS 130-
96
nm Process," IEEE Transactions on Circuits and Systems II: Express Briefs, vol,69, no
10, Oct, 2022.
[26] Oner Hanay, Renato Negra, "0.33 mm2 13.3 dB gain sub-6 GHz to 28 GHz transformercoupled low-voltage upconversion mixer for 5G applications," IEEE European Solid
State Circuit Conference, 2021.
[27] S. Seth et al., "A dynamically biased multiband 2G/3G/4G cellular transmitter in 28 nm
CMOS," IEEE J. Solid-State Circuits, vol. 51, no. 5, pp. 1096-1108, May 2016.
[28] Y.-S. Won et al., “A 24 GHz highly linear up-conversion mixer in CMOS 0.13 µm
technology,” IEEE Microw. Compon. Lett., vol. 25, no. 6, pp. 400–402, Jun. 2015.
[29] H. Nam, W. Lee, J. Son and J. -D. Park, "A compact I/Q upconversion chain for a 5G
wireless transmitter in 65-nm CMOS technology," IEEE Microwave and Wireless
Components Letters, vol. 30, no. 3, pp. 284-287, March 2020.
[30] D. Jeong, S. Lee, H. Lee and B. Kim, "Ultra-low power direct-conversion 16 QAM
transmitter based on Doherty power amplifier," IEEE Microwave and Wireless
Components Letters, vol. 26, no. 7, pp. 528-530, July 2016.
[31] J. Kim, H. -S. Jo, K. -J. Lee, D. -H. Lee, D. -H. Choi and S. Kim, "A low-complexity I/Q
imbalance calibration method for quadrature modulator," IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 27, no. 4, pp. 974-977, April 2019.
[32] M. Collados, H. Zhang, B. Tenbroek and H. Chang, "A low-current digitally predistorted
direct-conversion transmitter with 25% duty-cycle passive mixer," IEEE Transactions on
Microwave Theory and Techniques, vol. 62, no. 4, pp. 726-731, April 2014.
[33] Wong II Chang, Yun Seong Eo, "A CMOS 2.4 GHz RF Tranceiver for Train Safety
Monitoring Systems," Asia Pacific Microwave Conference 2017
[34] Dan Lei Yan, Bin Zhao, M.Kumarasamy Raja and Yuan Xiaojun, "A 5mA 2.4GHz 2-
point modulator with QVCO for Zigbee tranceiver in 0.18-μm CMOS, " International
Symposium on Integrated Circuits 2011
97
[35] S. Kulkarni, D. Zhao and P. Reynaert, "Design of an optimal layout polyphase filter for
millimeter-wave quadrature LO generation," IEEE Transactions on Circuits and Systems
II: Express Briefs, vol. 60, no. 4, pp. 202-206, April 2013.
[36] long Seok Park, Hua Wang, "A Transformer-Based Poly-Phase Network for UltraBroadband Quadrature Signal Generation " IEEE Transactions on Microwave Theory
and Techniques vol. 63, no. 12, December 2015.
[37] Kejie Hu, Kaixue Ma, Zonglin Ma, "An Ultra-Wideband Image-Reject Up-Conversion
Mixer With a Sandwich-Coupled Transformer for 5G mm-Wave Communication" IEEE
Microwave and Wireless Components Letters, vol. 32, no. 9, September 2022.
[38] Haoyang Duan, Jiahao Chen, Menghao Wang, Huiting Wei, Qiuyan Zhang, Haiyang
Quan, "High Linearity Wide Band Passive Mixer for Ku-Band Applications in a 180nm
CMOS Technology "International Conference on Integrated Circuits and Microsystems,
2022.
[39] A. Mirzaei, D. Murphy and H. Darabi, "Analysis of direct-conversion IQ transmitters
with 25% duty-cycle passive mixers," IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 58,
no. 10, pp. 2318-2331, Oct. 2011.
[40] Z. Lin, P. Mak and R. P. Martins, "A 0.14-mm2 1.4-mW 59.4-dB-SFDR 2.4-GHz
ZigBee/WPAN receiver exploiting a “Split-LNTA + 50% LO” topology in 65-nm
CMOS," IEEE Transactions on Microwave Theory and Techniques, vol. 62, no. 7, pp.
1525-1534, July 2014.
[41] Z. Lin, P. I. Mak and R. P. Martins, "A 0.14-mm2 1.4-mW 59.4-dB-SFDR 2.4-GHz
ZigBeeWPAN receiver exploiting a “split-LNTA + 50% LO” topology in 65-nm CMOS"
IEEE Trans. Microw. Theory Techn., vol. 62, no. 7, pp. 1525-1534, July 2014.
[42] Kasyap V Karun, Gajendranath Chowdary "A Threshold Voltage Tracking Circuit
providing upto 20dB improvement in IIP2 of Single-ended Passive Mixers, " IEEE
International Symposium on Circuits and Systems 2022.
98
[43] Kyonggon Choi, Minsu Kim,Hyung,Chul Kim, Hanjin Cho,Jaeyong Cho, Sungchul Yoo,
Kyoungon Yang, Sungchan Jung, Sunghan Ryu, and Youngoo Yang, "CMOS UpConversion Mixer with Adaptive Bias Circuit for UHF RFID Reader "IEEE International
Symposium on Radio-Frequency Integration Technology,2009.
[44] Xinhua Wang, Heng Wei, " An L Band Four-Channel Direct Up-conversion Transmitter,
"International Conference on Communication Technology, 2019.
[45] Matteo Camponeschi, Andrea Bevilacqua, Marc Tiebout, Andrea Neviani, "A X-Band
I/Q Upconverter in 65 nm CMOS for High Resolution FMCW Radars" IEEE
Transactions on Microwave Theory and Techniques, vol. 22, no. 3, July 2014.
[46] Byeonghyeon Kim, Soyeon Kim, Yongho Lee, Seungsoo Kim, Hyunchol Shin, " A
28GHz Quadrature Up-conversion Transmitter in 65nm CMOS for 5G mmWave Radio,"
International SoC Design Conference,2019
[47] 宋韋旻,「應用於 C/X 頻段與 802.11ac 規格暨整合電流模態邏輯除頻器之低功
耗寬頻 IQ 發射機」,國立中央大學,碩士論文,民國 106 年
[48] 范特華,「應用於第五代無線通訊之氮化鎵/砷化鎵積體被動元件多悌功率放大器
與 F 類連續模式砷化鎵功率放大器暨互補式金氧半導體堆疊式功率放大器架構 I/Q
發射機之研製」,國立中央大學,碩士論文,民國 111
指導教授 邱煥凱(Hwann-Kaeo Chiou) 審核日期 2024-6-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明