博碩士論文 110382004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:18.119.248.54
姓名 許家成(CHIA-CHENG SHIU)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 自來水管線風險評估及管理 -以臺北自來水事業處供水分區為例
(Risk Assessment and Management of Water Pipelines for the Taipei Water Department)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-1-1以後開放)
摘要(中) 都市水資源管理的重要性日益提升,為了協助維運管理及分析決策,水資源管理單位亟需推動適當工具的應用。以自來水管線為例,期望運用人工智慧、水理分析及其他技術,幫助決策者了解供水分區內水壓及流量的整體分佈和可能的漏水情況,進一步分析各管線的風險特性,並針對高風險管線提出改善及永續發展策略。本研究導入水理分析於風險評估中,以克服過去在風險分析中無法精確計算受影響用戶的缺點,提供更優化的風險評估建議。
本研究分三個階段進行,第一階段:以臺北自來水事業處現有自來水管網架構為基礎,根據水理分析應用需求,自動化轉出水理分析所需的管網結構及INP檔案。其轉製成果除了能支援水理分析軟體(EPANET)的讀取及分析,還與商業軟體(WaterGEMs)比較,其相似程度超過99%,證明自動化匯出具參考價值。第二階段:採用遺傳演算法進行模型校正作業。經過校正程序調整參數後,分析結果與現地量測結果趨近,且校正成果與WaterGEMs比較,更為良好。此外,與監控點進行24小時比對,誤差僅為8.97%。第三階段:以羅吉斯迴歸與先進的水理分析技術,結合液化潛能的深度評估,開發出一個創新的整合式風險評估模式 (SynerRisk),這不僅能動態量化自來水管線可能影響的用戶規模,還能將複雜的分析結果精準反饋到每條管線,提供專為臺北自來水事業處量身定制的管理方案。這一模式不僅能大幅提升維護管理效率,還可為管線汰換決策提供可靠的數據支持,從而實現精細化管理。
摘要(英) Water resource management is a core method for ensuring the world’s sustainable development. Water resource management units urgently need to promote the use of appropriate tools to assist in maintenance, operational management, analysis, and decision-making. This study anticipates leveraging artificial intelligence, hydrological analysis, and other technologies to aid decision-makers in understanding the overall distribution of water pressure and flow within the water supply zone, as well as identifying potential water leakage conditions. Further analysis of the risk characteristics of each pipeline will allow us to propose strategies for improvement and sustainable development, mainly focusing on high-risk pipelines. This study integrates hydrological analysis into risk assessment to provide a clearer understanding of the potential impact on users, addressing past shortcomings by enhancing the accuracy of calculating affected users in risk analysis, thereby offering more optimized risk assessment recommendations. The findings of this research are categorized into three stages.
1.Initial Stage: This stage utilizes the existing water pipeline network structure of the Taipei Water Department and automates the extraction of the pipeline network structure to generate the required INP files for hydraulic analysis. In addition to facilitating the reading and analysis by hydraulic analysis software (EPANET), the conversion results are compared with commercial software (WaterGEMs) and show a similarity of over 99%WaterGEMs, indicating the reliability of the automated export process.
2.Second Stage: This stage involves employing genetic algorithms to conduct model calibration. After adjusting the model parameters through the calibration procedure, the analysis results closely align with on-site measurement results. The calibration results are superior to those obtained with WaterGEMs, the error of only 8.97% compared to 24-hour monitoring data.
3.Final Stage: This stage combines logistic regression, hydraulic analysis, and liquefaction potential to conduct risk assessments of water pipelines. The integrated risk assessment model (SynerRisk) accurately depicts the number of affected users and provides detailed analysis results for individual pipelines. This approach better meets the management requirements of the Taipei Water Department and serves as a foundation for pipeline maintenance management and replacement decisions.
關鍵字(中) ★ 水理分析
★ 遺傳演算法
★ 羅吉斯迴歸
★ 風險評估
關鍵字(英) ★ hydraulic analysis
★ genetic algorithms
★ logistic regression
★ risk assessment
論文目次 目 錄
中文摘要 I
英文摘要 II
誌謝 III
目 錄 IV
表目錄 XI
第一章 緒論 1
1-1 研究動機 1
1-2 研究目的 2
1.3 研究流程 3
第二章 文獻回顧 4
2-1 EPANET介紹 4
2-2 模型校正方法 16
2-2-1 水理模型校正發展歷程 16
2-2-2 遺傳演算法介紹 18
2-2-3 遺傳演算法於水理分析應用案例 21
2-3 水理模型應用 25
2-4 自來水管線風險評估 29
2-4-1 風險評估方法與作業流程 29
2-4-2 管線災損率評估方法 34
2-5 綜合評析 41
第三章 研究架構及水理模型自動化產製方法與驗證 43
3-1 研究架構 43
3-2 研究範圍及對象 44
3-3 水理模型定義 47
3-4 水理模型轉製作業說明 47
3-5 水理模型建置成果 60
3-6 WaterGEMs軟體介紹 71
3-7利用WaterGEMs軟體建立內湖分區模型 72
3-7 模型轉製成果與WaterGEMs驗證比較 85
3-8 小結.. 90
第四章 水理模型校正方法及驗證 91
4-1 校正計算架構 91
4-2 現地水壓量測 94
4-3 校正結果選定 99
4-4 校正結果驗證 101
4-4-1 內湖供水分區校正結果 101
4-4-2 中和永和供水分區校正結果 106
4-5 校正結果分析 111
4-6小結… 116
第五章 自來水管線風險評估 117
5-1風險評估架構 118
5-1-1 自來水管線漏水機率計算說明 120
5-1-2自來水管線重要性計算說明 125
5-1-3 自來水管線災損率計算說明 128
5-1-4 自來水管線災損率計算說明 129
5-2 管線漏水機率計算結果 132
5-2-1 管線漏水機率計算 132
5-2-2 管線漏水機率分析 138
5-2-3 管線漏水機率時序分析 139
5-2-4 管線漏水機率不同方法分析 148
5-3 管線重要性計算結果 154
5-4 管線液化評估計算結果 157
5-5 管線風險評估計算結果 159
5-6 管線風險評估計算結果討論與研究限制 163
第六章 結論與維護管理建議 164
6-1 結論 164
6-2 自來水管線維護管理建議 165
第七章 結論與維護管理建議 168
7-1 後續研究建議 168
參考文獻 169
參考文獻 1.中華民國自來水協會管理研究委員會(2019)中華民國自來水協會108年度研究計畫,臺北自來水管網水理分析應用之規劃發展。
2.中華民國自來水協會管理研究委員會(2020)中華民國自來水協會108年度研究計畫,臺北供水區小區智慧化應用與發展探討。
3.內政部營建署(2020)公共設施管線資料標準。
4.朱撼湘、黃欽稜、黃裕泰、鍾育霖、鍾志忠、許家成(2022)自來水管網水理模型自動化轉製及驗證分析,地下管道第46期,111年6月,P.18-26。
5.朱撼湘、黃欽稜、黃裕泰、鍾育霖、許家成、鐘志忠(2022)結合遺傳演算法於水理模型校正之應用-以中和永和供水分區為例,自來水會刊第41卷第3期,111年8月,P.8-16。
6.黃騰宏、謝連達、許家成(2019)臺北自來水智慧化資訊管理系統建置與應用,自來水會刊第38卷第4期(152),108年11月,P.57-64。
7.臺北自來水事業處(2022)中和永和供水分區水理模型模擬成果及優化建議報告書。
8.臺北市政府工務局(2016)臺北市土壤液化潛勢區分析評估工作報告書。
9.臺南市政府(2023)臺南市110年度土壤液化調查與風險評估計畫委託技術服務期末報告成果書。
10.Alliance AL (2001) Seismic fragility formulations for water systems.
11.Bhave PR (1988) Calibrating water distribution network models. Jour- nal of Environmental Engineering 114(1):120–136. https://doi.org/10. 1061/(ASCE)0733-9372(1988)114:1(120)
12.Butera I, G’omez-Hern’andez JJ, Nicotra S (2021) Contaminant- source detection in a water distribution system using the ensem- ble kalman filter. Journal of Water Resources Planning and Management 147(7):04021029. https://doi.org/10.1061/(ASCE)WR.1943-5452.000138
13.Boryczko K, Piegdo ’n I, Szpak D, et al (2021) Risk assessment of lack of water supply using the hydraulic model of the water supply. Resources 10(5):43. https://doi.org/10.3390/resources10050043
14.Cen H, Huang D, Liu Q, et al (2023) Application research on risk assessment of municipal pipeline network based on random forest machine learning algorithm. Water 15(10):196. https://doi.org/10. 3390/w15101964
15.Covelli C, Cozzolino L, Cimorelli L, et al (2015) A model to simu- late leakage through joints in water distribution systems. Journal of Water Supply: Research and Technology-Aqua 15(4):852–863. https://doi.org/10.2166/ws.2015.043
16.Creaco E, Campisano A, Fontana N, et al (2019) Real time control of water distribution networks: A state-of-the-art review. Water Research 161(15):517–530. https://doi.org/10.1016/j.watres.2019.06.025
17.D. MA, Erkin T, Ercan K (2020) Risk assessment of fuel supply pipelines: Kalecik power plant case study. Journal of Pipeline Systems Engineer- ing and Practice 11(4):05020005. https://doi.org/10.1061/(ASCE)PS. 1949-1204.0000496
18.Di Nardo A, Di Natale M, Gisonni C, et al (2014) A genetic algorithm for demand pattern and leakage estimation in a water distribution network. Journal of Water Supply: Research and Technology-Aqua 64(1):35–46. https://doi.org/doi.org/10.2166/aqua.2014.004
19.Ding K, Ni Y, Fan L, et al (2022) Optimal design of water supply network based on adaptive penalty function and improved genetic algorithm. Mathematical Problems in Engineering 2022. https://doi.org/10.1155/ 2022/8252086
20.Dini M, Tabesh M (2014) A new method for simultaneous calibration of demand pattern and hazen-williams coefficients in water distribution systems. Water Resources Management 28(7):2021–2034. https://doi. org/10.1007/s11269-014-0592-4
21.Figueiredo I, Esteves P, Cabrita P (2021) Water wise – a digital water solution for smart cities and water management entities. Proce- dia Computer Science 181:897–904. https://doi.org/doi.org/10.1016/j. procs.2021.01.245
22.Greco M, Del Giudice G (1999) New approach to water distribution network calibration. Journal of Hydraulic Engineering 125(8):849–854. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:8(849)
23.Guan Y, Lv M, Dong S (2023) Pressure-driven background leakage mod- els and their application for leak localization using a multi-population genetic algorithm. Water Resources Management 37(1):359–373. https://doi.org/10.1007/s11269-022-03377-w
24.Hashemi S, Filion Y, Speight V, et al (2020) Effect of pipe size and location on water-main head loss in water distribution systems. Journal of Water Resources Planning and Management 146(6):06020006. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001222
25.Henriques-Silva R, Duchesne S, St-Gelais NF, et al (2021) On-line warning system for pipe burst using bayesian dynamic linear mod- els. Water Resources Research 59:e2021WR031745. https://doi.org/10. 1029/2021WR031745
26.Huang Y, Zheng F, Kapelan Z, et al (2020) Efficient leak localiza- tion in water distribution systems using multistage optimal valve operations and smart demand metering. Water Resources Research 56(10):e2020WR028285. https://doi.org/10.1029/2020WR028285
27.Jamil R (2019) Frictional head loss relation between hazen-williams and darcy-weisbach equations for various water supply pipe materi- als. International Journal of Water 13(4):333–347. https://doi.org/10. 1504/IJW.2019.10027784
28.Jun S, Arbesser-Rastburg G, Fuchs-Hanusch D, et al (2022) Response sur- faces for water distribution system pipe roughness calibration. Journal of Water Resources Planning and Management 148:04021105. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001518
29.Kepa U (2021) Use of the hydraulic model for the operational analysis of the water supply network: a case study. Water 13(3):326. https://doi.org/10.3390/w13030326
30.Kim Y, Hwang B, Cho W (2018) Development of ground freezing sys- tem for undisturbed sampling of granular soils. Advances in Civil Engineering 2018:1541747. https://doi.org/10.1155/2018/1541747
31.Kowalska B, Suchorab P, Kowalski D (2022) Division of district metered areas (dmas) in a part of water supply network using WaterGEMs (bentley) software: a case study. Applied Water Science 12(7):166. https://doi.org/doi.org/10.3390/w14203276
32.Kuok K, Chiu P, Ting D (2020) Evaluation of “c” values to head loss and water pressure due to pipe aging: Case study of uni-central sarawak. Journal of Water Resource and Protection 12(12):1077–1088. https://doi.org/10.4236/jwarp.2020.1212064
33.Lee CW, Yoo DG (2021) Development of leakage detection model and its application for water distribution networks using rnn-lstm. Sustain- ability 13(16):9262. https://doi.org/doi.org/10.3390/su13169262
34.Lee YF, Chi YY, Lee DH, et al (2007) Simplified models for assess- ing annual liquefaction probability—a case study of the yuanlin area, taiwan. Engineering Geology 90(1-2):71–88. https://doi.org/10.1016/j. enggeo.2006.12.003.
35.Li R, Huang H, Xin K, et al (2015) A review of methods for burst/leakage detection and location in water distribution systems. Water Supply 15(3):429–441. https://doi.org/10.2166/ws.2014.131
36.Mambretti S, Orsi E (2016) Optimizing pump operations in water sup- ply networks through genetic algorithms. Journal-American Water Works Association) 108(2):E119–25. https://doi.org/10.5942/jawwa. 2016.108.0025
37.Meirelles G, Manzi D, Brentan B, et al (2017) Calibration model for water distribution network using pressures estimated by artificial neural net- works. Water Resources Management 31:4339–4351. https://doi.org/ doi.org/10.1007/s11269-017-1750-2
38.Mu T, Li Y, Li Z, et al (2021) Improved network reliability opti- mization model with head loss for water distribution system. Water Resources Management 35(7):2101–2114. https://doi.org/10. 1007/s11269-021-02811-9
39.Mu T, Li Y, Li Z, et al (2021) Improved network reliability opti- mization model with head loss for water distribution system. Water Resources Management 35(7):2101–2114. https://doi.org/10. 1007/s11269-021-02811-9
40.Niazkar M, Talebbeydokhti N, Afzali SH (2019) Novel grain and form roughness estimator scheme incorporating artificial intelligence models. Water Resources Management 33(2):757–773. https://doi.org/10.1007/ s11269-018-2141-z
41.Page P, Zulu S, Mothetha M (2019) Remote real-time pressure control via a variable speed pump in a specific water distribution system. Journal of Water Supply: Research and Technology-Aqua 68(1):20–28. https://doi.org/10.2166/aqua.2018.074
42.Pietrucha-Urbanik K, Tch’orzewska-Cie’slak B (2018) Approaches to fail- ure risk analysis of the water distribution network with regard to the safety of consumers. Water 10(11):1679. https://doi.org/10.3390/ w10111679
43.Qingzhou Z, Zheng F, Duan HF, et al (2018) A new method for simul- taneous calibration of demand pattern and hazen-williams coefficients in water distribution systems. Journal of Water Resources Planning and Management 144(7):04018063. https://doi.org/10.1061/(ASCE) WR.1943-5452.0000986
44.Rezaei H, Ryan B, Stoianov I (2015) Pipe failure analysis and impact of dynamic hydraulic conditions in water supply networks. Proce- dia Engineering 119:253–262. https://doi.org/10.1016/j.proeng.2015. 08.883
45.Sahu D, Tiwari M (2023) Methods of liquefaction potential evaluation-a review a b s t r a c t. Journal of Engineering, Computing and Archi- tecture 13:82–100. URL https://www.researchgate.net/publication/ 370265537 Methods of Liquefaction Potential Evaluation-A Review A B S T R A C T
46.Shiu CC, Chiang T, Chung CC (2022) A modified hydrologic model algorithm based on integrating graph theory and gis database. Water 14(19):3000. https://doi.org/10.3390/w14193000
47.Shiu CC, Chung CC, Chiang T (2023) Enhancing the epanet hydraulic model through genetic algorithm optimization of pipe roughness coeffi- cients. Water Resources Management pp 934–955. https://doi.org/10. 1007/s11269-023-03672-0
48.Sitzenfrei R, Wang Q, Kapelan Z, et al (2020) Using complex network analysis for optimization of water distribution networks. Water Resources Research 56:e2020WR027929. https://doi.org/10. 1029/2020WR027929
49.Sophocleous S, Savi’c DA, Kapelan Z, et al (2017) A two-stage calibration for detection of leakage hotspots in a real water distribution network. Procedia Engineering 186:168–176. https://doi.org/doi.org/10.1016/j. proeng.2017.03.223
50.Tucciarelli T, Criminisi A, Termini D (1999) Leak analysis in pipeline systems by means of optimal valve regulation. Journal of Hydraulic Engineering 125(3):277–285. https://doi.org/10.1061/ (ASCE)0733-9429(1999)125:3(277)
51.Ullah I, Fayaz M, Kim D (2018) Analytical modeling for underground risk assessment in smart cities. Applied Sciences 8(6):921. https://doi. org/10.3390/app8060921
52.Vanitha CN, Easwaramoorthy SV, Krishna SA, et al (2023) Efficient qualitative risk assessment of pipelines using relative risk score based on machine learning. Scientific Reports 13(1):14918. https://doi.org/ 10.1038/s41598-023-38950-9
53.Walski TM (2000) Model calibration data: the good, the bad, and the useless. Journal-American Water Works Association 92(1):94–99. https://doi.org/10.1002/j.1551-8833.2000.tb08791.x
54.Water Research Centre (1989) Network Analysis: A Code of Practice. Water Authorities Association, Swindon, England
55.Wang XT, Guo GC, Liu SM, et al (2020) Burst detection in district metering areas using deep learning method. Journal of Water Resources Planning and Management 146(6):04020031. https://doi.org/10.1061/ (ASCE)WR.1943-5452.0001223
56.Wu ZY, Arniella EF, Gianella E (2004) Darwin calibrator-improving project productivity and model quality for large water systems. Journal-American Water Works Association 146(10):27–34. https:// doi.org/10.1002/j.1551-8833.2004.tb10715.x
57.Zanfei A, Menapace A, Santopietro S, et al (2020) Calibration procedure for water distribution systems: comparison among hydraulic models. Water 12(5):1421. https://doi.org/10.3390/w12051421
58.Qingzhou Zhang, Feifei Zheng, Huan-Feng Duan, Yueyi Jia, Tuqiao Zhang, and Xinlei Guo (2018) Efficient numerical approach for simultaneous calibration of pipe roughness coefficients and nodal demands for water distribution systems. Journal of Water Resources Planning and Management 144(10):04018063. https://doi.org/10.1061/ (ASCE)WR.1943-5452.0000986
59.Zhou X, Tang Z, Xu W, et al (2019) Deep learning identifies accu- rate burst locations in water distribution networks. Water Research 166:115058. https://doi.org/10.1016/j.watres.2019.115058
60.Zhao Q, Wu W, Simpson AR, et al (2022) Simpler is better—calibration of pipe roughness in water distribution systems. Water 14(20):3276. https://doi.org/doi.org/10.3390/w14203276
指導教授 鐘志忠 林志棟(Chih-Chung Chung Jyh-Dong Lin) 審核日期 2024-11-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明