參考文獻 |
[1] World Health Organization. "Top 10 Causes of Death." December 9, 2020. Retrieved from https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
[2] E. J. Benjamin et al., "Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association," (in eng), Circulation, vol. 139, no. 10, pp. e56-e528, Mar 5 2019, doi: 10.1161/cir.0000000000000659.
[3] J. M. Wardlaw, V. Murray, E. Berge, and G. J. del Zoppo, "Thrombolysis for acute ischaemic stroke," (in eng), Cochrane Database Syst Rev, vol. 2014, no. 7, p. Cd000213, Jul 29 2014, doi: 10.1002/14651858.CD000213.pub3..
[4] S. Simon, S. Langan, and J. Cooke, "Increasing Efficacy of Thrombectomy by Using Digital Subtraction Angiography to Confirm Stent Retriever Clot Integration," (in eng), Cureus, vol. 8, no. 4, p. e559, Apr 4 2016, doi: 10.7759/cureus.559.
[5] C. M. Filley and R. D. Fields, "White matter and cognition: making the connection," (in eng), J Neurophysiol, vol. 116, no. 5, pp. 2093-2104, Nov 1 2016, doi: 10.1152/jn.00221.2016.
[6] M. M. Khoo, P. A. Tyler, A. Saifuddin, and A. R. Padhani, "Diffusion-weighted imaging (DWI) in musculoskeletal MRI: a critical review," (in eng), Skeletal Radiol, vol. 40, no. 6, pp. 665-81, Jun 2011, doi: 10.1007/s00256-011-1106-6.
[7] K. Noguchi et al., "MRI of acute cerebral infarction: a comparison of FLAIR and T2-weighted fast spin-echo imaging," Neuroradiology, vol. 39, no. 6, pp. 406-410, 1997/06/01 1997, doi: 10.1007/s002340050433.
[8] M. Brant-Zawadzki, D. Atkinson, M. Detrick, W. G. Bradley, and G. Scidmore, "Fluid-attenuated inversion recovery (FLAIR) for assessment of cerebral infarction. Initial clinical experience in 50 patients," (in eng), Stroke, vol. 27, no. 7, pp. 1187-91, Jul 1996, doi: 10.1161/01.str.27.7.1187.
[9] C. S. Kidwell et al., "Multiparametric MRI and CT models of infarct core and favorable penumbral imaging patterns in acute ischemic stroke," (in eng), Stroke, vol. 44, no. 1, pp. 73-9, Jan 2013, doi: 10.1161/strokeaha.112.670034.
[10] M. Augustin, R. Bammer, J. Simbrunner, R. Stollberger, H. P. Hartung, and F. Fazekas, "Diffusion-weighted imaging of patients with subacute cerebral ischemia: comparison with conventional and contrast-enhanced MR imaging," (in eng), AJNR Am J Neuroradiol, vol. 21, no. 9, pp. 1596-602, Oct 2000.
[11] B. L. Edlow, S. Hurwitz, and J. A. Edlow, "Diagnosis of DWI-negative acute ischemic stroke: A meta-analysis," (in eng), Neurology, vol. 89, no. 3, pp. 256-262, Jul 18 2017, doi: 10.1212/wnl.0000000000004120.
[12] P. Maillard et al., "FLAIR and diffusion MRI signals are independent predictors of white matter hyperintensities," (in eng), AJNR Am J Neuroradiol, vol. 34, no. 1, pp. 54-61, Jan 2013, doi: 10.3174/ajnr.A3146.
[13] D. Le Bihan, "Diffusion MRI: what water tells us about the brain," (in eng), EMBO Mol Med, vol. 6, no. 5, pp. 569-73, May 2014, doi: 10.1002/emmm.201404055.
[14] V. Baliyan, C. J. Das, R. Sharma, and A. K. Gupta, "Diffusion weighted imaging: Technique and applications," (in eng), World J Radiol, vol. 8, no. 9, pp. 785-798, Sep 28 2016, doi: 10.4329/wjr.v8.i9.785.
[15] P. Sati, I. C. George, C. D. Shea, M. I. Gaitán, and D. S. Reich, "FLAIR*: a combined MR contrast technique for visualizing white matter lesions and parenchymal veins," (in eng), Radiology, vol. 265, no. 3, pp. 926-32, Dec 2012, doi: 10.1148/radiol.12120208.
[16] R. Cortese, S. Collorone, O. Ciccarelli, and A. T. Toosy, "Advances in brain imaging in multiple sclerosis," (in eng), Ther Adv Neurol Disord, vol. 12, p. 1756286419859722, 2019, doi: 10.1177/1756286419859722.
[17] F. Rahmani et al., "T1 and FLAIR signal intensities are related to tau pathology in dominantly inherited Alzheimer disease," (in eng), Hum Brain Mapp, vol. 44, no. 18, pp. 6375-6387, Dec 15 2023, doi: 10.1002/hbm.26514.
[18] F. Bruno et al., "Advanced Magnetic Resonance Imaging (MRI) Techniques: Technical Principles and Applications in Nanomedicine," (in eng), Cancers (Basel), vol. 14, no. 7, Mar 23 2022, doi: 10.3390/cancers14071626.
[19] L. Huang, X. Wong, and G. Li, "The application of DWI and ADC map in cerebral infarction," in Proc Intl Soc Mag Reson Med, 2001, vol. 9, p. 1446.
[20] H. Liu et al., "Predictive accuracy of an ADC map for hemorrhagic transformation in acute ischemic stroke patients after successful recanalization with endovascular therapy," (in eng), Ann Transl Med, vol. 10, no. 10, p. 591, May 2022, doi: 10.21037/atm-22-2255.
[21] K. He, G. Gkioxari, P. Dollár, and R. Girshick, "Mask R-CNN," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 42, no. 2, pp. 386-397, 2020, doi: 10.1109/TPAMI.2018.2844175.
[22] R. Girshick, J. Donahue, T. Darrell, and J. Malik, "Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation," in 2014 IEEE Conference on Computer Vision and Pattern Recognition, 23-28 June 2014 2014, pp. 580-587, doi: 10.1109/CVPR.2014.81.
[23] R. Girshick, "Fast R-CNN," in 2015 IEEE International Conference on Computer Vision (ICCV), 7-13 Dec. 2015 2015, pp. 1440-1448, doi: 10.1109/ICCV.2015.169.
[24] S. Ren, K. He, R. Girshick, and J. Sun, "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, 06/04 2015, doi: 10.1109/TPAMI.2016.2577031.
[25] J. Uijlings, K. Sande, T. Gevers, and A. W. M. Smeulders, "Selective Search for Object Recognition," International Journal of Computer Vision, vol. 104, pp. 154-171, 09/01 2013, doi: 10.1007/s11263-013-0620-5.
[26] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, "You Only Look Once: Unified, Real-Time Object Detection," in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 27-30 June 2016 2016, pp. 779-788, doi: 10.1109/CVPR.2016.91.
[27] O. Ronneberger, P. Fischer, and T. Brox, "U-Net: Convolutional Networks for Biomedical Image Segmentation," in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Cham, N. Navab, J. Hornegger, W. M. Wells, and A. F. Frangi, Eds., 2015// 2015: Springer International Publishing, pp. 234-241, doi: 10.1007/978-3-319-24574-4_28.
[28] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. Yuille, "DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PP, 06/02 2016, doi: 10.1109/TPAMI.2017.2699184.
[29] K. Kamnitsas et al., "Efficient Multi-Scale 3D CNN with fully connected CRF for Accurate Brain Lesion Segmentation," Medical Image Analysis, vol. 36, 03/18 2016, doi: 10.1016/j.media.2016.10.004.
[30] Ö. Çiçek, A. Abdulkadir, S. Lienkamp, T. Brox, and O. Ronneberger, 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation. 2016, pp. 424-432.
[31] F. Milletari, N. Navab, and S. A. Ahmadi, "V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation," in 2016 Fourth International Conference on 3D Vision (3DV), 25-28 Oct. 2016 2016, pp. 565-571, doi: 10.1109/3DV.2016.79.
[32] D. Maturana and S. Scherer, "VoxNet: A 3D Convolutional Neural Network for real-time object recognition," in 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 28 Sept.-2 Oct. 2015 2015, pp. 922-928, doi: 10.1109/IROS.2015.7353481.
[33] J. Long, E. Shelhamer, and T. Darrell, "Fully convolutional networks for semantic segmentation," in 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 7-12 June 2015 2015, pp. 3431-3440, doi: 10.1109/CVPR.2015.7298965. [Online]. Available: http://doi.ieeecomputersociety.org/10.1109/CVPR.2015.7298965
[34] R. Zhang et al., "Automatic Segmentation of Acute Ischemic Stroke From DWI Using 3-D Fully Convolutional DenseNets," IEEE Transactions on Medical Imaging, vol. 37, no. 9, pp. 2149-2160, 2018, doi: 10.1109/TMI.2018.2821244.
[35] G. B. Praveen, A. Agrawal, P. Sundaram, and S. Sardesai, "Ischemic stroke lesion segmentation using stacked sparse autoencoder," (in eng), Comput Biol Med, vol. 99, pp. 38-52, Aug 1 2018, doi: 10.1016/j.compbiomed.2018.05.027.
[36] A. Clèrigues, S. Valverde, J. Bernal, J. Freixenet, A. Oliver, and X. Lladó, "Acute and sub-acute stroke lesion segmentation from multimodal MRI," (in eng), Comput Methods Programs Biomed, vol. 194, p. 105521, Oct 2020, doi: 10.1016/j.cmpb.2020.105521.
[37] Y. C. Wei et al., "Semantic segmentation guided detector for segmentation, classification, and lesion mapping of acute ischemic stroke in MRI images," (in eng), Neuroimage Clin, vol. 35, p. 103044, 2022, doi: 10.1016/j.nicl.2022.103044.
[38] S. Gómez, D. Mantilla, E. Rangel, A. Ortiz, D. V. D, and F. Martínez, "A deep supervised cross-attention strategy for ischemic stroke segmentation in MRI studies," (in eng), Biomed Phys Eng Express, vol. 9, no. 3, Apr 5 2023, doi: 10.1088/2057-1976/acc853.
[39] H. Kuang et al., "Segmenting Ischemic Penumbra and Infarct Core Simultaneously on Non-Contrast CT of Patients with Acute Ischemic Stroke Using Novel Convolutional Neural Network," (in eng), Biomedicines, vol. 12, no. 3, Mar 5 2024, doi: 10.3390/biomedicines12030580.
[40] F. Alshehri and G. Muhammad, "A few-shot learning-based ischemic stroke segmentation system using weighted MRI fusion," Image and Vision Computing, vol. 140, p. 104865, 12/01 2023, doi: 10.1016/j.imavis.2023.104865.
[41] D. Han, "Comparison of Commonly Used Image Interpolation Methods," Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering, 03/03 2013, doi: 10.2991/iccsee.2013.391.
[42] T. M. Lehmann, C. Gonner, and K. Spitzer, "Addendum: B-spline interpolation in medical image processing," IEEE Transactions on Medical Imaging, vol. 20, no. 7, pp. 660-665, 2001, doi: 10.1109/42.932749.
[43] H. Abbasi, M. Orouskhani, S. Asgari, and S. S. Zadeh, "Automatic brain ischemic stroke segmentation with deep learning: A review," Neuroscience Informatics, vol. 3, no. 4, p. 100145, 2023/12/01/ 2023, doi: https://doi.org/10.1016/j.neuri.2023.100145.
[44] C. U. Pérez Malla, M. D. C. Valdés Hernández, M. F. Rachmadi, and T. Komura, "Evaluation of Enhanced Learning Techniques for Segmenting Ischaemic Stroke Lesions in Brain Magnetic Resonance Perfusion Images Using a Convolutional Neural Network Scheme," (in eng), Front Neuroinform, vol. 13, p. 33, 2019, doi: 10.3389/fninf.2019.00033.
[45] J. Z. Tsai et al., "Automatic detection and quantification of acute cerebral infarct by fuzzy clustering and histographic characterization on diffusion weighted MR imaging and apparent diffusion coefficient map," (in eng), Biomed Res Int, vol. 2014, p. 963032, 2014, doi: 10.1155/2014/963032.
[46] N. Aslam et al., "Multiple Sclerosis Diagnosis Using Machine Learning and Deep Learning: Challenges and Opportunities," (in eng), Sensors (Basel), vol. 22, no. 20, Oct 16 2022, doi: 10.3390/s22207856.
[47] A. Kumar et al., "CSNet: A new DeepNet framework for ischemic stroke lesion segmentation," (in eng), Comput Methods Programs Biomed, vol. 193, p. 105524, Sep 2020, doi: 10.1016/j.cmpb.2020.105524.
[48] S. Nazari-Farsani, M. Nyman, T. Karjalainen, M. Bucci, J. Isojärvi, and L. Nummenmaa, "Automated segmentation of acute stroke lesions using a data-driven anomaly detection on diffusion weighted MRI," (in eng), J Neurosci Methods, vol. 333, p. 108575, Mar 1 2020, doi: 10.1016/j.jneumeth.2019.108575.
[49] N. Tomita, S. Jiang, M. E. Maeder, and S. Hassanpour, "Automatic post-stroke lesion segmentation on MR images using 3D residual convolutional neural network," (in eng), Neuroimage Clin, vol. 27, p. 102276, 2020, doi: 10.1016/j.nicl.2020.102276.
[50] D. Alis et al., "Inter-vendor performance of deep learning in segmenting acute ischemic lesions on diffusion-weighted imaging: a multicenter study," (in eng), Sci Rep, vol. 11, no. 1, p. 12434, Jun 14 2021, doi: 10.1038/s41598-021-91467-x.
[51] K. K. Wong et al., "Automatic Segmentation in Acute Ischemic Stroke: Prognostic Significance of Topological Stroke Volumes on Stroke Outcome," (in eng), Stroke, vol. 53, no. 9, pp. 2896-2905, Sep 2022, doi: 10.1161/strokeaha.121.037982.
[52] S. Nazari-Farsani et al., "Predicting final ischemic stroke lesions from initial diffusion-weighted images using a deep neural network," (in eng), Neuroimage Clin, vol. 37, p. 103278, 2023, doi: 10.1016/j.nicl.2022.103278.
[53] O. Maier et al., "ISLES 2015 - A public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI," (in eng), Med Image Anal, vol. 35, pp. 250-269, Jan 2017, doi: 10.1016/j.media.2016.07.009.
[54] S. Winzeck et al., "ISLES 2016 and 2017-Benchmarking Ischemic Stroke Lesion Outcome Prediction Based on Multispectral MRI," (in eng), Front Neurol, vol. 9, p. 679, 2018, doi: 10.3389/fneur.2018.00679. |