參考文獻 |
[1] H.-Y. Li and J.-S. Fu, Broadband complementary metal-oxide
semiconductor phase shifter with 6-bit resolution based on all-pass
networks, IET Microw., Antennas Propag, pp. 4451, 2015.
[2] S.-S. F, Q-band CMOS passive phase shifters using transmissionline-based quasi-all-pass networks, Master dissertation, National
Central University, 2023.
[3] D. Adler and R. Popovich, Broadband switched-bit phase shifter
using all-pass networks, in IEEE MTT-S Int. Microw. Symp. Dig.,
1991, pp. 265268 vol.1.
[4] X. Tang and K. Mouthaan, Design of large bandwidth phase
shifters using common mode all-pass networks, IEEE Microw.
Wireless Compon. Lett., vol. 22, no. 2, pp. 5557, Feb. 2012.
[5] W.-J. Tseng, C.-S. Lin, Z.-M. Tsai, and H. Wang, A miniature
switching phase shifter in 0.18-µm CMOS, in Asia Pacic Microw.
Conf., 2009, pp. 21322135.
[6] J.-H. Tsai, T.-T. He, and W.-H. Lin, A K/Ka-band low RMS
phase error 5-bit CMOS phase shifter, in Proc. IEEE Int. Symp.
Radio-Freq. Integration Technol., 2021, pp. 13.
[7] J.-H. Tsai, F.-M. Lin, and H. Xiao, Low RMS phase error 28 GHz
5-bit switch type phase shifter for 5G applications, Electronics Letters, vol. 54, no. 20, pp. 11841185, Oct. 2018.
107
[8] S. Londhe and E. Socher, 2838-GHz 6-bit compact passive phase
shifter in 130-nm CMOS, IEEE Microw. Wireless Compon. Lett.,
vol. 31, no. 12, pp. 13111314, Dec. 2021.
[9] G.-S. Shin, J.-S. Kim, H.-M. Oh, S. Choi, C. W. Byeon, J. H.
Son, J. H. Lee, and C.-Y. Kim, Low insertion loss, compact 4-bit
phase shifter in 65 nm CMOS for 5G applications, IEEE Microw.
Wireless Compon. Lett., vol. 26, no. 1, pp. 3739, Jan. 2016.
[10] Y.-H. Lin and Z.-M. Tsai, A wideband compact 5-bit phase shifter
with low loss and RMS errors for 5G applications, IEEE Microw.
Wireless Compon. Lett., vol. 31, no. 10, pp. 11341137, Oct. 2021.
[11] P. Gu and D. Zhao, A Ka-band CMOS switched-type phase shifter
with low gain error, in Proc. IEEE Int. Conf. Integr. Circuit Technol. Appl. (ICTA), Nov. 2021, pp. 175176.
[12] J.-H. Tsai, Y.-L. Tung, and Y.-H. Lin, A 2742-GHz low phase
error 5-bit passive phase shifter in 65-nm CMOS technology, IEEE
Microw. Wireless Compon. Lett., vol. 30, no. 9, pp. 900903, Sep.
2020.
[13] Y.-H. Lin and Z.-M. Tsai, Frequency-recongurable phase shifter
based on a 65-nm CMOS process for 5G applications, IEEE Trans.
Circuits Syst. II, vol. 68, no. 8, pp. 28252829, Aug. 2021.
[14] M. Jung and B.-W. Min, A compact Ka-band 4-bit phase shifter
with low group delay deviation, IEEE Microw. Wireless Compon.
Lett., vol. 30, no. 4, pp. 414416, Apr. 2020.
108
[15] B.-W. Min and G. M. Rebeiz, Single-ended and dierential Kaband BiCMOS phased array front-ends, IEEE J. Solid-State Circuits, vol. 43, no. 10, pp. 22392250, Oct. 2008.
[16] Q. Zheng, Z. Wang, K. Wang, G. Wang, H. Xu, L. Wang, W. Chen,
M. Zhou, Z. Huang, and F. Yu, Design and performance of a wideband Ka-band 5-b MMIC phase shifter, IEEE Microw. Wireless
Compon. Lett., vol. 27, no. 5, pp. 482484, May 2017.
[17] J. G. Yang and K. Yang, Ka-band 5-bit MMIC phase shifter using
InGaAs PIN switching diodes, IEEE Microw. Wireless Compon.
Lett., vol. 21, no. 3, pp. 151153, Mar. 2011.
[18] E. V. P. Anjos, D. M. M.-P. Schreurs, G. A. E. Vandenbosch, and
M. Geurts, A 1450 GHz phase shifter with all-pass networks
for 5G mobile applications, IEEE Trans. Microw. Theory Techn.,
vol. 68, no. 2, pp. 762774, Feb. 2020.
[19] D. Kramer, Ka-band P-I-N diode based digital phase shifter, in
Proc. Euro. Microw. Integr. Circuits Conf., 2018, pp. 317320.
[20] S. Kwon, M. Jung, and B.-W. Min, Wideband switchable-capacitor
loaded dierential phase shifter with lattice structures, in 2022
IEEE MTT-S Int. Microw. Symp., 2022, pp. 738741.
[21] C. Jin, E. Okada, M. Faucher, D. Ducatteau, M. Zaknoune, and
D. Pavlidis, A GaN schottky diode-based analog phase shifter
MMIC, in 2014 9th Eur. Microw. Integr. Circuit Conf., Oct 2014,
pp. 9699.
109
[22] J.-S. Fu, An analog phase shifter based on magnetically coupled
all-pass network with positive coupling coecient, in 2023 AsiaPacic Microw. Conf. (APMC), Dec 2023, pp. 632634.
[23] M. Robinson, P. Danielson, and Z. Popovi¢, Continuous broadband GaAs and GaN MMIC phase shifters, IEEE Microw. Wireless Compon. Lett., vol. 32, no. 1, pp. 5659, Jan 2022.
[24] A. Nagra and R. York, Distributed analog phase shifters with low
insertion loss, IEEE Trans. Microw. Theory Techn., vol. 47, no. 9,
pp. 17051711, Sep. 1999.
[25] C. Fritzsch, F. Giacomozzi, O. H. Karabey, F. Goelden,
A. Moessinger, S. Bildik, S. Colpo, and R. Jakoby, Continuously
tunable shifter based on liquid crystals and MEMS technology, in
2011 6th Eur. Microw. Integr. Circuit Conf., Oct 2011, pp. 522525.
[26] A. S. Abdellatif, A. A. Aziz, N. Ranjkesh, A. Taeb, S. Gigoyan,
R. R. Mansour, and S. Safavi-Naeini, Wide-band phase shifter
for mmwave phased array applications, in Global Symposium on
Millimeter-Waves (GSMM), May 2015, pp. 13.
[27] M. L. Carneiro, M. Le Roy, A. Pérennec, R. Lababidi, P. Ferrari, and
V. Puyal, Compact analog all-pass phase-shifter in 65-nm CMOS
for 24/28 GHz on-chip- and in-package phased-array antenna, in
2019 IEEE 23rd Workshop on Signal and Power Integr. (SPI), June
2019, pp. 14.
110
[28] J.-C. Wu, C.-C. Chang, S.-F. Chang, and T.-Y. Chin, A 24-GHz
full-360° CMOS reection-type phase shifter MMIC with low lossvariation, in 2008 IEEE Radio Freq. Integr. Circuits Symposium,
June 2008, pp. 365368.
[29] K. Tuyen Trinh, Y. Yang, and N. Chandra Karmakar, Design of
Ka-band reection-type phase shifter using oset broadside-coupled
line coupler in 0.13 µm SiGe BiCMOS technology, in 2020 IEEE
Eighth International Confer. on Communications and Electronics
(ICCE), Jan 2021, pp. 203208.
[30] J.-T. Lim, S. Choi, E.-G. Lee, H.-W. Choi, J.-H. Song, S.-H. Kim,
and C.-Y. Kim, 2540 GHz 180° reective-type phase shifter using 65-nm CMOS technology, in 2019 49th Eur. Microw. Conf.
(EuMC), Oct 2019, pp. 480483.
[31] J.-Y. Lyu, S.-C. Huang, and H.-R. Chuang, K-band CMOS phase
shifter with low insertion-loss variation, in 2012 -Pacic Microw.
Conf. Proceedings, Dec 2012, pp. 8890.
[32] A. B. Nguyen and J.-W. Lee, A K-band CMOS phase shifter
MMIC based on a tunable composite metamaterial, IEEE Microw.
Wireless Compon. Lett., vol. 21, no. 6, pp. 311313, Jun 2011.
[33] J.-H. Tsai and T.-W. Huang, A 38-46 GHz MMIC doherty power
amplier using post-distortion linearization, IEEE Microw. Wireless Compon. Lett., vol. 17, no. 5, pp. 388-390, May 2007.
111
[34] G. Lv, W. Chen, X. Chen, F. M. Ghannouchi, and Z. Feng, A compact Ka/Q dual-band GaAs MMIC doherty power amplifier with
simplied oset lines for 5G applications, IEEE Trans. Microw.
Theory Techn., vol. 67, no. 7, pp. 31103121, July 2019.
[35] G. Lv, W. Chen, X. Chen, and Z. Feng, An energy-ecient Ka
/ Q dual-band power amplifier MMIC in 0.1- µm GaAs process,
IEEE Microw. Wireless Compon. Lett., vol. 28, no. 6, pp. 530-532,
June 2018.
[36] A. Bessemoulin, P. Evans, and T. Fattorini, 38 GHz driver and
power amplifier MMIC in surface mount packages, in 2012 7th
Eur. Microw. Integr. Circuit Conf., Oct 2012, pp. 457-460.
[37] M. Aust, A. Sharma, O. Fordham, R. Grundbacher, R. To, R. Tsai,
and R. Lai, A 2.8-W Q-band high-eciency power amplifier, IEEE
Trans. Syst. Sci. Cybern., vol. 41, no. 10, pp. 2241-2247, Oct 2006.
[38] D. Ingram, D. Stones, J. Elliott, H. Wang, R. Lai, and M. Biedenbender, A 6-W Ka-band power module using MMIC power amplifiers, IEEE Trans. Microw. Theory Techn., vol. 45, no. 12, pp.
24242430, Dec 1997.
[39] M. Aust, B. Allen, G. Dow, R. Kasody, G. Luong, M. Biedenbender,
and K. Tan, A Ka-band HEMT MMIC 1 watt power amplifier,
in IEEE 1993 Microw. and Millimeter-Wave Monolithic Circuits
Symposium Digest of Papers, June 1993, pp. 45-48. |