參考文獻 |
[1] Wang, M., Bi, C., Li, L et al, Thermoelectric Seebeck effect in oxide-based resistive switching memory, Nat Commun . 5, 4598 (2014).
[2] Jin, W., Liu, L., Yang, T et al, Exploring Peltier effect in organic thermoelectric films, Nat Commun . 9, 3586 (2018).
[3] Balandin, A. Thermal properties of graphene and nanostructured carbon materials, Nature Mater. 10, 569–581 (2011).
[4] K. S.,Novoselov et al. Electric Field Effect in Atomically Thin Carbon Films, Science, 306,666-669 (2004).
[5] Gui, Gui et al, Band structure engineering of graphene by strain: First-principles calculations, Phys. Rev.B. 80,235431(2008).
[6] Gmitra, M. and Konschuh, S. and Ertler, C. and Ambrosch-Draxl, C. and Fabian, J, Band-structure topologies of graphene: Spin-orbit coupling effects from first principles, Phys. Rev. B. 80, 235431(2009).
[7] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim. The electronic properties of graphene, Rev. Mod. Phys. 81, 109(2009).
[8] Sang M, Shin J, Kim K, Yu KJ, Electronic and Thermal Properties of Graphene and Recent Advances in Graphene Based Electronics Applications, Nanomaterials. 9,374(2019).
[9] Balandin, A, Thermal properties of graphene and nanostructured carbon materials. Nature Mater, 10,569–581(2011).
[10] Z. Chen, Y.-M. Lin, M. J. Rooks, and P. Avouris,"Graphene nano-ribbon electronics, Physica E: Low-dimensional Systems and Nanostructures, 40, 228 (2007).
[11] Mitsutaka Fujita, Katsunori Wakabayashi, Kyoko Nakada, Koichi Kusakabe, Peculiar Localized State at Zigzag Graphite Edge, Journal of the Physical Society of Japan. 65, 1920-1923 (1996).
[12] K. Wakabayashi, K Sasaki, T. Nakanishi and T. Enoki, Electronic states of graphene nanoribbons and analytical solutions, Sci. Technol. Adv. Mater. 11, 054504 (2010).
[13] P.F. Yuan et al, Electronic properties of one-dimensional graphene quantum-dot arrays, Org. Electron.15 (2014)
[14] H. Sevinçli and G. Cuniberti, Enhanced thermoelectric figure of merit in edge-disordered zigzag graphene nanoribbons, Phys. Rev. B.81, 113401(2010).
[15] Liang G, Neophytou N, Lundstrom MS, Nikonov DE, Contact effects in graphene nanoribbon transistors, Nano Lett.8(7):1819-24(2008).
[16] David M. T. Kuo and Y. C. Chang, Contact effects on the thermoelectric properties of textured graphene nanoribbons, Nanomaterials 12, 3357 (2022).
[17] Brian C Sales, Novel thermoelectric materials, Curr. Opin. Solid State Mater. Sci.(1997).
[18] Nakpathomkun, Natthapon et al, Thermoelectric efficiency at maximum power in low-dimensionalsystems, " PhysRev.B.82,235428(2010).
[19] Yang, Kaike and Chen, Yuanping et al, Enhanced thermoelectric properties in hybrid graphene/boron nitride nanoribbons, Phys. Rev.86,045425(2012).
[20] Chen Y, Jayasekera T, Calzolari A, Kim KW, Nardelli MB, Thermoelectric properties of graphene nanoribbons, junctions and superlattices, J Phys Condens Matter. 22(37):372202(2010).
[21] Du, X., Skachko, I., Barker, A et al, Approaching ballistic transport in suspended graphene, Nature Nanotech .3, 491–495 (2008).
[22] Pedersen, Thomas and Flindt. et al, Graphene Antidot Lattices: Designed Defects and Spin Qubits, Physical review letters,100,136804(2008).
[23] Ying-Tao Zhang et al, Band structures and transport properties of zigzag graphene nanoribbons with antidot arrays, J. Phys.: Condens. Matter. 22,315304(2010).
[24] JORDAN, F. , The Thomson and Peltier Effects, Nature. 86,380(1911).
[25] Goldsmid, H. J., Introduction To Thermoelectricity, Goldsmid,H. J., Eds.; Springer, Berlin. 7, 99−111(2010).
[26] H. Haug and A. P. Jauho., Quantum kinetics in transport and optics of semiconductors, Springer, Heidelberg(1996).
[27] David M. T. Kuo., Thermoelectric and electron heat rectification properties of quantum dot superlattice nanowire arrays, AIP Advances. 4,045222(2020).
[28] David M. T. Kuo. Effects of zigzag edge states on the thermoelectric properties of finite graphene nanoribbons, Jpn. J. Appl. Phys. 61,075001(2022).
[29] Yamamoto et al,Universal Features of Quantized Thermal Conductance of Carbon Nanotubes, Phys. Rev. Lett. 92,075502(2004).
[30] Barraza-Lopez et al, Effects of Metallic Contacts on Electron Transport through Graphene, Phys. Rev. Lett. 104,076807(2010).
[31] Ma, Bo et al, Modulation of contact resistance between metal and graphene by controlling the graphene edge, contact area, and point defects: An ab initio study, Journal of Applied Physics. 115(18), 183708-1837088(2014).
[32] Gong C et al, Realistic Metal-Graphene contact structures, ACS Nano. 8,642(2014).
[33] Lee G and Cho K, Electronic structures of zigzag graphene nanoribbons with edge hydrogenation and oxidation, Phys. Rev. B . 79, 165440(2009).
[34] Matsuda Y, DengWQ and Goddard IIIWA, Contact Resistance for "End-Contacted" Metal-Graphene and Metal- Nanotube Interfaces from Quantum Mechanics, J. Phys. Chem. C. 114,17845(2010).
[35] R. S. Whitney, Most Efficient Quantum Thermoelectric at Finite Power Output, Phys. Rev. Lett. 112, 130601 (2014)mo.
[36] Gao Q and Guo J, Role of chemical termination in edge contact to graphene, APL Mater. 2, 056105(2014).
[37]Golizadeh-Mojarad et al, Effect of contact induced states on minimum conductivity in graphene, Phys. Rev. B. 79,085410.(2009).
[38] Chu T and Chen Z, Understanding the Electrical Impact of Edge Contacts in Few-Layer Graphene, ACS Nano. 8, 3584(2014).
[39] David M. T. Kuo and Chang Y C, Thermoelectric and thermal rectification properties of quantum dot junctions, Phys. Rev. B. 81, 205321(2010).
[40] David M. T. Kuo ,Shiau S Y and Chang Y C , Theory of spin blockade, charge ratchet effect, and thermoelectrical behavior in serially coupled quantum dot system.Phys, Rev. B. 84, 245303(2011).
[41] David M. T. Kuo, Chen C C and Chang Y C, Large enhancement in thermoelectric efficiency of quantum dot junctions due to increase of level degeneracy, Phys. Rev. B . 95,075432(2017). |