博碩士論文 112323053 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:18.119.248.54
姓名 陳弘諺(Chen-Hong Yan)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 P 型導電高分子薄膜強化PN接面電化學之蝕刻之研究
(Electrochemical etching of PN junction enhanced by P-type conductive polymer films)
相關論文
★ 塑膠機殼內部表面處理對電磁波干擾防護研究★ 研磨頭氣壓分配在化學機械研磨晶圓膜厚移除製程上之影響
★ 利用光導效應改善非接觸式電容位移感測器測厚儀之研究★ 石墨材料時變劣化微結構分析
★ 半導體黃光製程中六甲基二矽氮烷 之數量對顯影後圖型之影響★ 可程式控制器機構設計之流程研究
★ 伺服沖床運動曲線與金屬板材成型關聯性分析★ 鋁合金7003與630不銹鋼異質金屬雷射銲接研究
★ 應用銲針尺寸與線徑之推算進行銲線製程第二銲點參數優化與統一之研究★ 複合式類神經網路預測貨櫃船主機油耗
★ 熱力微照射製作絕緣層矽晶材料之研究★ 微波活化對被植入於矽中之氫離子之研究
★ 矽/石英晶圓鍵合之研究★ 奈米尺度薄膜轉移技術
★ 光能切離矽薄膜之研究★ 氮矽基鍵合之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 電洞是電化學蝕刻時的必要因素,然而N型半導體的主要載流子為電子,因此一般來說N型半導體難以透過普通的電化學方式進行蝕刻,需要額外的輔助讓電化學反應介面產生電洞造成蝕刻。本研究透過導電高分子在晶圓進行晶背電化學實驗時可以保護元件不受化學溶液或是碰撞損害,可以運用到晶片的晶背研磨製程,此外也能改善半導體接面間的能隙及空乏區,使電洞傳導率變快,實驗以雙蝕刻槽作為主要實驗設備,將導電高分子PEDOT/PSS塗佈於N型矽上,形成N/PEDOT/P異質接面結構,而無需加入金屬片,之後在暗室中施加電場進行電化學實驗。實驗結束後,可直接拆除輔助的P型矽,並確保N型矽上的導電高分子薄膜保持無汙染。實驗將使用不同摻雜濃度的N型矽與P型矽進行不同組合的PN接面進行電化學蝕刻。蝕刻完成後,將進行紫外光照射、場發射掃描式電子顯微鏡(SEM)和光致發光光譜儀(PL)分析,並通過實驗過程中電壓電流的變化繪製趨勢圖以觀察效果。從SEM圖和電壓電流圖的分析中可以發現,塗佈導電高分子的試片蝕刻速率更快,電流導通速度也更明顯提升,且結構略有不同。在光致發光方面,亮度也更高,且通過提高試片的摻雜濃度,實驗效果更為突出。
摘要(英) Hole is a necessary factor in electrochemical etching. However, the main carrier of N-type semiconductors is electrons, so it is generally difficult for N-type semiconductors to be etched by ordinary electrochemical methods, and additional assistance is needed to generate hole in the electrochemical reaction interface to cause etching. In this study, conductive polymers can protect the components from chemical solution or collision damage when conducting electrochemical experiments on the wafer back, which can be applied to the wafer back grinding process. In addition, the energy gap and void region between semiconductor junctions can be improved to make the hole conductivity faster. The experiment uses double etching slots as the main experimental equipment. The conductive polymer PEDOT/PSS is coated on N-type silicon to form N/PEDOT/P heterogeneous junction structure without adding metal sheet, and then an electric field is applied in a dark room for electrochemical experiments. After the experiment, the auxiliary P-type silicon can be removed directly, and the conductive polymer film on the N-type silicon can be ensured to remain pollution-free. In the experiment, the PN junction with different combinations of N-type silicon and P-type silicon with different doping concentrations will be electrochemical etched. After the etching is completed, ultraviolet irradiation, field emission scanning electron microscope (SEM) and photoluminescence spectrometer (PL) analysis will be carried out, and trend graphs will be drawn to observe the effect through the changes of voltage and current during the experiment. From the analysis of SEM and voltage-current diagram, it can be found that the etching rate of the test piece coated with conductive polymer is faster, the current conduction speed is also more obvious, and the structure is slightly different. In terms of photoluminescence, the brightness is also higher, and the experimental effect is more prominent by increasing the doping concentration of the test piece.
關鍵字(中) ★ PN接面
★ 電化學蝕刻
★ SEM
★ PL
★ 光致發光
★ 導電高分子
★ 異質接 面
關鍵字(英) ★ PN junction
★ electrochemical etching
★ SEM
★ PL
★ photoluminescence
★ conductive polymer
★ heterogeneous junction
論文目次 目錄
摘要………………………………………………………………........…………….…i
Abstrast……………………….………...….……….….….………..………..…….….ii
誌謝……………………………………………………………………………...........iv
目錄……………………………………………………………………………….…...v
圖目錄………………………………………………………………………………..vii
表目錄…………………………………………………………………………….......xi
第一章 緒論………………..…………………………………………….……..…….1
1-1 前言……………………………………………………………...………...….1
1-2 研究背景……………………………………………………………...………2
1-3 研究動機及目的……………………………..……….………………………3
第二章 原理與文獻回顧………………………………………………….….............4
2-1 多孔矽理論…………………………………………………………...………4
2-1-1 擴散限制模型(The Diffusion-Limit Model)…………………………4
2-1-2 貝爾模型(The Beale Model).………………………..……………..…5
2-1-3 量子模型(The Quantum Model).………………...........….......………5
2-2 空乏區(Depletion Region).…………………………………….……………..6
2-2-1 摻雜濃度(Carrier concentration)..…………………………………….6
2-2-2 蕭特基能障高度(Schottky barrier height)………………………...….6
2-2-3 空乏區寬度(Depletion region width)...…………………………….…7
2-3 多孔矽製作…………………………………………………….……………..8
2-3-1 乾式蝕刻法(Dry etching).…………………………………………….8
2-3-2 濕式蝕刻法(Wet etching).………………………………………...….8
2-3-3 電化學蝕刻法(Electrochemical etching).………………………….…9

2-4 蝕刻機制……………………………………………………………...……..10
2-4-1 氫氟根(hydrofluoride)為底之蝕刻機制………………………..…...12
2-4-2 PN接面與電化學蝕刻關係………………………………..………..12
2-5 導電高分子…………………………………………………………...……..13
2-5-1 PEDOT:PSS……………………………………….……………..…...14
第三章 實驗步驟與方法……………………………………………………………16
3-1 矽晶圓前處理與清洗流程………………………………………………….16
3-2 實驗器材與設備介紹……………………………………………………….20
3-3 實驗步驟…………………………………………………………………….28
3-4 分析儀器…………………………………………………………………….32
第四章 結果與討倫…………………………………………………………………35
4-1 添加不同溶劑對於導電高分子薄膜性質的改善….……………………....35
4-2 根據電壓電流圖與SEM探討導電高分子對於電化學系統之提升…..…39
4-3 蝕刻實驗過程中之電壓電流變化圖..…………………………………...…42
4-4 蝕刻後矽晶圓於日光燈及UV燈下觀察結果……………………..……...46
4-5 PL檢測結果………………………………………………………...………50
4-6 CFE-SEM表面形貌及剖面觀察結果……………………………...………54
第五章 結論與未來展望……………………………………………………………72
第六章 參考文獻……………………………………………………………………73







圖目錄
圖2-1 PEDOT/n-Si蕭特基二極管的能帶結構示意圖………………...…...……….7
圖2-2 矽表面多孔矽層與電化學拋光的I-V圖…………………......………..…..10
圖2-3 穩態時的能帶圖……………………………………………………………..12
圖2-4 PSS與PEDOT之結構圖…………………………………...……………….14
圖2-5 PEDOT:PSS與N型矽的能階圖…………..………………………………..15
圖3-1 六吋矽晶圓試片……………………………………………………………..16
圖3-2 雙槽垂直式蝕刻槽…………………………….…………………………….21
圖3-3 Twintex電源供應器……………………………………..…………………...21
圖3-4 電源供應器附設軟體Programmable DC Power Supply……….…………..22
圖3-5 白金電極……………………………………………………………………..22
圖3-6 PEDOT/PSS…………………………………………………………………..23
圖3-7 異丙醇………………………………………………………………………..23
圖3-8 乙二醇………………………………………………………………………..24
圖3-9 甘油…………………………………………………………………………..24
圖3-10 氫氟酸………………………………………………………………………25
圖3-11 酒精……………………….………………………………………………...25
圖3-12 超音波震盪機………………………………………………………………26
圖3-13 加熱台………………………………………………….…………………...26
圖3-14 氮氣桶………………………………………………….…………………...27
圖3-15 塗佈機………………………………………………….…………………...27
圖3-16 高溫爐………………………………………………….…………………...28
圖3-17 電化學蝕刻之實驗架設圖…………………………….…………………...29
圖3-18 實驗流程圖…………………………………………….…………………...30
圖3-19 高強度紫外燈………………………………………….…………………...32
圖3-20 CFE-SEM……………………………………………….…………………...33
圖3-21 PL量測機台……………………………...…………….…………………...34
圖4-1 未添加溶劑蝕刻前……………………………………………...…………...36
圖4-2 未添加溶劑蝕刻後…………………………………………...……………...36
圖4-3 添加溶劑蝕刻前……………....……………………………………………..36
圖4-4 添加溶劑蝕刻後………………….……………………….…………………36
圖4-5 PEDOT:PSS薄膜、600X、表面圖……..……...…………………………...37
圖4-6 PEDOT:PSS薄膜、5000X、表面圖……………………………………..…37
圖4-7 PEDOT:PSS薄膜、600X、剖面圖………………………..………………..38
圖4-8 PEDOT:PSS薄膜、5000X、剖面圖………………………………..………38
圖4-9 N/P、N/PEDOT/P之電壓與時間關係圖…………………...…...………….40
圖4-10 N/P、N/PEDOT/P之電流與時間關係圖…………………………….……40
圖4-11 N/P蝕刻深度………………………………………………………………..41
圖4-12 N/PEDOT/P蝕刻深度………….………………………………...………...41
圖4-13 N、N/P、N/PEDOT/P之電壓與時間關係圖………………………….….43
圖4-14 N、N/P、N/PEDOT/P之電流與時間關係圖………………………….….43
圖4-15 N/PEDOT/(P、P+、P++、P+++)之電壓與時間關係圖………………….44
圖4-16 N/PEDOT/(P、P+、P++、P+++)之電流與時間關係圖………………….44
圖4-17 (N、N+、N++)/PEDOT/P之電壓與時間關係圖……………….....……...45
圖4-18 (N、N+、N++)/PEDOT/P之電流與時間關係圖……………….....……...45
圖4-19 N、N/P、N/PEDOT/P之PL檢測圖………………………….…………...51
圖4-20 N/PEDOT/(P、P+、P++、P+++)之PL檢測圖…………………………...52
圖4-21 N/P、(N、N+、N++)/PEDOT/P之PL檢測圖………………………...…52
圖4-22 N、600X、表面圖………………………………………………………….55
圖4-23 N、5000X、表面圖………………………..……………………………….55
圖4-24 N、400X、剖面圖………………………………………………………….56
圖4-25 N、5000X、剖面圖..……………………………………………………….56
圖4-26 N/P、600X、表面圖………………………………..……………………...57
圖4-27 N/P、5000X、表面圖…………………..………………………………….57
圖4-28 N/P、600X、剖面圖……………………………………………………….58
圖4-29 N/P、5000X、剖面圖……………………………………………………...58
圖4-30 N/PEDOT/P、600X、表面圖……………………………………………...59
圖4-31 N/PEDOT/P、5000X、表面圖…………………………………………….59
圖4-32 N/PEDOT/P、400X、剖面圖……………………………………..……….60
圖4-33 N/PEDOT/P、5000X、剖面圖…………………………………………….60
圖4-34 N/PEDOT/P+、600X、表面圖………………………………..…………...61
圖4-35 N/PEDOT/P+、5000X、表面圖……………………………….…………..61
圖4-36 N/PEDOT/P+、400X、剖面圖……………………………...……………..62
圖4-37 N/PEDOT/P+、5000X、剖面圖…………………………………………...62
圖4-38 N/PEDOT/P++、600X、表面圖…………………………………………...63
圖4-39 N/PEDOT/P++、5000X、表面圖………………………………………….63
圖4-40 N/PEDOT/P++、400X、剖面圖………………….………………..………64
圖4-41 N/PEDOT/P++、5000X、剖面圖………………………………...………..64
圖4-42 N/PEDOT/P+++、600X、表面圖…………………………………...……..65
圖4-43 N/PEDOT/P+++、5000X、表面圖…………………………………...……65
圖4-44 N/PEDOT/P+++、400X、剖面圖……………………….…………………66
圖4-45 N/PEDOT/P+++、5000X、剖面圖………………………...………………66
圖4-46 N+/PEDOT/P、600X、表面圖…………………………………...………..67
圖4-47 N+/PEDOT/P、5000X、表面圖……………………………………...……67
圖4-48 N+/PEDOT/P、600X、剖面圖…………………………….………………68
圖4-49 N+/PEDOT/P、5000X、剖面圖…………………………………………...68
圖4-50 N++/PEDOT/P、600X、表面圖………………...…………………………69
圖4-51 N++/PEDOT/P、5000X、表面圖………………...………………………..69
圖4-52 N++/PEDOT/P、600X、剖面圖………….………………………………..70
圖4-53 N++/PEDOT/P、5000X、剖面圖…………………….……………………70























表目錄
表3-1 N型矽晶圓規格………………………………………………...……………17
表3-2 P型矽晶圓規格……………………………………………………………...18
表3-3 試片清洗方式………………………………………………………………..19
表3-4 N型矽試片及P型矽試片實驗組合………………………………………..31
表4-1 N、N/P、N/PEDOT/P蝕刻後於日光燈及紫外光燈下的觀察結果…........47
表4-2 N/PEDOT/P結構使用不同摻雜濃度的P型矽晶圓蝕刻後於日光燈及紫外燈下的觀察結果……………………………………………………………………..48
表4-3 N/PEDOT/P結構使用不同摻雜濃度的N型矽晶圓蝕刻後於日光燈及紫外燈下的觀察結果……………………………………………………………………..49
表4-4 PL測檢峰值結果…………………………………………....……………….53
表4-5 SEM結果整理表…………………………………………………………….71
參考文獻 [1] Cheng Li, Zudong He, Qidi Wang, et al, "Performance Improvement of PEDOT:PSS/N-Si Heterojunction Solar Cells by Alkaline Etching", Springer Nature B.V., 2021.
[2] Y. V. Gomeniuk, et al, "Effect of PEDOT:PSS Layer Deposition on Electrical and Photoelectrical Properties of n+ ZnO/n Si Heterostructure", The Author(s), 2023.
[3] Strehlke, S, et al., "The porous silicon emitter concept applied to multicrystalline silicon solar cells.", Thin Solid Films Vol. 297.1-2, pp. 291-295, 1997.
[4] R.P. Feynman, "Plenty of room at the bottom", APS Annual Meeting, 1959.
[5] Stolyarova, S., et al., "Composite porous silicon-crystalline silicon cantilevers for enhanced biosensing.", Sensors and Actuators B: Chemical 131.2, pp. 509-515, 2008.
[6] Patolsky, Fernando, Gengfeng Zheng, and Charles M. Lieber., "Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species.", Nature protocols 1.4, 2006.
[7] Lin, J.C., and Huang, K.M., "Microstructure analysis and photoelectronic properties of porous silicon.", Chinese Culture University Hwa Kang Journal of Engineering, 21, 2007.
[8] Watanabe, Y., and T. Sakai., "Application of a thick anode film to semiconductor devices.", Rev. Elec. Commun. Lab, 19.7-8, pp. 899, 1971.
[9] Salonen, J., and Mäkilä, E., "Thermally carbonized porous silicon and its recent applications.", Advanced Materials, Vol. 30, 2018.
[10] Canham, L. T., "Silicon quantum wire fabricated by electrochemical and chemical dissolution of wafers.", Appl. Phys., Lett. 57, 1046, 1990.
[11] Sagnes, I., Halimaoui, A., Vincent, G., and Badoz, P.A. , "Optical absorption evidence of a quantum size effect in porous silicon.", Appl. Phys. Lett, 62, 1155, 1993.
[12] Canham, Leigh T. "Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers.", Applied physics letters 57.10, pp. 1046-1048, 1990.
[13] Cullis, A. G., and Canham, L. T., "Visible light emission due to quantum size effects in highly porous crystalline silicon.", Nature, 353, 335, 1991.
[14] C.S. Pathak, et al, "Investigation of the effect of organic solvents on the electrical characteristics of PEDOT:PSS/p-Si heterojunction diodes", Thin Solid Films, 2016.
[15] Ari Bimo Prakoso, et al, "Reverse recovery transient characteristic of PEDOT:PSS/n-Si hybrid organic-inorganic heterojunction", Organic Electronics, 2016.
[16] C.S. Pathak, et al, " Effect of dimethyl sulfoxide on the electrical properties of PEDOT:PSS/ n-Si heterojunction diodes", Current Applied Physics, 2015.
[17] C.S. Pathak, et al, " Modification of electrical properties of PEDOT:PSS/p-Si heterojunction diodes by doping with dimethyl sulfoxide", Chemical Physics Letters, 2016.
[18] Smith R., and Collins S., "Porous silicon formation mechanisms.", Journal of Applied Physics, Vol. 71, pp. R1-R22, 1992.
[19] Lehmann, V., and H. Föll., "Formation mechanism and properties of electrochemically etched trenches in n‐type silicon.", Journal of the Electrochemical Society, 137.2, pp. 653-659, 1990.
[20] Lehmann V., "The physics of macropore formation in low doped n-type silicon.", Journal of the Electrochemical Society, Vol. 140, pp. 2836-2843, 1993.
[21] Marso, M., Berger, M. G., Thönissen, M., Lüth, H., and Münder, H., "An extended quantum model for porous silicon formation.", Journal of the Electrochemical Society, Vol. 142, pp. 615-620, 1995.
[22] Zagarzusem Khurelbaatar, et al, "Electrical Transport Characterization of PEDOT:PSS/n-Si Schottky Diodes and Their Applications in Solar Cells", Journal of Nanoscience and Nanotechnology Vol. 13, 1–6, 2013.
[23] 施敏.梅凱瑞、林鴻志,半導體製程概論,國立交通大學出版社,新竹市,2016。
[24] Chen, J., Cranton, W., and Fihn, M., "Wet etching.", Handbook of Visual Display Technology, pp. 861-870, 2012.
[25] Burham, N., Hamzah, A. A., and Majlis, B. Y., "Self-adjusting electrochemical etching technique for producing nanoporous silicon membrane.", New Research on Silicon-Structure, Properties, Technology, 2017.
[26] Uhlir Jr, A., "Electrolytic shaping of germanium and silicon", Bell System Technical Journal, Vol. 35, pp. 333-347, 1956.
[27] L. Boarino and G. Amato, Encyclopedia of Nanotechnology., B. Bhushan Editor, pp. 1781, Springer Netherlands , 2012.
[28] Lehmann, V., and Gösele, U., "Porous silicon: Quantum sponge structures grown via a self‐adjusting etching process.", Advanced Materials, Vol. 4, 114, 1992.
[29] Unagami, T., "Formation mechanism of porous silicon layer by anodization in HF solution.", Journal of the electrochemical society, 127.2, 476, 1980.
[30] Badel, X., Linnros, J., and Kleimann, P., "Electrochemical etching of n-type silicon based on carrier injection from a back side pn junction.", Electrochemical and Solid State Letters, Vol. 6, C79, 2003.
[31] Manfred May, et al, "Wafer-scale fabrication of mesoporous silicon functionalized with electrically conductive polymers.", Microporous and Mesoporous Materials, 2024.
[32] Paul Mayer, et al, "Enhancing the attraction of positively charged precursors of conductive polymer poly(3,4-ethylenedioxythiophene) by anchoring sulfonate groups in cellulose fibres.", Polymer, 2024.
[33] Zhiqi Wang., and Ruiyuan Liu., "PEDOT:PSS-based electrochromic materials for flexible and stretchable devices", Materials Today Electronics, 2023.
[34] Cheng Li, et al, "Performance Improvement of PEDOT:PSS/N-Si Heterojunction Solar Cells by Alkaline Etching", Springer Nature B.V. 2021.
[35] Koshida, N., and Koyama H., "Visible electroluminescence from porous silicon. ", Appl. Phys. Lett. 60, 347, 1992.
[36] Bsiesy, A., Vial, J. C., Gaspard, F., Herino, R., Ligeon, M., Muller, F., Romestain, R., Wasiela, A., Halimaoui, A., and Bomchil, G., "Photoluminescence of high porosity and of electrochemically oxidized porous.", Surface Science, 254, 195, 1991.
[37] Bright, V. M., Kolesar, E. S., Jr. and Sowders, D.M., "Reflection characteristics of porous silicon surfaces.", Optical Engineering, 36, 1088, 1997.
[38] Ledoux, G., Guillois, O., Porterat, D., Reynaud, C., Huisken, F., Kohn, B., and Paillard, V., "Photoluminescence properties of silicon nanocrystals as a function of their size", Physical Review B, Vol. 62, pp. 15942, 2000.
[39] Mooney, J., and Kambhampati, P., "Get the basics right: Jacobian conversion of wavelength and energy scales for quantitative analysis of emission spectra", Journal of Physical Chemistry Letters, pp. 3316-3318, 2013.
指導教授 李天錫 審核日期 2024-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明