博碩士論文 111521051 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:48 、訪客IP:3.136.18.247
姓名 卓祐晟(YU-CHENG CHO)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 急性缺血型中風之缺血半影與白質病變分割及量化
(Segmentation and Quantification of Ischemic Penumbra and White Matter Hyperintensity Lesions in Acute Ischemic Stroke)
相關論文
★ 電子式基因序列偵測晶片之原型★ 眼動符號表達系統之可行性研究
★ 利用網印碳電極以交流阻抗法檢測糖化血紅素★ 電子式基因序列偵測晶片可行性之研究
★ 電腦化肺音擷取系統★ 眼寫鍵盤和眼寫滑鼠
★ 眼寫電話控制系統★ 氣喘肺音監測系統之可行性研究
★ 肺音聽診系統之可行性研究★ 穿戴式腳趾彎曲角度感測裝置之可行性研究
★ 注音符號眼寫系統之可行性研究★ 英文字母眼寫系統之可行性研究
★ 數位聽診器之原型★ 使用角度變化率為基準之心電訊號壓縮法
★ 電子式基因微陣列晶片與應用電路研究★ 電子聽診系統應用於左右肺部比較之臨床研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-7-31以後開放)
摘要(中) 醫師對於急性中風介入治療的決策上,仍需花上不少時間在影像上的判讀,且無法以肉眼快速精準的量化出缺血半影區,因此在搶救病人的決策上,仍有改善空間。本研究提出了一套基於深度學習自動化分割的系統,來實現能夠針對急性缺血型中風患者的缺血區和核心梗塞區,及在影像上同樣呈現高信號的白質病變區域,進行準確的分割與量化。
在本研究中,我們使用了Mask-Region convolutional neural network (Mask R-CNN)來進行實質腦遮罩的提取,去除頭骨、眼球等易影響後續神經網路誤判為病灶的區域,再透過影像正規化及重採樣的方式來加強影像的特徵,接著再使用三維卷積神經網路 DeepMedic,分別對DWI和FLAIR進行缺血區、梗塞核心區與白質病變的分割,透過兩者分割的結果比較,量化出缺血但尚未到達梗塞壞死的缺血半影的腦體素體積與比例,最後,我們也開發了一套以利醫師更直觀、更好上手的圖形使用者介面(Graphical User Interface, GUI),更有助於輔助醫師做決策。
本次研究中,我們採用聯新國際醫院申請於2020年1月1日至2023年4月30日有採取針對腦中風之動脈血栓溶解術或血栓切除術治療的病歷資料,將所有收集的影像取得之後將被去除辨識,最終患有急性缺血型中風病總計有267位病人,我們採用了其中216筆取栓治療前以及89筆取栓治療後追蹤的影像。最終研究結果顯示,我們使用的Mask R-CNN進行實質腦提取的Dices Score達到0.966,使用三維卷積神經網路 DeepMedic進行缺血區自動分割的Dice Score為0.801,梗塞核心區的Dice Score為0.745,白質病變自動分割的Dice Score為0.656。

關鍵詞:急性缺血型中風腦缺血區、腦梗塞區、白質病變、缺血半影、自動化分割、深度學習、實質腦遮罩提取、影像對位
摘要(英) In this study, we employed a Mask-Region Convolutional Neural Network (Mask R-CNN) to extract brain masks, removing regions such as the skull and eyeballs that might lead neural networks to misinterpret them as lesions. Following this, we enhanced the image features through normalization and resampling. Subsequently, we utilized a three-dimensional convolutional neural network, DeepMedic, to segment ischemia, infarct core, and white matter hyperintensities on DWI and FLAIR images. By comparing the segmentation results of the two modalities, we quantified the ischemic penumbra and differentiated the brain parenchymal volume affected by white matter hyperintensities. Additionally, we developed a user-friendly Graphical User Interface (GUI) to assist physicians in decision-making.
For this study, we collected medical records from Landseed International Hospital between January 1, 2020, and April 30, 2023, involving patients who underwent thrombolysis or thrombectomy for acute ischemic stroke. All identifiable information was removed from the collected images. Ultimately, data from a total of 267 patients with acute ischemic stroke were included, comprising 216 pre-thrombolytic treatment images and 89 post-thrombolytic treatment follow-up images. The study results indicated a Dice Score of 0.966 for brain extraction using Mask R-CNN, 0.801 for automatic segmentation of ischemia, 0.745 for infarct core segmentation, and 0.656 for white matter hyperintensities segmentation using the three-dimensional convolutional neural network, DeepMedic.

Keywords: Acute ischemic stroke brain ischemic region, Acute ischemic stroke brain infarct area, Penumbra, White matter hyperintensities, Automated segmentation, Deep learning, Brain mask extraction, Image registration
關鍵字(中) ★ 急性缺血型中風腦缺血區
★ 腦梗塞區
★ 白質病變
★ 缺血半影
★ 自動化分割
★ 深度學習
★ 實質腦遮罩提取
★ 影像對位
關鍵字(英) ★ Acute ischemic stroke brain ischemic region
★ Acute ischemic stroke brain infarct area
★ White matter hyperintensities
★ Penumbra
★ Automated segmentation
★ Deep learning
★ Brain mask extraction
★ Image registration
論文目次 摘 要 v
Abstract vii
致 謝 ix
目 錄 x
圖目錄 xiii
表目錄 xv
第一章 緒論 1
1.1 研究動機 1
1.2 研究貢獻 2
1.3 論文架構 3
第二章 相關文獻探討 5
2.1 磁振造影 5
2.1.1 DWI 6
2.1.2 FLAIR 7
2.1.3 ADC Map 9
2.2 二維影像神經網路 9
2.3 三維影像神經網路 11
2.4 急性缺血型中風自動分割相關研究 12
第三章 研究方法 16
3.1 資料集 17
3.2 K-Fold交叉驗證 20
3.3 實質腦提取 22
3.3.1 實質腦遮罩黃金標準 22
3.3.2 Mask R-CNN 26
3.3.3 影像對位 27
3.4 影像前處理 28
3.4.1 影像重採樣 28
3.4.2 Z-Score 標準化 29
3.5 資料增量 30
3.6 急性缺血型中風病灶分割及量化 34
3.6.1 3D Multi-scale CNN 34
3.6.2 缺血區黃金標準 35
3.6.3 梗塞核心區與白質病變黃金標準 36
3.6.4 缺血半影區分割 38
3.7 評估指標 39
第四章 研究結果 42
4.1 實質腦提取結果 42
4.2 缺血區分割結果 44
梗塞核心區及白質病變分割結果 47
4.3 缺血半影區分割結果 52
4.4 分割結果與病患預後之相關性 53
4.5 圖形使用者介面 55
第五章 討論 57
5.1 梗塞核心區與白質病變黃金標準 57
5.2 預測分割誤差需修正Match與Mismatch計算 58
5.3 DWI上體積較小的缺血區病例探討 61
5.4 FLAIR上梗塞區與白質病變之分群評估 63
5.5 MRI上缺血型中風自動分割與現有方法比較 68
第六章 結論與未來展望 71
6.1 結論 71
6.2 未來展望 72
參考文獻 73
參考文獻 [1] World Health Organization. "Top 10 Causes of Death." December 9, 2020. Retrieved from https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
[2] E. J. Benjamin et al., "Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association," (in eng), Circulation, vol. 139, no. 10, pp. e56-e528, Mar 5 2019, doi: 10.1161/cir.0000000000000659.
[3] J. M. Wardlaw, V. Murray, E. Berge, and G. J. del Zoppo, "Thrombolysis for acute ischaemic stroke," (in eng), Cochrane Database Syst Rev, vol. 2014, no. 7, p. Cd000213, Jul 29 2014, doi: 10.1002/14651858.CD000213.pub3..
[4] S. Simon, S. Langan, and J. Cooke, "Increasing Efficacy of Thrombectomy by Using Digital Subtraction Angiography to Confirm Stent Retriever Clot Integration," (in eng), Cureus, vol. 8, no. 4, p. e559, Apr 4 2016, doi: 10.7759/cureus.559.
[5] C. M. Filley and R. D. Fields, "White matter and cognition: making the connection," (in eng), J Neurophysiol, vol. 116, no. 5, pp. 2093-2104, Nov 1 2016, doi: 10.1152/jn.00221.2016.
[6] M. M. Khoo, P. A. Tyler, A. Saifuddin, and A. R. Padhani, "Diffusion-weighted imaging (DWI) in musculoskeletal MRI: a critical review," (in eng), Skeletal Radiol, vol. 40, no. 6, pp. 665-81, Jun 2011, doi: 10.1007/s00256-011-1106-6.
[7] K. Noguchi et al., "MRI of acute cerebral infarction: a comparison of FLAIR and T2-weighted fast spin-echo imaging," Neuroradiology, vol. 39, no. 6, pp. 406-410, 1997/06/01 1997, doi: 10.1007/s002340050433.
[8] M. Brant-Zawadzki, D. Atkinson, M. Detrick, W. G. Bradley, and G. Scidmore, "Fluid-attenuated inversion recovery (FLAIR) for assessment of cerebral infarction. Initial clinical experience in 50 patients," (in eng), Stroke, vol. 27, no. 7, pp. 1187-91, Jul 1996, doi: 10.1161/01.str.27.7.1187.
[9] C. S. Kidwell et al., "Multiparametric MRI and CT models of infarct core and favorable penumbral imaging patterns in acute ischemic stroke," (in eng), Stroke, vol. 44, no. 1, pp. 73-9, Jan 2013, doi: 10.1161/strokeaha.112.670034.
[10] M. Augustin, R. Bammer, J. Simbrunner, R. Stollberger, H. P. Hartung, and F. Fazekas, "Diffusion-weighted imaging of patients with subacute cerebral ischemia: comparison with conventional and contrast-enhanced MR imaging," (in eng), AJNR Am J Neuroradiol, vol. 21, no. 9, pp. 1596-602, Oct 2000.
[11] B. L. Edlow, S. Hurwitz, and J. A. Edlow, "Diagnosis of DWI-negative acute ischemic stroke: A meta-analysis," (in eng), Neurology, vol. 89, no. 3, pp. 256-262, Jul 18 2017, doi: 10.1212/wnl.0000000000004120.
[12] P. Maillard et al., "FLAIR and diffusion MRI signals are independent predictors of white matter hyperintensities," (in eng), AJNR Am J Neuroradiol, vol. 34, no. 1, pp. 54-61, Jan 2013, doi: 10.3174/ajnr.A3146.
[13] D. Le Bihan, "Diffusion MRI: what water tells us about the brain," (in eng), EMBO Mol Med, vol. 6, no. 5, pp. 569-73, May 2014, doi: 10.1002/emmm.201404055.
[14] V. Baliyan, C. J. Das, R. Sharma, and A. K. Gupta, "Diffusion weighted imaging: Technique and applications," (in eng), World J Radiol, vol. 8, no. 9, pp. 785-798, Sep 28 2016, doi: 10.4329/wjr.v8.i9.785.
[15] P. Sati, I. C. George, C. D. Shea, M. I. Gaitán, and D. S. Reich, "FLAIR*: a combined MR contrast technique for visualizing white matter lesions and parenchymal veins," (in eng), Radiology, vol. 265, no. 3, pp. 926-32, Dec 2012, doi: 10.1148/radiol.12120208.
[16] R. Cortese, S. Collorone, O. Ciccarelli, and A. T. Toosy, "Advances in brain imaging in multiple sclerosis," (in eng), Ther Adv Neurol Disord, vol. 12, p. 1756286419859722, 2019, doi: 10.1177/1756286419859722.
[17] F. Rahmani et al., "T1 and FLAIR signal intensities are related to tau pathology in dominantly inherited Alzheimer disease," (in eng), Hum Brain Mapp, vol. 44, no. 18, pp. 6375-6387, Dec 15 2023, doi: 10.1002/hbm.26514.
[18] F. Bruno et al., "Advanced Magnetic Resonance Imaging (MRI) Techniques: Technical Principles and Applications in Nanomedicine," (in eng), Cancers (Basel), vol. 14, no. 7, Mar 23 2022, doi: 10.3390/cancers14071626.
[19] L. Huang, X. Wong, and G. Li, "The application of DWI and ADC map in cerebral infarction," in Proc Intl Soc Mag Reson Med, 2001, vol. 9, p. 1446.
[20] H. Liu et al., "Predictive accuracy of an ADC map for hemorrhagic transformation in acute ischemic stroke patients after successful recanalization with endovascular therapy," (in eng), Ann Transl Med, vol. 10, no. 10, p. 591, May 2022, doi: 10.21037/atm-22-2255.
[21] K. He, G. Gkioxari, P. Dollár, and R. Girshick, "Mask R-CNN," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 42, no. 2, pp. 386-397, 2020, doi: 10.1109/TPAMI.2018.2844175.
[22] R. Girshick, J. Donahue, T. Darrell, and J. Malik, "Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation," in 2014 IEEE Conference on Computer Vision and Pattern Recognition, 23-28 June 2014 2014, pp. 580-587, doi: 10.1109/CVPR.2014.81.
[23] R. Girshick, "Fast R-CNN," in 2015 IEEE International Conference on Computer Vision (ICCV), 7-13 Dec. 2015 2015, pp. 1440-1448, doi: 10.1109/ICCV.2015.169.
[24] S. Ren, K. He, R. Girshick, and J. Sun, "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, 06/04 2015, doi: 10.1109/TPAMI.2016.2577031.
[25] J. Uijlings, K. Sande, T. Gevers, and A. W. M. Smeulders, "Selective Search for Object Recognition," International Journal of Computer Vision, vol. 104, pp. 154-171, 09/01 2013, doi: 10.1007/s11263-013-0620-5.
[26] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, "You Only Look Once: Unified, Real-Time Object Detection," in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 27-30 June 2016 2016, pp. 779-788, doi: 10.1109/CVPR.2016.91.
[27] O. Ronneberger, P. Fischer, and T. Brox, "U-Net: Convolutional Networks for Biomedical Image Segmentation," in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Cham, N. Navab, J. Hornegger, W. M. Wells, and A. F. Frangi, Eds., 2015// 2015: Springer International Publishing, pp. 234-241, doi: 10.1007/978-3-319-24574-4_28.
[28] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. Yuille, "DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PP, 06/02 2016, doi: 10.1109/TPAMI.2017.2699184.
[29] K. Kamnitsas et al., "Efficient Multi-Scale 3D CNN with fully connected CRF for Accurate Brain Lesion Segmentation," Medical Image Analysis, vol. 36, 03/18 2016, doi: 10.1016/j.media.2016.10.004.
[30] Ö. Çiçek, A. Abdulkadir, S. Lienkamp, T. Brox, and O. Ronneberger, 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation. 2016, pp. 424-432.
[31] F. Milletari, N. Navab, and S. A. Ahmadi, "V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation," in 2016 Fourth International Conference on 3D Vision (3DV), 25-28 Oct. 2016 2016, pp. 565-571, doi: 10.1109/3DV.2016.79.
[32] D. Maturana and S. Scherer, "VoxNet: A 3D Convolutional Neural Network for real-time object recognition," in 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 28 Sept.-2 Oct. 2015 2015, pp. 922-928, doi: 10.1109/IROS.2015.7353481.
[33] J. Long, E. Shelhamer, and T. Darrell, "Fully convolutional networks for semantic segmentation," in 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 7-12 June 2015 2015, pp. 3431-3440, doi: 10.1109/CVPR.2015.7298965. [Online]. Available: http://doi.ieeecomputersociety.org/10.1109/CVPR.2015.7298965
[34] R. Zhang et al., "Automatic Segmentation of Acute Ischemic Stroke From DWI Using 3-D Fully Convolutional DenseNets," IEEE Transactions on Medical Imaging, vol. 37, no. 9, pp. 2149-2160, 2018, doi: 10.1109/TMI.2018.2821244.
[35] G. B. Praveen, A. Agrawal, P. Sundaram, and S. Sardesai, "Ischemic stroke lesion segmentation using stacked sparse autoencoder," (in eng), Comput Biol Med, vol. 99, pp. 38-52, Aug 1 2018, doi: 10.1016/j.compbiomed.2018.05.027.
[36] A. Clèrigues, S. Valverde, J. Bernal, J. Freixenet, A. Oliver, and X. Lladó, "Acute and sub-acute stroke lesion segmentation from multimodal MRI," (in eng), Comput Methods Programs Biomed, vol. 194, p. 105521, Oct 2020, doi: 10.1016/j.cmpb.2020.105521.
[37] Y. C. Wei et al., "Semantic segmentation guided detector for segmentation, classification, and lesion mapping of acute ischemic stroke in MRI images," (in eng), Neuroimage Clin, vol. 35, p. 103044, 2022, doi: 10.1016/j.nicl.2022.103044.
[38] S. Gómez, D. Mantilla, E. Rangel, A. Ortiz, D. V. D, and F. Martínez, "A deep supervised cross-attention strategy for ischemic stroke segmentation in MRI studies," (in eng), Biomed Phys Eng Express, vol. 9, no. 3, Apr 5 2023, doi: 10.1088/2057-1976/acc853.
[39] H. Kuang et al., "Segmenting Ischemic Penumbra and Infarct Core Simultaneously on Non-Contrast CT of Patients with Acute Ischemic Stroke Using Novel Convolutional Neural Network," (in eng), Biomedicines, vol. 12, no. 3, Mar 5 2024, doi: 10.3390/biomedicines12030580.
[40] F. Alshehri and G. Muhammad, "A few-shot learning-based ischemic stroke segmentation system using weighted MRI fusion," Image and Vision Computing, vol. 140, p. 104865, 12/01 2023, doi: 10.1016/j.imavis.2023.104865.
[41] D. Han, "Comparison of Commonly Used Image Interpolation Methods," Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering, 03/03 2013, doi: 10.2991/iccsee.2013.391.
[42] T. M. Lehmann, C. Gonner, and K. Spitzer, "Addendum: B-spline interpolation in medical image processing," IEEE Transactions on Medical Imaging, vol. 20, no. 7, pp. 660-665, 2001, doi: 10.1109/42.932749.
[43] H. Abbasi, M. Orouskhani, S. Asgari, and S. S. Zadeh, "Automatic brain ischemic stroke segmentation with deep learning: A review," Neuroscience Informatics, vol. 3, no. 4, p. 100145, 2023/12/01/ 2023, doi: https://doi.org/10.1016/j.neuri.2023.100145.
[44] C. U. Pérez Malla, M. D. C. Valdés Hernández, M. F. Rachmadi, and T. Komura, "Evaluation of Enhanced Learning Techniques for Segmenting Ischaemic Stroke Lesions in Brain Magnetic Resonance Perfusion Images Using a Convolutional Neural Network Scheme," (in eng), Front Neuroinform, vol. 13, p. 33, 2019, doi: 10.3389/fninf.2019.00033.
[45] J. Z. Tsai et al., "Automatic detection and quantification of acute cerebral infarct by fuzzy clustering and histographic characterization on diffusion weighted MR imaging and apparent diffusion coefficient map," (in eng), Biomed Res Int, vol. 2014, p. 963032, 2014, doi: 10.1155/2014/963032.
[46] N. Aslam et al., "Multiple Sclerosis Diagnosis Using Machine Learning and Deep Learning: Challenges and Opportunities," (in eng), Sensors (Basel), vol. 22, no. 20, Oct 16 2022, doi: 10.3390/s22207856.
[47] A. Kumar et al., "CSNet: A new DeepNet framework for ischemic stroke lesion segmentation," (in eng), Comput Methods Programs Biomed, vol. 193, p. 105524, Sep 2020, doi: 10.1016/j.cmpb.2020.105524.
[48] S. Nazari-Farsani, M. Nyman, T. Karjalainen, M. Bucci, J. Isojärvi, and L. Nummenmaa, "Automated segmentation of acute stroke lesions using a data-driven anomaly detection on diffusion weighted MRI," (in eng), J Neurosci Methods, vol. 333, p. 108575, Mar 1 2020, doi: 10.1016/j.jneumeth.2019.108575.
[49] N. Tomita, S. Jiang, M. E. Maeder, and S. Hassanpour, "Automatic post-stroke lesion segmentation on MR images using 3D residual convolutional neural network," (in eng), Neuroimage Clin, vol. 27, p. 102276, 2020, doi: 10.1016/j.nicl.2020.102276.
[50] D. Alis et al., "Inter-vendor performance of deep learning in segmenting acute ischemic lesions on diffusion-weighted imaging: a multicenter study," (in eng), Sci Rep, vol. 11, no. 1, p. 12434, Jun 14 2021, doi: 10.1038/s41598-021-91467-x.
[51] K. K. Wong et al., "Automatic Segmentation in Acute Ischemic Stroke: Prognostic Significance of Topological Stroke Volumes on Stroke Outcome," (in eng), Stroke, vol. 53, no. 9, pp. 2896-2905, Sep 2022, doi: 10.1161/strokeaha.121.037982.
[52] S. Nazari-Farsani et al., "Predicting final ischemic stroke lesions from initial diffusion-weighted images using a deep neural network," (in eng), Neuroimage Clin, vol. 37, p. 103278, 2023, doi: 10.1016/j.nicl.2022.103278.
[53] O. Maier et al., "ISLES 2015 - A public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI," (in eng), Med Image Anal, vol. 35, pp. 250-269, Jan 2017, doi: 10.1016/j.media.2016.07.009.
[54] S. Winzeck et al., "ISLES 2016 and 2017-Benchmarking Ischemic Stroke Lesion Outcome Prediction Based on Multispectral MRI," (in eng), Front Neurol, vol. 9, p. 679, 2018, doi: 10.3389/fneur.2018.00679.
指導教授 蔡章仁(Jang-Zern Tsai) 審核日期 2024-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明