參考文獻 |
[1] R. S. Sutton, A. G. Barto, and R. J. Williams, ‘‘Reinforcement learning is direct adaptive optimal control,’’ IEEE Control Systems Magazine, vol. 12, no. 2, pp. 19-22, 1992.
[2] K. G. Vamvoudakis and F. L. Lewis, ‘‘Online actor–critic algorithm to solve the continuous-time infinite horizon optimal control problem,’’ Automatica, vol. 46, no. 5, pp. 878-888, 2010.
[3] R. Kamalapurkar, H. Dinh, S. Bhasin, and W. E. Dixon, ‘‘Approximate optimal trajectory tracking for continuous-time nonlinear systems,’’ Automatica, vol. 51, pp. 40-48, 2015.
[4] F. L. Lewis and D. Vrabie, ‘‘Reinforcement learning and adaptive dynamic programming for feedback control,’’ IEEE Circuits and Systems Magazine, vol. 9, no. 3, pp. 32-50, 2009.
[5] H. Modares and F. L. Lewis, ‘‘Linear Quadratic Tracking Control of Partially-Unknown Continuous-Time Systems Using Reinforcement Learning,’’ IEEE Transactions on Automatic Control, vol. 59, no. 11, pp. 3051-3056, 2014.
[6] Y. Jiang and Z. P. Jiang, ‘‘Robust adaptive dynamic programming and feedback stabilization of nonlinear systems,’’ IEEE Transactions on Neural Networks and Learning Systems, vol. 25, no. 5, pp. 882-93, 2014.
[7] H. Modares, F. L. Lewis, and Z. P. Jiang, ‘‘H infinity tracking control of completely unknown continuous-time systems via off-policy reinforcement learning,’’ IEEE Transactions on Neural Networks and Learning Systems, vol. 26, no. 10, pp. 2550-62, 2015.
[8] R. Song, F. L. Lewis, Q. Wei, and H. Zhang, ‘‘Off-Policy Actor-Critic Structure for Optimal Control of Unknown Systems With Disturbances,’’ IEEE Transactions on Cybernetics, vol. 46, no. 5, pp. 1041-50, 2016.
[9] S. Bhasin, R. Kamalapurkar, M. Johnson, K. G. Vamvoudakis, F. L. Lewis, and W. E. Dixon, ‘‘A novel actor–critic–identifier architecture for approximate optimal control of uncertain nonlinear systems,’’ Automatica, vol. 49, no. 1, pp. 82-92, 2013.
[10] R. Kamalapurkar, L. Andrews, P. Walters, and W. E. Dixon, ‘‘Model-Based Reinforcement Learning for Infinite-Horizon Approximate Optimal Tracking,’’ IEEE Transactions on Neural Networks and Learning Systems, vol. 28, no. 3, pp. 753-758, 2017.
[11] M. L. Greene, Z. I. Bell, S. Nivison, and W. E. Dixon, ‘‘Deep Neural Network-Based Approximate Optimal Tracking for Unknown Nonlinear Systems,’’ IEEE Transactions on Automatic Control, vol. 68, no. 5, pp. 3171-3177, 2023.
[12] G. Wen, C. L. P. Chen, S. S. Ge, H. Yang, and X. Liu, ‘‘Optimized Adaptive Nonlinear Tracking Control Using Actor–Critic Reinforcement Learning Strategy,’’ IEEE Transactions on Industrial Informatics, vol. 15, no. 9, pp. 4969-4977, 2019.
[13] X. Yang, H. He, and D. Liu, ‘‘Event-Triggered Optimal Neuro-Controller Design With Reinforcement Learning for Unknown Nonlinear Systems,’’ IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 49, no. 9, pp. 1866-1878, 2019.
[14] G. Wen, C. L. P. Chen, and S. S. Ge, ‘‘Simplified Optimized Backstepping Control for a Class of Nonlinear Strict-Feedback Systems With Unknown Dynamic Functions,’’ IEEE Transactions on Cybernetics, vol. 51, no. 9, pp. 4567-4580, 2021.
[15] Z. Li, J. Liu, Z. Huang, Y. Peng, H. Pu, and L. Ding, ‘‘Adaptive Impedance Control of Human–Robot Cooperation Using Reinforcement Learning,’’ IEEE Transactions on Industrial Electronics, vol. 64, no. 10, pp. 8013-8022, 2017.
[16] X. Liu, S. S. Ge, F. Zhao, and X. Mei, ‘‘Optimized Impedance Adaptation of Robot Manipulator Interacting With Unknown Environment,’’ IEEE Transactions on Control Systems Technology, vol. 29, no. 1, pp. 411-419, 2021.
[17] G. Peng, C. L. P. Chen, and C. Yang, ‘‘Neural Networks Enhanced Optimal Admittance Control of Robot-Environment Interaction Using Reinforcement Learning,’’ IEEE Transactions on Neural Networks and Learning Systems, vol. 33, no. 9, pp. 4551-4561, 2022.
[18] W. He, H. Gao, C. Zhou, C. Yang, and Z. Li, ‘‘Reinforcement Learning Control of a Flexible Two-Link Manipulator: An Experimental Investigation,’’ IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 51, no. 12, pp. 7326-7336, 2021.
[19] S. Baek, J. Baek, J. Choi, and S. Han, ‘‘A Reinforcement Learning-based Adaptive Time-Delay Control and Its Application to Robot Manipulators,’’ American Control Conference (ACC), Atlanta, GA, USA, 2022.
[20] A. Liu et al., ‘‘Reinforcement Learning Based Control for Uncertain Robotic Manipulator Trajectory Tracking,’’ China Automation Congress (CAC), 2022.
[21] H. Dong, X. Zhao, and B. Luo, ‘‘Optimal Tracking Control for Uncertain Nonlinear Systems With Prescribed Performance via Critic-Only ADP,’’ IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 52, no. 1, pp. 561-573, 2022.
[22] S. Cao, L. Sun, J. Jiang, and Z. Zuo, ‘‘Reinforcement Learning-Based Fixed-Time Trajectory Tracking Control for Uncertain Robotic Manipulators With Input Saturation,’’ IEEE Transactions on Neural Networks and Learning Systems, vol. 34, no. 8, pp. 4584-4595, 2023.
[23] E. Sariyildiz, H. Sekiguchi, T. Nozaki, B. Ugurlu, and K. Ohnishi, ‘‘A Stability Analysis for the Acceleration-Based Robust Position Control of Robot Manipulators via Disturbance Observer,’’ IEEE/ASME Transactions on Mechatronics, vol. 23, no. 5, pp. 2369-2378, 2018.
[24] B. Xiao, X. Yang, H. R. Karimi, and J. Qiu, ‘‘Asymptotic Tracking Control for a More Representative Class of Uncertain Nonlinear Systems With Mismatched Uncertainties,’’ IEEE Transactions on Industrial Electronics, vol. 66, no. 12, pp. 9417-9427, 2019.
[25] Z. Zhang, M. Leibold, and D. Wollherr, ‘‘Integral Sliding-Mode Observer-Based Disturbance Estimation for Euler–Lagrangian Systems,’’ IEEE Transactions on Control Systems Technology, vol. 28, no. 6, pp. 2377-2389, 2020.
[26] S. Haddadin, A. De Luca, and A. Albu-Schaffer, ‘‘Robot Collisions: A Survey on Detection, Isolation, and Identification,’’ IEEE Transactions on Robotics, vol. 33, no. 6, pp. 1292-1312, 2017.
[27] G. Peng, C. Yang, W. He, and C. L. P. Chen, ‘‘Force Sensorless Admittance Control With Neural Learning for Robots With Actuator Saturation,’’ IEEE Transactions on Industrial Electronics, vol. 67, no. 4, pp. 3138-3148, 2020.
[28] A. Wahrburg, E. Morara, G. Cesari, B. Matthias, and H. Ding, ‘‘Cartesian contact force estimation for robotic manipulators using Kalman filters and the generalized momentum,’’ IEEE International Conference on Automation Science and Engineering (CASE), Gothenburg, Sweden, 24-28 August, 2015.
[29] C. Yang, G. Peng, L. Cheng, J. Na, and Z. Li, ‘‘Force Sensorless Admittance Control for Teleoperation of Uncertain Robot Manipulator Using Neural Networks,’’ IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 51, no. 5, pp. 3282-3292, 2021.
[30] J. Na, B. Jing, Y. Huang, G. Gao, and C. Zhang, ‘‘Unknown System Dynamics Estimator for Motion Control of Nonlinear Robotic Systems,’’ IEEE Transactions on Industrial Electronics, vol. 67, no. 5, pp. 3850-3859, 2020.
[31] G. Garofalo, N. Mansfeld, J. Jankowski, and C. Ott, ‘‘Sliding Mode Momentum Observers for Estimation of External Torques and Joint Acceleration,’’ International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20-24 May, 2019.
[32] S. K. Kommuri, S. Han, and S. Lee, ‘‘External Torque Estimation Using Higher Order Sliding-Mode Observer for Robot Manipulators,’’ IEEE/ASME Transactions on Mechatronics, vol. 27, no. 1, pp. 513-523, 2022.
[33] F. L. Lewis, D. M. Dawson, and C. T. Abdallah, Robot Manipulator Control: Theory and Practice, 2nd ed. CRC Press, 2003.
[34] B. Xiao, L. Cao, S. Xu, and L. Liu, ‘‘Robust Tracking Control of Robot Manipulators With Actuator Faults and Joint Velocity Measurement Uncertainty,’’ IEEE/ASME Transactions on Mechatronics, vol. 25, no. 3, pp. 1354-1365, 2020.
[35] J. Swevers, W. Verdonck, and J. D. Schutter, ‘‘Dynamic Model Identification for Industrial Robots,’’ IEEE Control Systems Magazine, vol. 27, no. 5, pp. 58-71, 2007.
[36] Y. Han, J. Wu, C. Liu, and Z. Xiong, ‘‘An Iterative Approach for Accurate Dynamic Model Identification of Industrial Robots,’’ IEEE Transactions on Robotics, vol. 36, no. 5, pp. 1577-1594, 2020.
[37] M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot Modeling and Control, 2nd ed. John Wiley & Sons, 2020.
[38] R. Kelly and R. Salgado, ‘‘PD control with computed feedforward of robot manipulators: a design procedure,’’ IEEE Transactions on Robotics and Automation, vol. 10, no. 4, pp. 566-571, 1994.
[39] V. Utkin, J. Guldner, and J. Shi, Sliding Mode Control in Electro-Mechanical Systems, 2nd ed. Boca Raton, FL, USA: CRC press, 2009.
[40] Y. Pan, C. Yang, L. Pan, and H. Yu, ‘‘Integral Sliding Mode Control: Performance, Modification, and Improvement,’’ IEEE Transactions on Industrial Informatics, vol. 14, no. 7, pp. 3087-3096, 2018.
[41] R. Kamalapurkar, P. Walters, J. Rosenfeld, and W. Dixon, Reinforcement Learning for Optimal Feedback Control: A Lyapunov-Based Approach. Berlin, Germany: Springer, 2018.
[42] F. L. Lewis, D. Vrabie, and V. L. Syrmos, Optimal Control, 3rd ed. NewYork, NY, USA: Wiley, 2012.
[43] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press, 2018.
[44] P. A. Ioannou and J. Sun, Robust Adaptive Control. Upper Saddle River, NJ, USA: PTR Prentice-Hall, 1996.
[45] H. K. Khalil, Nonlinear Systems, 3rd ed. Upper Saddle River, NJ, USA: Prentice-Hall, 2002.
[46] V. Santibañez and R. Kelly, ‘‘PD control with feedforward compensation for robot manipulators: analysis and experimentation,’’ Robotica, vol. 19, no. 1, pp. 11-19, 2001. |