![]() |
以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:20 、訪客IP:3.142.242.51
姓名 劉騏逸(Chi-I Liu) 查詢紙本館藏 畢業系所 電機工程學系 論文名稱 具零電流切換之 Bifold Dickson 可擴展倍壓單 元之高效能升壓轉換器
(High Efficient Step-up DC-DC Converter With Zero Current Switching And Bifold Dickson Voltage Multiplier Cell)相關論文 檔案 [Endnote RIS 格式]
[Bibtex 格式]
[相關文章]
[文章引用]
[完整記錄]
[館藏目錄]
至系統瀏覽論文 (2029-7-23以後開放)
摘要(中) 本論文提出了一種直流高升壓轉換器,具有零電流切換和可擴展的倍
壓單元。該轉換器主要基於傳統升壓電路,融合了耦合電感和切換電容型
式的倍壓單元,並且通過耦合電感的漏感和一個電容的組合,形成了諧振
電路。利用諧振的原理,倍壓單元內的開關元件在截止時可以實現零電流
切換,有效降低了切換損失,尤其在提升轉換器的升壓比時效果顯著。
該轉換器可應用於太陽能板等可再生能源的轉換,能夠有效提升太陽
能板的輸出電壓,並更有效地將能量傳輸到負載端。通過脈波調變與開關
配合使用,能夠有效控制和穩定輸出的電壓,提高系統的效率和穩定性。
本論文詳細分析了轉換器的運作原理,以及在穩態下各個元件的電壓
與電流應力。此外,對每個元件的參數進行了仔細設計。最終,透過模擬
軟體和實體轉換器實驗,進行了詳盡的比較分析,以驗證了轉換器理論分
析的正確性。摘要(英) This paper proposes a DC-DC boost converter with zero-current switching
and an expandable voltage multiplier cell. The converter is primarily based on
traditional boost circuits but combines couple inductor and expandable voltage
multiplier cell in the form of the switch capacitors. By combining the leakage
inductance of coupled inductors with a capacitor, a resonant circuit is formed.
Utilizing the resonance principle, the switching elements within the boosting unit
achieve zero-current switching during the off state, effectively reducing switching
losses, especially when increasing the converter′s boosting ratio
This converter can be applied to renewable energy sources such as solar
panels, effectively increasing the output voltage of solar panels and transferring
energy more efficiently to the load side. By using pulse-width modulation and
switches, the output voltage can be effectively controlled and stabilized,
improving system efficiency and stability.
The paper provides a detailed analysis of the converter′s operation principles
and the voltage and current stresses on each component under steady-state
conditions. Furthermore, the paper carefully designs of parameters for each
component. Ultimately, through simulation software and experimental validation
with physical converters, comprehensive comparative analysis is performed to
verify the correctness of the converter′s theoretical analysis.關鍵字(中) ★ 零電流切換
★ 切換電容
★ 倍壓單元
★ 諧振電路
★ 耦合電感
★ 升壓轉換器關鍵字(英) ★ Zero-current switching
★ Switched capacitor
★ Voltage multiplier cell
★ Resonant circuit
★ Coupled inductors
★ Boost converter論文目次 目 錄
摘 要..................................................................................................................... i
Abstract ................................................................................................................. ii
誌 謝..................................................................................................................... iii
圖 目 錄............................................................................................................... vii
表 目 錄............................................................................................................... xi
第一章 緒論 ......................................................................................................... 1
1-1 研究背景與目的...................................................................................... 1
1-2 論文架構.................................................................................................. 2
第二章 升壓轉換器介紹..................................................................................... 3
2-1 切換電容式倍壓單元.............................................................................. 3
2-2 柔切技術.................................................................................................. 5
第三章 關鍵技術探討......................................................................................... 7
3-1 Bifold Dickson 倍壓電路........................................................................ 7
3-2 諧振柔切電路........................................................................................ 15
第四章 柔切可擴充倍壓單開關升壓轉換器..................................................... 17
4-1 電路主架構介紹.................................................................................... 17
v
4-2 電路切換時序分析................................................................................ 19
4-3 穩態電壓增益推導................................................................................ 27
4-4 元件電壓應力分析................................................................................ 29
4-5 元件電流應力分析................................................................................ 30
4-6 諧振電路設計分析................................................................................ 32
4-7 元件設計................................................................................................ 35
4-8 架構比較................................................................................................ 39
第五章 系統規劃與硬體設計............................................................................. 42
5-1 系統規劃................................................................................................ 42
5-2 轉換器硬體設計.................................................................................... 43
5-2-1 輸入電感設計 ................................................................................ 44
5-2-2 耦合電感設計 ................................................................................ 45
5-2-3 諧振電感與諧振電容設計............................................................ 45
5-2-4 儲能電容設計 ................................................................................ 46
5-2-5 輸出濾波電容設計 ........................................................................ 47
5-2-6 功率開關設計 ................................................................................ 48
5-3 電壓偵測電路........................................................................................ 49
vi
5-4 主控制器................................................................................................ 51
5-4-1 主控制器程式流程圖.................................................................... 52
5-5 閘極驅動電路........................................................................................ 53
5-6 轉換器硬體實現.................................................................................... 55
第六章 模擬與實驗結果..................................................................................... 59
6-1 轉換器模擬與實驗結果........................................................................ 61
6-2 轉換器理論實驗驗證............................................................................ 69
6-3 效率量測................................................................................................ 75
6-4 迴授控制實驗結果................................................................................ 77
第七章 結論與未來展望..................................................................................... 79
7-1 結論........................................................................................................ 79
7-2 未來展望................................................................................................ 79
參考文獻............................................................................................................... 80參考文獻 [1] M. Forouzesh, Y. P. Siwakoti, S. A. Gorji, F. Blaabjerg, and B. Lehman,
"Step-Up DC–DC Converters: A Comprehensive Review of Voltage-Boosting
Techniques, Topologies, and Applications," IEEE Transactions on Power
Electronics, vol. 32, no. 12, pp. 9143-9178, 2017, doi:
10.1109/tpel.2017.2652318.
[2] M. A. Salvador, J. M. de Andrade, T. B. Lazzarin, and R. F. Coelho,
"Nonisolated High-Step-Up DC–DC Converter Derived from SwitchedInductors and Switched-Capacitors," IEEE Transactions on Industrial
Electronics, vol. 67, no. 10, pp. 8506-8516, 2020, doi:
10.1109/tie.2019.2949535.
[3] B. Faridpak, M. Bayat, M. Nasiri, R. Samanbakhsh, and M. Farrokhifar,
"Improved Hybrid Switched Inductor/Switched Capacitor DC–DC
Converters," IEEE Transactions on Power Electronics, vol. 36, no. 3,
pp. 3053-3062, 2021, doi: 10.1109/tpel.2020.3014278.
[4] Y. T. Chaofan Cui, Yingjun Guo, Hexu Sun ,and Lin Jiang "High Step-Up
Switched-Capacitor Active Switched-Inductor Converter With SelfVoltage Balancing and Low Stress.pdf," IEEE Transactions on Industrial
Electronics, 2022, doi: 10.1109/TIE.2021.3135611
[5] A. Andrade, T. Faistel, R. Guisso, and A. Toebe, "Hybrid High Voltage
Gain Transformerless DC–DC Converter," IEEE Transactions on Industrial
Electronics, vol. 69, no. 3, pp. 2470-2479, 2022, doi:
10.1109/tie.2021.3066939.
[6] B. P. Baddipadiga and M. Ferdowsi, "A high-voltage-gain dc-dc converter
based on modified dickson charge pump voltage multiplier," IEEE
Transactions on Power Electronics, vol. 32, no. 10, pp. 7707-7715, 2017,
doi: 10.1109/tpel.2016.2594016.
[7] A. Alzahrani, M. Ferdowsi, and P. Shamsi, "High-Voltage-Gain DC–DC
81
Step-Up Converter With Bifold Dickson Voltage Multiplier Cells," IEEE
Transactions on Power Electronics, vol. 34, no. 10, pp. 9732-9742, 2019,
doi: 10.1109/tpel.2018.2890437.
[8] Y. Zheng and K. M. Smedley, "Interleaved High Step-Up Converter
Integrating Coupled Inductor and Switched Capacitor for Distributed
Generation Systems," IEEE Transactions on Power Electronics, vol. 34,
no. 8, pp. 7617-7628, 2019, doi: 10.1109/tpel.2018.2878409.
[9] L. Schmitz, D. C. Martins, and R. F. Coelho, "Comprehensive Conception
of High Step-Up DC–DC Converters With Coupled Inductor and Voltage
Multipliers Techniques," IEEE Transactions on Circuits and Systems I:
Regular Papers, vol. 67, no. 6, pp. 2140-2151, 2020, doi:
10.1109/tcsi.2020.2973154.
[10] S. Park, J. Yang, and J. Rivas-Davila, "A Hybrid Cockcroft–
Walton/Dickson Multiplier for High Voltage Generation," IEEE
Transactions on Power Electronics, vol. 35, no. 3, pp. 2714-2723, 2020,
doi: 10.1109/tpel.2019.2929167.
[11] D. Sadeghpour and J. Bauman, "High-Efficiency Coupled-Inductor
Switched-Capacitor Boost Converter With Improved Input Current Ripple,"
IEEE Transactions on Industrial Electronics, vol. 69, no. 8, pp. 7940-
7951, 2022, doi: 10.1109/tie.2021.3109505.
[12] M. Kumar, V. K. Yadav, K. Mathuria, and A. K. Verma, "A Soft Switched
High Gain Boost Converter With Coupled Inductor for Photovoltaic
Applications," IEEE Journal of Emerging and Selected Topics in
Industrial Electronics, vol. 4, no. 3, pp. 827-835, 2023, doi:
10.1109/jestie.2023.3282793.
[13] B. T. Rao and D. De, "A Coupled Inductor-Based High-Gain ZVS DC–DC
Converter With Reduced Voltage Stresses," IEEE Transactions on Power
Electronics, vol. 38, no. 12, pp. 15956-15967, 2023, doi:
10.1109/tpel.2023.3310577.
[14] X. Zhang et al., "Novel High Step-Up Soft-Switching DC–DC Converter
Based on Switched Capacitor and Coupled Inductor," IEEE Transactions
on Power Electronics, vol. 35, no. 9, pp. 9471-9481, 2020, doi:
10.1109/tpel.2020.2972583.
[15] H. Lei, R. Hao, X. You, and F. Li, "Nonisolated High Step-Up SoftSwitching DC–DC Converter With Interleaving and Dickson SwitchedCapacitor Techniques," IEEE Journal of Emerging and Selected Topics in
Power Electronics, vol. 8, no. 3, pp. 2007-2021, 2020, doi:
10.1109/jestpe.2019.2958316.
82
[16] S. Abbasian, H. S. Gohari, M. Farsijani, K. Abbaszadeh, H. Hafezi, and
S. Filizadeh, "Single-Switch Resonant Soft-Switching Ultra-High Gain
DC-DC Converter With Continuous Input Current," IEEE Access, vol. 10,
pp. 33482-33491, 2022, doi: 10.1109/access.2022.3161456.
[17] J. Lee, M. Kim, S. Kim, and S. Choi, "An Isolated Single-Switch ZCS
Resonant Converter With High Step-Up Ratio," IEEE Transactions on Power
Electronics, vol. 36, no. 10, pp. 11555-11564, 2021, doi:
10.1109/tpel.2021.3072647.
[18] M. R. S. de Carvalho, E. A. O. Barbosa, F. Bradaschia, L. R. Limongi,
and M. C. Cavalcanti, "Soft-Switching High Step-Up DC–DC Converter
Based on Switched-Capacitor and Autotransformer Voltage Multiplier Cell
for PV Systems," IEEE Transactions on Industrial Electronics, vol. 69,
no. 12, pp. 12886-12897, 2022, doi: 10.1109/tie.2022.3142432.
[19] K. H. Chao, Y. P. Kuo, and H. H. Chen, "Design and Implementation of a
Soft-Switching Converter With High Step-Up Ratio," IEEE Access, vol.
11, pp. 48506-48516, 2023, doi: 10.1109/access.2023.3276649.
[20] S. Abbasian, M. Farsijani, M. Tavakoli Bina, and A. Shahirinia, "A
Nonisolated Common-Ground High Step-Up Soft-Switching DC–DC Converter
With Single Active Switch," IEEE Transactions on Industrial Electronics,
vol. 70, no. 6, pp. 5728-5738, 2023, doi: 10.1109/tie.2022.3198262.
[21] K. C. Omran and R. Beiranvand, "A High Step-Up Resonant Converter Based
on Current-Fed Voltage Multiplier Technique," IEEE Transactions on
Industrial Electronics, vol. 71, no. 5, pp. 4562-4575, 2024, doi:
10.1109/tie.2023.3283715.
[22] P. S. Ahmad Alzahrani, and Mehdi Ferdowsi, D. o. E. a. C. Engineering,
and M. U. o. S. a. Technology, "Boost Converter with Bipolar Dickson
Voltage Multiplier Cells," International Conference on Renewable Energy
Research and Applications, 2017.
[23] P. E. Shalini.N P.G. Student, Dhanalakshmi.R and E. E. Engineering,
"Soft switching based single switch integrated converter with high
voltage gain for renewable energy conversion.pdf," 2017 International
Conference On Smart Technology for Smart Nation, 2017.
[24] "<GaN Systems , GS61004B enhancement mode GaN transistor
Datasheet.pdf>."
[25] "<Texas Instruments , AMC1351 Reinforced Isolated Amplifier
Datasheet.pdf>."
[26] "<STMicroelectronic Microchip STM32F103x8 Datasheet.pdf>."
[27] "<GaN Systems , GN010 EZDrive Solution for GaN Systems GaN Transistors
83
Datasheet.pdf>."
[28] "<GaN Systems , GN012 Gate Driver Design Datasheet.pdf>."
[29] "<Texas Instruments , UCC5304 Reinforced Isolation Gate Driver With
High Noise Immunity Datasheet.pdf>."指導教授 徐國鎧(Kuo-Kai Shyu) 審核日期 2024-7-22 推文 plurk
funp
live
udn
HD
myshare
netvibes
friend
youpush
delicious
baidu
網路書籤 Google bookmarks
del.icio.us
hemidemi
myshare