參考文獻 |
[1] Y. Sato and N. Kidera, “Demonstration of 28GHz Band Pass Filter Toward 5G Using Ultra Low Loss and High Accuracy Through Quartz Vias,” in 2018 IEEE 68th Electronic Components and Technology Conference (ECTC), San Diego, CA: IEEE, pp. 2243-2247, May. 2018.
[2] W. L. Hsieh, W. C. Wang, E. S. Hsu, S. H. Kao, and M. H. Wang, “The World’s Smallest Quartz-Based OCXO for 5G Synchronization Applications,” in 2021 Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium (EFTF/IFCS), Gainesville, FL, USA: IEEE, pp. 1-4, Jul. 2021.
[3] A. E. Gvozdev et al., “Temperature distribution and structure in the heat-affected zone for steel sheets after laser cutting,” Inorg. Mater. Appl. Res., vol. 8, no. 1, pp. 148-152, Jan. 2017.
[4] M. Srivastava, R. Tripathi, S. Hloch, S. Chattopadhyaya, and A. R. Dixit, “Potential of Using Water Jet Peening as a Surface Treatment Process for Welded Joints,” Procedia Engineering, vol. 149, pp. 472-480, 2016.
[5] N. Haghbin, F. Ahmadzadeh, and M. Papini, “Masked micro-channel machining in aluminum alloy and borosilicate glass using abrasive water jet micro-machining,” Journal of Manufacturing Processes, vol. 35, pp. 307-316, Oct. 2018.
[6] L. Slatineanu, O. Dodun, G. Nagîţ, M. Coteaţă, L. Tăbăcaru, and I. Beşliu-Băncescu, “Evaluation of the surface profile obtained by abrasive jet machining,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 444, pp. 032005, Nov. 2018.
[7] C. Iliescu, B. Chen, and J. Miao, “On the wet etching of Pyrex glass,” Sensors and Actuators A: Physical, vol. 143, no. 1, pp. 154-161, May. 2008.
[8] J. Albero et al., “Fabrication of spherical microlenses by a combination of isotropic wet etching of silicon and molding techniques,” Opt. Express, vol. 17, no. 8, pp. 6283, Apr. 2009.
[9] S. J. Pearton and D. P. Norton, “Dry Etching of Electronic Oxides, Polymers, and Semiconductors,” Plasma Processes & Polymers, vol. 2, no. 1, pp. 16-37, Jan. 2005.
[10] H. S. Lian, Z. N. Guo, J. W. Liu, Z. G. Huang, and J. F. He, “Experimental study of electrophoretically assisted micro-ultrasonic machining,” Int J Adv Manuf Technol, vol. 85, no. 9-12, pp. 2115-2124, Aug. 2016.
[11] J. He, Z. Guo, Y. Qin, and X. Chen, “Reducing Edge Chipping of Micro-holes with Electrophoresis-assisted Micro-ultrasonic Machining,” Procedia CIRP, vol. 68, pp. 444-449, 2018.
[12] N. Rattan and R. S. Mulik, “Improvement in material removal rate (MRR) using magnetic field in TW-ECSM process,” Materials and Manufacturing Processes, vol. 32, no. 1, pp. 101-107, Jan. 2017.
[13] J. Bindu Madhavi and S. S. Hiremath, “Machining and Characterization of Channels and Textures on Quartz Glass Using μ-ECDM Process,” Silicon, vol. 11, no. 6, pp. 2919-2931, Dec. 2019.
[14] A. Torabi and M. R. Razfar, “The capability of ECDM in creating effective microchannel on the PDMS,” Precision Engineering, vol. 68, pp. 10-19, Mar. 2021.
[15] H. Kurafuji and K. Suda, “Electrical discharge drilling of glass,” Annals of the CIRP, vol. 415, no. 16, 1968.
[16] I. Basak and A. Ghosh, “Mechanism of material removal in electrochemical discharge machining: a theoretical model and experimental verification,” Journal of Materials Processing Technology, vol. 71, no. 1997, pp. 350-359, 1997.
[17] V. K. Jain, P. M. Dixit, and P. M. Pandey, “On the analysis of the electrochemical spark machining process,” International Journal of Machine Tools and Manufacture, vol. 39, no. 1, pp. 165-186, Jan. 1999.
[18] B. Bhattacharyya, B. N. Doloi, and S. K. Sorkhel, “Experimental investigations into electrochemical discharge machining (ECDM) of non-conductive ceramic materials,” Journal of Materials Processing Technology, vol. 95, no. 1-3, pp. 145-154, Oct. 1999.
[19] C. T. Yang, S. S. Ho, and B. H. Yan, “Micro Hole Machining of Borosilicate Glass through Electrochemical Discharge Machining (ECDM),” KEM, vol. 196, pp. 149-166, Jan. 2001.
[20] H. J. Lim, Y. M. Lim, S. H. Kim, and Y. K. Kwak, “Self-aligned microtool and electrochemical discharge machining (ECDM) for ceramic materials,” presented at the Optical Engineering for Sensing and Nanotechnology (ICOSN ’01), K. Iwata, Ed., Yokohama, Japan, pp. 348, May. 2001.
[21] H. Langen and V. Fascio, “Three-Dimensional Structuring of Pyrex Glass Devices - Trajectory Control,” 2002.
[22] R. Wüthrich et al., “Physical principles and miniaturization of spark assisted chemical engraving (SACE),” J. Micromech. Microeng., vol. 15, no. 10, pp. S268-S275, Oct. 2005.
[23] R. Wüthrich, U. Spaelter, and H. Bleuler, “The current signal in spark-assisted chemical engraving (SACE): what does it tell us?,” J. Micromech. Microeng., vol. 16, no. 4, pp. 779-785, Apr. 2006.
[24] D. J. Kim, Y. Ahn, S. H. Lee, and Y. K. Kim, “Voltage pulse frequency and duty ratio effects in an electrochemical discharge microdrilling process of Pyrex glass,” International Journal of Machine Tools and Manufacture, vol. 46, no. 10, pp. 1064-1067, Aug. 2006.
[25] Z. P. Zheng, J. K. Lin, F. Y. Huang, and B. H. Yan, “Improving the machining efficiency in electrochemical discharge machining (ECDM) microhole drilling by offset pulse voltage,” J. Micromech. Microeng., vol. 18, no. 2, pp. 025014, Feb. 2008.
[26] M. Mousa, A. Allagui, H. D. Ng, and R. Wüthrich, “The effect of thermal conductivity of the tool electrode in spark-assisted chemical engraving gravity-feed micro-drilling,” J. Micromech. Microeng., vol. 19, no. 1, pp. 015010, Jan. 2009.
[27] M. S. Han, B. K. Min, and S. J. Lee, “Geometric improvement of electrochemical discharge micro-drilling using an ultrasonic-vibrated electrolyte,” J. Micromech. Microeng., vol. 19, no. 6, pp. 065004, Jun. 2009.
[28] C. P. Cheng, K. L. Wu, C. C. Mai, Y. S. Hsu, and B. H. Yan, “Magnetic field-assisted electrochemical discharge machining,” J. Micromech. Microeng., vol. 20, no. 7, pp. 075019, Jul. 2010.
[29] C. K. Yang, C. P. Cheng, C. C. Mai, A. C. Wang, J. C. Hung, and B. H. Yan, “Effect of surface roughness of tool electrode materials in ECDM performance,” International Journal of Machine Tools and Manufacture, vol. 50, no. 12, pp. 1088-1096, Dec. 2010.
[30] C. K. Yang, K. L. Wu, J. C. Hung, S. M. Lee, J. C. Lin, and B. H. Yan, “Enhancement of ECDM efficiency and accuracy by spherical tool electrode,” International Journal of Machine Tools and Manufacture, vol. 51, no. 6, pp. 528-535, Jun. 2011.
[31] X. D. Cao, B. H. Kim, and C. N. Chu, “Hybrid micromachining of glass using ECDM and micro grinding,” Int. J. Precis. Eng. Manuf., vol. 14, no. 1, pp. 5-10, Jan. 2013.
[32] S. Elhami and M. R. Razfar, “Analytical and experimental study on the integration of ultrasonically vibrated tool into the micro electro-chemical discharge drilling,” Precision Engineering, vol. 47, pp. 424-433, Jan. 2017.
[33] T. Singh and A. Dvivedi, “On performance evaluation of textured tools during micro-channeling with ECDM,” Journal of Manufacturing Processes, vol. 32, pp. 699-713, Apr. 2018.
[34] T. Singh and A. Dvivedi, “On prolongation of discharge regime during ECDM by titrated flow of electrolyte,” Int J Adv Manuf Technol, vol. 107, no. 3-4, pp. 1819-1834, Mar. 2020.
[35] Y. P. Singh, V. K. Jain, and D. C. Agrawalb, “Machining piezoelectric (PZT) ceramics using an electrocLemical spark machining (ECSM) process,” Journal of Materials Processing Technology, vol. 58, pp. 24-31, 1996.
[36] W. Y. Peng and Y. S. Liao, “Study of electrochemical discharge machining technology for slicing non-conductive brittle materials,” Journal of Materials Processing Technology, vol. 149, no. 1-3, pp. 363-369, Jun. 2004.
[37] C. T. Yang, S. L. Song, B. H. Yan, and F. Y. Huang, “Improving machining performance of wire electrochemical discharge machining by adding SiC abrasive to electrolyte,” International Journal of Machine Tools and Manufacture, vol. 46, no. 15, pp. 2044-2050, Dec. 2006.
[38] J. W. Liu, T. M. Yue, and Z. N. Guo, “Wire Electrochemical Discharge Machining of Al2O3 Particle Reinforced Aluminum Alloy 6061,” Materials and Manufacturing Processes, vol. 24, no. 4, pp. 446-453, Feb. 2009.
[39] B. K. Bhuyan and V. Yadava, “Experimental modeling and multi-objective optimization of traveling wire electro- chemical spark machining (TW-ECSM) process,” Journal of Mechanical Science and Technology, vol. 27, pp. 10, 2013.
[40] A. Singh, C. S. Jawalkar, R. Vaishya, and A. Kumar, “A study on wire breakage and parametric efficiency of the wire electro chemical discharge machining process,” All India Manufacturing Technology, vol. 272, no. 1, pp. 1-6, 2014.
[41] A. Manna and A. Kundal, “An experimental investigation on fabricated TW-ECSM setup during micro slicing of nonconductive ceramic,” Int J Adv Manuf Technol, vol. 76, no. 1-4, pp. 29-37, Jan. 2015.
[42] K. Y. Kuo, K. L. Wu, C. K. Yang, and B. H. Yan, “Effect of adding SiC powder on surface quality of quartz glass microslit machined by WECDM,” Int J Adv Manuf Technol, vol. 78, no. 1-4, pp. 73-83, Apr. 2015.
[43] N. S. Mitra, B. Doloi, and B. Bhattacharyya, “Predictive analysis of criterial yield during travelling wire electrochemical discharge machining of Hylam based composites,” Adv produc engineer manag, vol. 10, no. 2, pp. 73-86, Jun. 2015.
[44] N. Rattan and R. S. Mulik, “Experimental Set Up to Improve Machining Performance of Silicon Dioxide (Quartz) in Magnetic Field Assisted TW-ECSM Process,” Silicon, vol. 10, no. 6, pp. 2783-2791, Nov. 2018.
[45] J. Wang, Y. B. Guo, C. Fu, and Z. Jia, “Surface integrity of alumina machined by electrochemical discharge assisted diamond wire sawing,” Journal of Manufacturing Processes, vol. 31, pp. 96-102, Jan. 2018.
[46] J. Wang, C. Fu, and Z. Jia, “Research on oil film-assisted wire electrochemical discharge machining,” Int J Adv Manuf Technol, vol. 96, no. 5-8, pp. 2455-2461, May 2018.
[47] A. D. Oza, A. Kumar, V. Badheka, and A. Arora, “Traveling Wire Electrochemical Discharge Machining (TW-ECDM) of Quartz Using Zinc Coated Brass Wire: Investigations on Material Removal Rate and Kerf Width Characteristics,” Silicon, vol. 11, no. 6, pp. 2873-2884, Dec. 2019.
[48] Y. Chen, X. Feng, and G. Xin, “Experimental Study on Ultrasonic Vibration-Assisted WECDM of Glass Microstructures with a High Aspect Ratio,” Micromachines, vol. 12, no. 2, pp. 125, Jan. 2021.
[49] Y. Tani, T. Saeki, Y. Samitsu, K. Kobayashi, and Y. Sato, “lnfeed Grinding of Silicon Wafers Applying Electrophoretic Deposition of Ultrafine Abrasives,” CIRP Annals, vol. 47, no. 1, pp. 245-248, 1998.
[50] Y. Yamamoto, H. Maeda, H. Shibutani, H. Suzuki, and O. Horiuchi, “A Study on Constant-Pressure Grinding with EPD Pellets,” KEM, vol. 257-258, pp. 135-140, Feb. 2004.
[51] S. Y. Ng and A. R. Boccaccini, “Lead zirconate titanate films on metallic substrates by electrophoretic deposition,” Materials Science and Engineering: B, vol. 116, no. 2, pp. 208-214, Jan. 2005.
[52] T. Oshita, Y. Sawaki, and M. Kishimoto, “Grinding performance of pellet prepared using nanosize ceria particles,” Journal of Alloys and Compounds, vol. 408-412, pp. 1118-1122, Feb. 2006.
[53] B. H. Yan, K. L. Wu, F. Y. Huang, and C. C. Hsu, “A study on the mirror surface machining by using a micro-energy EDM and the electrophoretic deposition polishing,” Int J Adv Manuf Technol, vol. 34, no. 1-2, pp. 96-103, Jul. 2007.
[54] N. Kobayashi, Y. Wu, M. Nomura, and T. Sato, “Precision treatment of silicon wafer edge utilizing ultrasonically assisted polishing technique,” Journal of Materials Processing Technology, vol. 201, no. 1-3, pp. 531-535, May. 2008.
[55] H. P. Tsui, J. C. Hung, K. L. Wu, J. C. You, and B. H. Yan, “Fabrication of a Microtool in Electrophoretic Deposition for Electrochemical Microdrilling and in Situ Micropolishing,” Materials and Manufacturing Processes, vol. 26, no. 5, pp. 740-745, May. 2011.
[56] A. Chavan, Y. Gaikhe, S. Huddedar, and R. Pawade, “3D Surface Characterization of Electrophoretic Deposition Assisted Polishing of SS316L,” J. of Applied Sciences, vol. 12, no. 10, pp. 929-937, May. 2012.
[57] T. Zhao, Q. Deng, J. Yuan, B. Lyu, and Y. Lin, “An experimental investigation of flat polishing with dielectrophoretic (DEP) effect of slurry,” Int J Adv Manuf Technol, Feb. 2016.
[58] H. M. Lee and T. M. Chen, “A Study of Polishing Feature of Ultrasonic-Assisted Vibration Method in Bamboo Charcoal,” Advances in Materials Science and Engineering, vol. 2017, pp. 1-7, 2017.
[59] N. V. Khatekar and R. S. Pawade, “Analysis and modeling of surface characteristics in electrophoretic deposition–assisted internal polishing of AISI 304 steel,” Int J Adv Manuf Technol, vol. 104, no. 5-8, pp. 3083-3094, Oct. 2019.
[60] H. Adibi, M. Khani, and H. Esmaeili, “Experimental evaluation of electrophoretic deposition-assisted polishing,” Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, vol. 235, no. 5, pp. 1726-1734, Oct. 2021.
[61] W. J. Clower, “Quartz-mems: Wet chemical etching assisted by electromagnetic energy sources for the development of quartz crystal to be used for microelectromechanical systems,” Louisiana Tech University, Doctoral Dissertations, 2014.
[62] 郭寬淵,應用微量流動電解液於電化學線放電加工石英玻璃之研究。中央大學,博士論文,2015。
[63] 崔海平,電化學結合電泳精密拋光不銹鋼之研究。中央大學,博士論文,2007。
[64] Partho Sarkar and Patrick S. Nicholson, “Electrophoretic Deposition (EPD) Mechanisms, Kinetics, and Application to Ceramic,” Journal of the American Ceramic Society, vol. 79, no. 8, pp. 1987-2002, 1996.
[65] M. González-Cuenca, P. M. Biesheuvel, and H. Verweij, “Modeling constant voltage electrophoretic deposition from a stirred suspension,” AIChE J., vol. 46, no. 3, pp. 626-631, Mar. 2000.
[66] Z. Y. Shen and H. P. Tsui, “An Investigation of Ultrasonic-Assisted Electrochemical Machining of Micro-Hole Array,” Processes, vol. 9, no. 9, pp. 1615, Sep. 2021. |