博碩士論文 107323047 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:18.221.99.121
姓名 楊濬豪(Chun-Hao Yang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 超音波輔助連續流式線電化學放電加工及電泳拋光石英晶圓之研究
(Study on Ultrasonic assisted WECDM with Continuous Electrolyte Flow and Electrophoretic Deposition Polishing of Quartz Wafer)
相關論文
★ 電泳沉積輔助拋光於SUJ2軸承鋼加工特性之研究★ 碳化矽電泳拋光矽晶圓表面粗糙度之研究
★ 超音波輔助添加導電粉末於放電加工鐵基金屬玻璃之研究★ 超音波輔助液中磨削鐵基金屬玻璃之研究
★ 脈衝複合偏壓電化學放電加工石英晶圓之研究★ 超音波振動輔助電化學放電加工石英晶圓陣列微孔之研究
★ 超音波輔助電化學留心加工矩槽圓柱構造之研究★ 電化學放電複合超音波振動輔助電泳沉積加工石英晶圓微形方孔之研究
★ 電極公轉繞圓電化學放電切割加工石英晶圓之研究★ 快速塑性成型(QPF)製程的精準度探討
★ 利用灰色關聯分析法探究線切割放電於SKD61加工之最佳化參數★ 超音波輔助微電化學鑽孔鎳基合金加工研究
★ 超音波輔助添加碳化矽粉末於放電加工模具鋼SKD61之研究★ Inconel 718 鎳基超合金異形電極微孔放電加工之研究
★ 實驗分析研究應用於減低數據中心伺服器硬碟之結構傳遞振動★ 超音波輔助電化學加工微孔陣列之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究主要目的在發展創新石英晶圓材料之連續流式線電化學放電加工(WECDM)以及線電泳沉積拋光法。本論文分為兩大部分,第一部分為超音波輔助連續流式線電化學放電加工研究,於加工石英晶圓時,線電極與石英晶圓試片加工間隙間可形成微小加工區域且密實之絕緣氣膜結構,以創造微區域線電化學放電環境,並採用脈衝電源與超音波輔助加工,可大幅降低不穩定放電現象及減少大型放電熱能產生,避免造成加工線電極容易斷線,導致線電極大量損耗等問題,並增進加工精度及加工速度,克服石英晶圓材料難以加工之困難點。本研究係採用KOH電解液進行參數實驗,探討加工參數如加工電壓、脈衝週期、衝擊係數、進給速度及超音波振幅對加工品質特性的影響,加工品質特性包括平均槽寬及表面形貌等,由實驗結果得知,在脈衝電源以及超音波振動輔助下,於放電電壓44V、放電週期時間100µs、衝擊係數40%、進給速度5µm/s以及超音波功率6段的加工參數組合時,可得到較小線電化學放電加工後槽寬0.208mm。
第二部分為超音波輔助電泳沉積拋光石英晶圓側壁之研究,係於超音波輔助連續流式線電化學放電加工後,利用在微小區域電泳沉積披覆線電極來進行加工後之槽道側壁拋光。實驗時係使用原線電化學放電加工機之機構,在WECDM切槽後更換治具進行槽道側壁之線電泳沉積拋光,並使用鍍鋅黃銅線當作工具電極,圓筒型黃銅做為輔助電極,採用具碳化矽(SiC)磨粒之NaOH電解液進行電泳披覆,再利用電泳披覆有SiC磨粒之線電極,透過捲線機構轉動對石英切槽後之側壁進行拋光,並探討加工參數如加工電壓、磨料濃度、進給速度、拋光次數及超音波功率對石英晶圓切槽側壁拋光品質特性的影響,加工品質特性包括表面粗糙度及表面形貌等,由實驗結果得知,於工作電壓12V、磨料濃度13wt.%、進給速度10μm/s、拋光次數4次及超音波功率2段時,可得到本研究之最低表面粗糙度值0.112μmRa,表面粗糙度改善率為87.2%。
摘要(英) The main purpose of this study is to develop innovative continuous flow wire electrochemical discharge machining (WECDM) and wire electrophoretic deposition polishing methods for quartz wafer materials. This thesis is divided into two major parts. The first part focuses on the research of ultrasonic vibration assisted wire electrochemical discharge machining with continuous electrolyte flow. When processing quartz wafers, a micro area with a dense insulating gas film structure can be formed between the wire electrode and the quartz workpiece to create a micro area for WECDM. Unstable discharge phenomena and excessive heat generation can be significantly reduced by using pulse power sources and ultrasonic-assisted processing, which prevents wire electrode breakage and extensive electrode wear. Furthermore, it can also improve processing accuracy and cutting speed to overcome the challenges of processing quartz wafer materials. This study employs a KOH electrolyte for parameter experiments to investigate the impact of processing parameters, such as working voltage, duration time, duty factor, feed rate and ultrasonic power on processing quality characteristics. These quality characteristics include average slot width and surface morphology. Experimental results indicate that under the influence of pulse power and ultrasonic vibration, with the following combination of processing parameters: working voltage of 44V, duration time of 100µs, duty factor of 40%, feed rate of 5µm/s, and ultrasonic power of 2 level, a smaller slot width of 0.208mm can be achieved after WECDM.
The second part involves the study of ultrasonic-assisted electrophoretic deposition for polishing the sidewalls of quartz wafers. After ultrasonic-assisted WECDM with continuous electrolyte flow, the sidewall polishing of the slots is performed by a coated electrode using electrophoretic deposition in a confined area. In this experiments, the mechanism of the original WECDM machine was used. After slicing the slot with WECDM, the fixture was replaced to perform electrophoretic deposition and polishing on the slot sidewalls. Zinc-coated brass wire was used as the tool electrode, and a cylindrical brass structure was used as the auxiliary electrode. Electrophoretic deposition was performed using a NaOH electrolyte containing silicon carbide (SiC) particles. The quartz sidewalls after cutting were polished by rotating the winding mechanism to feed the wire electrode. The study investigates the effects of processing parameters, such as working voltage, SiC particle concentration, feed rate, polishing times and ultrasonic power level on the quality characteristics of polished sidewalls in quartz wafers. The quality characteristics include surface roughness and surface morphology. Experimental results show that the lowest surface roughness value of 0.112μmRa was achieved in this study when process with a working voltage of 12V, a SiC particle concentration of 13wt.%, a feed rate of 10μm/s, 4 polishing times, and ultrasonic power level of 2-stage. The surface roughness improvement rate was 87.2%.
關鍵字(中) ★ 線電化學放電加工
★ 石英晶圓
★ 超音波振動輔助
★ 脈衝電源輔助
★ 電泳沉積拋光
關鍵字(英) ★ wire electrochemical discharge machining
★ quartz wafer
★ ultrasonic vibration assistance
★ pulse power assistance
★ electrophoretic deposition polishing
論文目次 摘要 i
ABSTRACT iii
誌 謝 v
目錄 vi
圖目錄 xi
表目錄 xvii
第一章 緒論 1
1-1 研究背景 1
1-2 研究動機與目的 3
1-3 文獻回顧 7
1-3-1 電化學放電加工 7
1-3-2 線電化學放電加工 10
1-3-3 電泳沉積及超音波輔助拋光 12
1-4 本論文之構成 15
第二章 實驗原理與研究方法 16
2-1 電化學放電加工基本原理 16
2-1-1 電化學放電現象 17
2-1-2 化學蝕刻 17
2-1-3 電化學放電加工I-V曲線圖 19
2-2 電泳沉積基本原理 22
2-2-1 電雙層理論 22
2-2-2 電動力學現象 23
2-2-3 粉體粒子表面電荷來源 25
2-2-4 電泳懸浮液內粉體粒子間分散行為之機制 27
2-2-5 電泳沉積法之原理 29
2-2-6 電泳沉積法之速率及方程式 29
2-2-7 電泳沉積層與懸浮液邊界方程式 31
2-2-8 懸浮顆粒質量平衡方程式 32
2-3 超音波基本原理 33
2-3-1 空蝕作用 33
2-3-2 泵吸作用 33
2-3-3 超音波振動之運動分析 34
2-4 研究方法 37
2-5 電解液製備方法 43
2-5-1 電化學放電之電解液調製 43
2-5-2 電泳沉積之電泳液調製 43
2-6 量測方法 45
2-6-1 加工槽寬度 45
2-6-2 表面粗糙度 45
第三章 超音波輔助連續流式線電化學放電加工研究 47
摘要 47
3-1 實驗設備 48
3-1-1 自行改裝之線電化學放電加工機 48
3-1-2 車床 48
3-1-3 線切割放電加工機 49
3-1-4 去離子水系統 49
3-1-5加熱攪拌器 50
3-1-6 直流電源供應器 51
3-1-7 直接數位合成函數波信號產生器 51
3-1-8 金氧半場效電晶體 52
3-1-9 場發射掃描式電子顯微鏡 52
3-1-10 超音波主軸及超音波發振器 53
3-1-11 光學顯微影像量測系統 54
3-2 實驗材料 56
3-2-1 單晶石英晶圓 56
3-2-2 鍍鋅黃銅線 57
3-2-3 SUS301不銹鋼輔助電極 59
3-2-4 電解液 59
3-3 實驗設置 61
3-4 實驗流程與方法 66
3-5 結果與討論 69
3-5-1 有無脈衝偏壓電源之加工比較 69
3-5-2 不同工作電壓對線電化學放電加工之影響探討 71
3-5-2-1 於直流電源下不同工作電壓對槽寬之影響 71
3-5-2-2 於偏壓脈衝電源下不同工作電壓對槽寬之影響 74
3-5-2-3 於偏壓脈衝電源及超音波振動輔助下,不同工作電壓對槽寬之影響 76
3-5-3 不同脈衝週期對線電化學放電加工之影響探討 83
3-5-3-1 於無超音波振動輔助下不同脈衝週期對槽寬之影響 83
3-5-3-2 於超音波振動輔助下不同脈衝週期對槽寬之影響 86
3-5-4 不同衝擊係數對線電化學放電加工之影響探討 92
3-5-4-1 於無超音波振動輔助下不同衝擊係數對槽寬之影響 92
3-5-4-2 於超音波振動輔助下不同衝擊係數對槽寬之影響 95
3-5-5 不同進給速度對線電化學放電加工之影響探討 99
3-5-5-1 於無超音波振動輔助下不同進給速度對槽寬之影響 99
3-5-5-2 於超音波振動輔助下不同進給速度對槽寬之影響 102
3-5-6 不同超音波功率對線電化學放電加工之影響探討 106
3-6 結論 111
第四章 超音波輔助線電泳沉積拋光石英晶圓側壁之研究 113
摘要 113
4-1 實驗設備 114
4-1-1 自行改裝之線電泳沉積拋光機 114
4-1-2 蠕動泵浦 114
4-1-3 pH濃度計 115
4-1-4 雷射共軛焦暨白光干涉顯微鏡 116
4-2 實驗材料 117
4-2-1 碳化矽粉末 117
4-2-2 氫氧化鈉 118
4-3 實驗設置 120
4-4 實驗流程與方法 123
4-5 結果與討論 125
4-5-1 不同工作電壓下對線電泳沉積拋光之影響探討 125
4-5-1-1 不同工作電壓下碳化矽粉末電泳沉積於線電極表面上之厚度 125
4-5-1-2 不同工作電壓下對表面粗糙度影響探討 128
4-5-2 不同磨料濃度下對線電泳沉積拋光之影響探討 134
4-5-2-1 不同磨料濃度下碳化矽粉末電泳沉積於線電極表面上之厚度 134
4-5-2-2 不同磨料濃度下對表面粗糙度影響探討 136
4-5-3 不同進給速度下對線電泳沉積拋光之影響探討 140
4-5-4 不同拋光次數下對線電泳沉積拋光之影響探討 144
4-5-5 不同超音波功率下對線電泳沉積拋光之影響探討 149
4-6 結論 154
第五章 總結論 156
未來工作 158
參考文獻 159
作者簡介 169
一、 基本資料 169
二、 發表著作 169
三、 研討會論文 171
參考文獻 [1] Y. Sato and N. Kidera, “Demonstration of 28GHz Band Pass Filter Toward 5G Using Ultra Low Loss and High Accuracy Through Quartz Vias,” in 2018 IEEE 68th Electronic Components and Technology Conference (ECTC), San Diego, CA: IEEE, pp. 2243-2247, May. 2018.
[2] W. L. Hsieh, W. C. Wang, E. S. Hsu, S. H. Kao, and M. H. Wang, “The World’s Smallest Quartz-Based OCXO for 5G Synchronization Applications,” in 2021 Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium (EFTF/IFCS), Gainesville, FL, USA: IEEE, pp. 1-4, Jul. 2021.
[3] A. E. Gvozdev et al., “Temperature distribution and structure in the heat-affected zone for steel sheets after laser cutting,” Inorg. Mater. Appl. Res., vol. 8, no. 1, pp. 148-152, Jan. 2017.
[4] M. Srivastava, R. Tripathi, S. Hloch, S. Chattopadhyaya, and A. R. Dixit, “Potential of Using Water Jet Peening as a Surface Treatment Process for Welded Joints,” Procedia Engineering, vol. 149, pp. 472-480, 2016.
[5] N. Haghbin, F. Ahmadzadeh, and M. Papini, “Masked micro-channel machining in aluminum alloy and borosilicate glass using abrasive water jet micro-machining,” Journal of Manufacturing Processes, vol. 35, pp. 307-316, Oct. 2018.
[6] L. Slatineanu, O. Dodun, G. Nagîţ, M. Coteaţă, L. Tăbăcaru, and I. Beşliu-Băncescu, “Evaluation of the surface profile obtained by abrasive jet machining,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 444, pp. 032005, Nov. 2018.
[7] C. Iliescu, B. Chen, and J. Miao, “On the wet etching of Pyrex glass,” Sensors and Actuators A: Physical, vol. 143, no. 1, pp. 154-161, May. 2008.
[8] J. Albero et al., “Fabrication of spherical microlenses by a combination of isotropic wet etching of silicon and molding techniques,” Opt. Express, vol. 17, no. 8, pp. 6283, Apr. 2009.
[9] S. J. Pearton and D. P. Norton, “Dry Etching of Electronic Oxides, Polymers, and Semiconductors,” Plasma Processes & Polymers, vol. 2, no. 1, pp. 16-37, Jan. 2005.
[10] H. S. Lian, Z. N. Guo, J. W. Liu, Z. G. Huang, and J. F. He, “Experimental study of electrophoretically assisted micro-ultrasonic machining,” Int J Adv Manuf Technol, vol. 85, no. 9-12, pp. 2115-2124, Aug. 2016.
[11] J. He, Z. Guo, Y. Qin, and X. Chen, “Reducing Edge Chipping of Micro-holes with Electrophoresis-assisted Micro-ultrasonic Machining,” Procedia CIRP, vol. 68, pp. 444-449, 2018.
[12] N. Rattan and R. S. Mulik, “Improvement in material removal rate (MRR) using magnetic field in TW-ECSM process,” Materials and Manufacturing Processes, vol. 32, no. 1, pp. 101-107, Jan. 2017.
[13] J. Bindu Madhavi and S. S. Hiremath, “Machining and Characterization of Channels and Textures on Quartz Glass Using μ-ECDM Process,” Silicon, vol. 11, no. 6, pp. 2919-2931, Dec. 2019.
[14] A. Torabi and M. R. Razfar, “The capability of ECDM in creating effective microchannel on the PDMS,” Precision Engineering, vol. 68, pp. 10-19, Mar. 2021.
[15] H. Kurafuji and K. Suda, “Electrical discharge drilling of glass,” Annals of the CIRP, vol. 415, no. 16, 1968.
[16] I. Basak and A. Ghosh, “Mechanism of material removal in electrochemical discharge machining: a theoretical model and experimental verification,” Journal of Materials Processing Technology, vol. 71, no. 1997, pp. 350-359, 1997.
[17] V. K. Jain, P. M. Dixit, and P. M. Pandey, “On the analysis of the electrochemical spark machining process,” International Journal of Machine Tools and Manufacture, vol. 39, no. 1, pp. 165-186, Jan. 1999.
[18] B. Bhattacharyya, B. N. Doloi, and S. K. Sorkhel, “Experimental investigations into electrochemical discharge machining (ECDM) of non-conductive ceramic materials,” Journal of Materials Processing Technology, vol. 95, no. 1-3, pp. 145-154, Oct. 1999.
[19] C. T. Yang, S. S. Ho, and B. H. Yan, “Micro Hole Machining of Borosilicate Glass through Electrochemical Discharge Machining (ECDM),” KEM, vol. 196, pp. 149-166, Jan. 2001.
[20] H. J. Lim, Y. M. Lim, S. H. Kim, and Y. K. Kwak, “Self-aligned microtool and electrochemical discharge machining (ECDM) for ceramic materials,” presented at the Optical Engineering for Sensing and Nanotechnology (ICOSN ’01), K. Iwata, Ed., Yokohama, Japan, pp. 348, May. 2001.
[21] H. Langen and V. Fascio, “Three-Dimensional Structuring of Pyrex Glass Devices - Trajectory Control,” 2002.
[22] R. Wüthrich et al., “Physical principles and miniaturization of spark assisted chemical engraving (SACE),” J. Micromech. Microeng., vol. 15, no. 10, pp. S268-S275, Oct. 2005.
[23] R. Wüthrich, U. Spaelter, and H. Bleuler, “The current signal in spark-assisted chemical engraving (SACE): what does it tell us?,” J. Micromech. Microeng., vol. 16, no. 4, pp. 779-785, Apr. 2006.
[24] D. J. Kim, Y. Ahn, S. H. Lee, and Y. K. Kim, “Voltage pulse frequency and duty ratio effects in an electrochemical discharge microdrilling process of Pyrex glass,” International Journal of Machine Tools and Manufacture, vol. 46, no. 10, pp. 1064-1067, Aug. 2006.
[25] Z. P. Zheng, J. K. Lin, F. Y. Huang, and B. H. Yan, “Improving the machining efficiency in electrochemical discharge machining (ECDM) microhole drilling by offset pulse voltage,” J. Micromech. Microeng., vol. 18, no. 2, pp. 025014, Feb. 2008.
[26] M. Mousa, A. Allagui, H. D. Ng, and R. Wüthrich, “The effect of thermal conductivity of the tool electrode in spark-assisted chemical engraving gravity-feed micro-drilling,” J. Micromech. Microeng., vol. 19, no. 1, pp. 015010, Jan. 2009.
[27] M. S. Han, B. K. Min, and S. J. Lee, “Geometric improvement of electrochemical discharge micro-drilling using an ultrasonic-vibrated electrolyte,” J. Micromech. Microeng., vol. 19, no. 6, pp. 065004, Jun. 2009.
[28] C. P. Cheng, K. L. Wu, C. C. Mai, Y. S. Hsu, and B. H. Yan, “Magnetic field-assisted electrochemical discharge machining,” J. Micromech. Microeng., vol. 20, no. 7, pp. 075019, Jul. 2010.
[29] C. K. Yang, C. P. Cheng, C. C. Mai, A. C. Wang, J. C. Hung, and B. H. Yan, “Effect of surface roughness of tool electrode materials in ECDM performance,” International Journal of Machine Tools and Manufacture, vol. 50, no. 12, pp. 1088-1096, Dec. 2010.
[30] C. K. Yang, K. L. Wu, J. C. Hung, S. M. Lee, J. C. Lin, and B. H. Yan, “Enhancement of ECDM efficiency and accuracy by spherical tool electrode,” International Journal of Machine Tools and Manufacture, vol. 51, no. 6, pp. 528-535, Jun. 2011.
[31] X. D. Cao, B. H. Kim, and C. N. Chu, “Hybrid micromachining of glass using ECDM and micro grinding,” Int. J. Precis. Eng. Manuf., vol. 14, no. 1, pp. 5-10, Jan. 2013.
[32] S. Elhami and M. R. Razfar, “Analytical and experimental study on the integration of ultrasonically vibrated tool into the micro electro-chemical discharge drilling,” Precision Engineering, vol. 47, pp. 424-433, Jan. 2017.
[33] T. Singh and A. Dvivedi, “On performance evaluation of textured tools during micro-channeling with ECDM,” Journal of Manufacturing Processes, vol. 32, pp. 699-713, Apr. 2018.
[34] T. Singh and A. Dvivedi, “On prolongation of discharge regime during ECDM by titrated flow of electrolyte,” Int J Adv Manuf Technol, vol. 107, no. 3-4, pp. 1819-1834, Mar. 2020.
[35] Y. P. Singh, V. K. Jain, and D. C. Agrawalb, “Machining piezoelectric (PZT) ceramics using an electrocLemical spark machining (ECSM) process,” Journal of Materials Processing Technology, vol. 58, pp. 24-31, 1996.
[36] W. Y. Peng and Y. S. Liao, “Study of electrochemical discharge machining technology for slicing non-conductive brittle materials,” Journal of Materials Processing Technology, vol. 149, no. 1-3, pp. 363-369, Jun. 2004.
[37] C. T. Yang, S. L. Song, B. H. Yan, and F. Y. Huang, “Improving machining performance of wire electrochemical discharge machining by adding SiC abrasive to electrolyte,” International Journal of Machine Tools and Manufacture, vol. 46, no. 15, pp. 2044-2050, Dec. 2006.
[38] J. W. Liu, T. M. Yue, and Z. N. Guo, “Wire Electrochemical Discharge Machining of Al2O3 Particle Reinforced Aluminum Alloy 6061,” Materials and Manufacturing Processes, vol. 24, no. 4, pp. 446-453, Feb. 2009.
[39] B. K. Bhuyan and V. Yadava, “Experimental modeling and multi-objective optimization of traveling wire electro- chemical spark machining (TW-ECSM) process,” Journal of Mechanical Science and Technology, vol. 27, pp. 10, 2013.
[40] A. Singh, C. S. Jawalkar, R. Vaishya, and A. Kumar, “A study on wire breakage and parametric efficiency of the wire electro chemical discharge machining process,” All India Manufacturing Technology, vol. 272, no. 1, pp. 1-6, 2014.
[41] A. Manna and A. Kundal, “An experimental investigation on fabricated TW-ECSM setup during micro slicing of nonconductive ceramic,” Int J Adv Manuf Technol, vol. 76, no. 1-4, pp. 29-37, Jan. 2015.
[42] K. Y. Kuo, K. L. Wu, C. K. Yang, and B. H. Yan, “Effect of adding SiC powder on surface quality of quartz glass microslit machined by WECDM,” Int J Adv Manuf Technol, vol. 78, no. 1-4, pp. 73-83, Apr. 2015.
[43] N. S. Mitra, B. Doloi, and B. Bhattacharyya, “Predictive analysis of criterial yield during travelling wire electrochemical discharge machining of Hylam based composites,” Adv produc engineer manag, vol. 10, no. 2, pp. 73-86, Jun. 2015.
[44] N. Rattan and R. S. Mulik, “Experimental Set Up to Improve Machining Performance of Silicon Dioxide (Quartz) in Magnetic Field Assisted TW-ECSM Process,” Silicon, vol. 10, no. 6, pp. 2783-2791, Nov. 2018.
[45] J. Wang, Y. B. Guo, C. Fu, and Z. Jia, “Surface integrity of alumina machined by electrochemical discharge assisted diamond wire sawing,” Journal of Manufacturing Processes, vol. 31, pp. 96-102, Jan. 2018.
[46] J. Wang, C. Fu, and Z. Jia, “Research on oil film-assisted wire electrochemical discharge machining,” Int J Adv Manuf Technol, vol. 96, no. 5-8, pp. 2455-2461, May 2018.
[47] A. D. Oza, A. Kumar, V. Badheka, and A. Arora, “Traveling Wire Electrochemical Discharge Machining (TW-ECDM) of Quartz Using Zinc Coated Brass Wire: Investigations on Material Removal Rate and Kerf Width Characteristics,” Silicon, vol. 11, no. 6, pp. 2873-2884, Dec. 2019.
[48] Y. Chen, X. Feng, and G. Xin, “Experimental Study on Ultrasonic Vibration-Assisted WECDM of Glass Microstructures with a High Aspect Ratio,” Micromachines, vol. 12, no. 2, pp. 125, Jan. 2021.
[49] Y. Tani, T. Saeki, Y. Samitsu, K. Kobayashi, and Y. Sato, “lnfeed Grinding of Silicon Wafers Applying Electrophoretic Deposition of Ultrafine Abrasives,” CIRP Annals, vol. 47, no. 1, pp. 245-248, 1998.
[50] Y. Yamamoto, H. Maeda, H. Shibutani, H. Suzuki, and O. Horiuchi, “A Study on Constant-Pressure Grinding with EPD Pellets,” KEM, vol. 257-258, pp. 135-140, Feb. 2004.
[51] S. Y. Ng and A. R. Boccaccini, “Lead zirconate titanate films on metallic substrates by electrophoretic deposition,” Materials Science and Engineering: B, vol. 116, no. 2, pp. 208-214, Jan. 2005.
[52] T. Oshita, Y. Sawaki, and M. Kishimoto, “Grinding performance of pellet prepared using nanosize ceria particles,” Journal of Alloys and Compounds, vol. 408-412, pp. 1118-1122, Feb. 2006.
[53] B. H. Yan, K. L. Wu, F. Y. Huang, and C. C. Hsu, “A study on the mirror surface machining by using a micro-energy EDM and the electrophoretic deposition polishing,” Int J Adv Manuf Technol, vol. 34, no. 1-2, pp. 96-103, Jul. 2007.
[54] N. Kobayashi, Y. Wu, M. Nomura, and T. Sato, “Precision treatment of silicon wafer edge utilizing ultrasonically assisted polishing technique,” Journal of Materials Processing Technology, vol. 201, no. 1-3, pp. 531-535, May. 2008.
[55] H. P. Tsui, J. C. Hung, K. L. Wu, J. C. You, and B. H. Yan, “Fabrication of a Microtool in Electrophoretic Deposition for Electrochemical Microdrilling and in Situ Micropolishing,” Materials and Manufacturing Processes, vol. 26, no. 5, pp. 740-745, May. 2011.
[56] A. Chavan, Y. Gaikhe, S. Huddedar, and R. Pawade, “3D Surface Characterization of Electrophoretic Deposition Assisted Polishing of SS316L,” J. of Applied Sciences, vol. 12, no. 10, pp. 929-937, May. 2012.
[57] T. Zhao, Q. Deng, J. Yuan, B. Lyu, and Y. Lin, “An experimental investigation of flat polishing with dielectrophoretic (DEP) effect of slurry,” Int J Adv Manuf Technol, Feb. 2016.
[58] H. M. Lee and T. M. Chen, “A Study of Polishing Feature of Ultrasonic-Assisted Vibration Method in Bamboo Charcoal,” Advances in Materials Science and Engineering, vol. 2017, pp. 1-7, 2017.
[59] N. V. Khatekar and R. S. Pawade, “Analysis and modeling of surface characteristics in electrophoretic deposition–assisted internal polishing of AISI 304 steel,” Int J Adv Manuf Technol, vol. 104, no. 5-8, pp. 3083-3094, Oct. 2019.
[60] H. Adibi, M. Khani, and H. Esmaeili, “Experimental evaluation of electrophoretic deposition-assisted polishing,” Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, vol. 235, no. 5, pp. 1726-1734, Oct. 2021.
[61] W. J. Clower, “Quartz-mems: Wet chemical etching assisted by electromagnetic energy sources for the development of quartz crystal to be used for microelectromechanical systems,” Louisiana Tech University, Doctoral Dissertations, 2014.
[62] 郭寬淵,應用微量流動電解液於電化學線放電加工石英玻璃之研究。中央大學,博士論文,2015。
[63] 崔海平,電化學結合電泳精密拋光不銹鋼之研究。中央大學,博士論文,2007。
[64] Partho Sarkar and Patrick S. Nicholson, “Electrophoretic Deposition (EPD) Mechanisms, Kinetics, and Application to Ceramic,” Journal of the American Ceramic Society, vol. 79, no. 8, pp. 1987-2002, 1996.
[65] M. González-Cuenca, P. M. Biesheuvel, and H. Verweij, “Modeling constant voltage electrophoretic deposition from a stirred suspension,” AIChE J., vol. 46, no. 3, pp. 626-631, Mar. 2000.
[66] Z. Y. Shen and H. P. Tsui, “An Investigation of Ultrasonic-Assisted Electrochemical Machining of Micro-Hole Array,” Processes, vol. 9, no. 9, pp. 1615, Sep. 2021.
指導教授 崔海平(Hai-Ping Tsui) 審核日期 2024-3-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明