參考文獻 |
1.中華民國自來水協會管理研究委員會(2019)中華民國自來水協會108年度研究計畫,臺北自來水管網水理分析應用之規劃發展。
2.中華民國自來水協會管理研究委員會(2020)中華民國自來水協會108年度研究計畫,臺北供水區小區智慧化應用與發展探討。
3.內政部營建署(2020)公共設施管線資料標準。
4.朱撼湘、黃欽稜、黃裕泰、鍾育霖、鍾志忠、許家成(2022)自來水管網水理模型自動化轉製及驗證分析,地下管道第46期,111年6月,P.18-26。
5.朱撼湘、黃欽稜、黃裕泰、鍾育霖、許家成、鐘志忠(2022)結合遺傳演算法於水理模型校正之應用-以中和永和供水分區為例,自來水會刊第41卷第3期,111年8月,P.8-16。
6.黃騰宏、謝連達、許家成(2019)臺北自來水智慧化資訊管理系統建置與應用,自來水會刊第38卷第4期(152),108年11月,P.57-64。
7.臺北自來水事業處(2022)中和永和供水分區水理模型模擬成果及優化建議報告書。
8.臺北市政府工務局(2016)臺北市土壤液化潛勢區分析評估工作報告書。
9.臺南市政府(2023)臺南市110年度土壤液化調查與風險評估計畫委託技術服務期末報告成果書。
10.Alliance AL (2001) Seismic fragility formulations for water systems.
11.Bhave PR (1988) Calibrating water distribution network models. Jour- nal of Environmental Engineering 114(1):120–136. https://doi.org/10. 1061/(ASCE)0733-9372(1988)114:1(120)
12.Butera I, G’omez-Hern’andez JJ, Nicotra S (2021) Contaminant- source detection in a water distribution system using the ensem- ble kalman filter. Journal of Water Resources Planning and Management 147(7):04021029. https://doi.org/10.1061/(ASCE)WR.1943-5452.000138
13.Boryczko K, Piegdo ’n I, Szpak D, et al (2021) Risk assessment of lack of water supply using the hydraulic model of the water supply. Resources 10(5):43. https://doi.org/10.3390/resources10050043
14.Cen H, Huang D, Liu Q, et al (2023) Application research on risk assessment of municipal pipeline network based on random forest machine learning algorithm. Water 15(10):196. https://doi.org/10. 3390/w15101964
15.Covelli C, Cozzolino L, Cimorelli L, et al (2015) A model to simu- late leakage through joints in water distribution systems. Journal of Water Supply: Research and Technology-Aqua 15(4):852–863. https://doi.org/10.2166/ws.2015.043
16.Creaco E, Campisano A, Fontana N, et al (2019) Real time control of water distribution networks: A state-of-the-art review. Water Research 161(15):517–530. https://doi.org/10.1016/j.watres.2019.06.025
17.D. MA, Erkin T, Ercan K (2020) Risk assessment of fuel supply pipelines: Kalecik power plant case study. Journal of Pipeline Systems Engineer- ing and Practice 11(4):05020005. https://doi.org/10.1061/(ASCE)PS. 1949-1204.0000496
18.Di Nardo A, Di Natale M, Gisonni C, et al (2014) A genetic algorithm for demand pattern and leakage estimation in a water distribution network. Journal of Water Supply: Research and Technology-Aqua 64(1):35–46. https://doi.org/doi.org/10.2166/aqua.2014.004
19.Ding K, Ni Y, Fan L, et al (2022) Optimal design of water supply network based on adaptive penalty function and improved genetic algorithm. Mathematical Problems in Engineering 2022. https://doi.org/10.1155/ 2022/8252086
20.Dini M, Tabesh M (2014) A new method for simultaneous calibration of demand pattern and hazen-williams coefficients in water distribution systems. Water Resources Management 28(7):2021–2034. https://doi. org/10.1007/s11269-014-0592-4
21.Figueiredo I, Esteves P, Cabrita P (2021) Water wise – a digital water solution for smart cities and water management entities. Proce- dia Computer Science 181:897–904. https://doi.org/doi.org/10.1016/j. procs.2021.01.245
22.Greco M, Del Giudice G (1999) New approach to water distribution network calibration. Journal of Hydraulic Engineering 125(8):849–854. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:8(849)
23.Guan Y, Lv M, Dong S (2023) Pressure-driven background leakage mod- els and their application for leak localization using a multi-population genetic algorithm. Water Resources Management 37(1):359–373. https://doi.org/10.1007/s11269-022-03377-w
24.Hashemi S, Filion Y, Speight V, et al (2020) Effect of pipe size and location on water-main head loss in water distribution systems. Journal of Water Resources Planning and Management 146(6):06020006. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001222
25.Henriques-Silva R, Duchesne S, St-Gelais NF, et al (2021) On-line warning system for pipe burst using bayesian dynamic linear mod- els. Water Resources Research 59:e2021WR031745. https://doi.org/10. 1029/2021WR031745
26.Huang Y, Zheng F, Kapelan Z, et al (2020) Efficient leak localiza- tion in water distribution systems using multistage optimal valve operations and smart demand metering. Water Resources Research 56(10):e2020WR028285. https://doi.org/10.1029/2020WR028285
27.Jamil R (2019) Frictional head loss relation between hazen-williams and darcy-weisbach equations for various water supply pipe materi- als. International Journal of Water 13(4):333–347. https://doi.org/10. 1504/IJW.2019.10027784
28.Jun S, Arbesser-Rastburg G, Fuchs-Hanusch D, et al (2022) Response sur- faces for water distribution system pipe roughness calibration. Journal of Water Resources Planning and Management 148:04021105. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001518
29.Kepa U (2021) Use of the hydraulic model for the operational analysis of the water supply network: a case study. Water 13(3):326. https://doi.org/10.3390/w13030326
30.Kim Y, Hwang B, Cho W (2018) Development of ground freezing sys- tem for undisturbed sampling of granular soils. Advances in Civil Engineering 2018:1541747. https://doi.org/10.1155/2018/1541747
31.Kowalska B, Suchorab P, Kowalski D (2022) Division of district metered areas (dmas) in a part of water supply network using WaterGEMs (bentley) software: a case study. Applied Water Science 12(7):166. https://doi.org/doi.org/10.3390/w14203276
32.Kuok K, Chiu P, Ting D (2020) Evaluation of “c” values to head loss and water pressure due to pipe aging: Case study of uni-central sarawak. Journal of Water Resource and Protection 12(12):1077–1088. https://doi.org/10.4236/jwarp.2020.1212064
33.Lee CW, Yoo DG (2021) Development of leakage detection model and its application for water distribution networks using rnn-lstm. Sustain- ability 13(16):9262. https://doi.org/doi.org/10.3390/su13169262
34.Lee YF, Chi YY, Lee DH, et al (2007) Simplified models for assess- ing annual liquefaction probability—a case study of the yuanlin area, taiwan. Engineering Geology 90(1-2):71–88. https://doi.org/10.1016/j. enggeo.2006.12.003.
35.Li R, Huang H, Xin K, et al (2015) A review of methods for burst/leakage detection and location in water distribution systems. Water Supply 15(3):429–441. https://doi.org/10.2166/ws.2014.131
36.Mambretti S, Orsi E (2016) Optimizing pump operations in water sup- ply networks through genetic algorithms. Journal-American Water Works Association) 108(2):E119–25. https://doi.org/10.5942/jawwa. 2016.108.0025
37.Meirelles G, Manzi D, Brentan B, et al (2017) Calibration model for water distribution network using pressures estimated by artificial neural net- works. Water Resources Management 31:4339–4351. https://doi.org/ doi.org/10.1007/s11269-017-1750-2
38.Mu T, Li Y, Li Z, et al (2021) Improved network reliability opti- mization model with head loss for water distribution system. Water Resources Management 35(7):2101–2114. https://doi.org/10. 1007/s11269-021-02811-9
39.Mu T, Li Y, Li Z, et al (2021) Improved network reliability opti- mization model with head loss for water distribution system. Water Resources Management 35(7):2101–2114. https://doi.org/10. 1007/s11269-021-02811-9
40.Niazkar M, Talebbeydokhti N, Afzali SH (2019) Novel grain and form roughness estimator scheme incorporating artificial intelligence models. Water Resources Management 33(2):757–773. https://doi.org/10.1007/ s11269-018-2141-z
41.Page P, Zulu S, Mothetha M (2019) Remote real-time pressure control via a variable speed pump in a specific water distribution system. Journal of Water Supply: Research and Technology-Aqua 68(1):20–28. https://doi.org/10.2166/aqua.2018.074
42.Pietrucha-Urbanik K, Tch’orzewska-Cie’slak B (2018) Approaches to fail- ure risk analysis of the water distribution network with regard to the safety of consumers. Water 10(11):1679. https://doi.org/10.3390/ w10111679
43.Qingzhou Z, Zheng F, Duan HF, et al (2018) A new method for simul- taneous calibration of demand pattern and hazen-williams coefficients in water distribution systems. Journal of Water Resources Planning and Management 144(7):04018063. https://doi.org/10.1061/(ASCE) WR.1943-5452.0000986
44.Rezaei H, Ryan B, Stoianov I (2015) Pipe failure analysis and impact of dynamic hydraulic conditions in water supply networks. Proce- dia Engineering 119:253–262. https://doi.org/10.1016/j.proeng.2015. 08.883
45.Sahu D, Tiwari M (2023) Methods of liquefaction potential evaluation-a review a b s t r a c t. Journal of Engineering, Computing and Archi- tecture 13:82–100. URL https://www.researchgate.net/publication/ 370265537 Methods of Liquefaction Potential Evaluation-A Review A B S T R A C T
46.Shiu CC, Chiang T, Chung CC (2022) A modified hydrologic model algorithm based on integrating graph theory and gis database. Water 14(19):3000. https://doi.org/10.3390/w14193000
47.Shiu CC, Chung CC, Chiang T (2023) Enhancing the epanet hydraulic model through genetic algorithm optimization of pipe roughness coeffi- cients. Water Resources Management pp 934–955. https://doi.org/10. 1007/s11269-023-03672-0
48.Sitzenfrei R, Wang Q, Kapelan Z, et al (2020) Using complex network analysis for optimization of water distribution networks. Water Resources Research 56:e2020WR027929. https://doi.org/10. 1029/2020WR027929
49.Sophocleous S, Savi’c DA, Kapelan Z, et al (2017) A two-stage calibration for detection of leakage hotspots in a real water distribution network. Procedia Engineering 186:168–176. https://doi.org/doi.org/10.1016/j. proeng.2017.03.223
50.Tucciarelli T, Criminisi A, Termini D (1999) Leak analysis in pipeline systems by means of optimal valve regulation. Journal of Hydraulic Engineering 125(3):277–285. https://doi.org/10.1061/ (ASCE)0733-9429(1999)125:3(277)
51.Ullah I, Fayaz M, Kim D (2018) Analytical modeling for underground risk assessment in smart cities. Applied Sciences 8(6):921. https://doi. org/10.3390/app8060921
52.Vanitha CN, Easwaramoorthy SV, Krishna SA, et al (2023) Efficient qualitative risk assessment of pipelines using relative risk score based on machine learning. Scientific Reports 13(1):14918. https://doi.org/ 10.1038/s41598-023-38950-9
53.Walski TM (2000) Model calibration data: the good, the bad, and the useless. Journal-American Water Works Association 92(1):94–99. https://doi.org/10.1002/j.1551-8833.2000.tb08791.x
54.Water Research Centre (1989) Network Analysis: A Code of Practice. Water Authorities Association, Swindon, England
55.Wang XT, Guo GC, Liu SM, et al (2020) Burst detection in district metering areas using deep learning method. Journal of Water Resources Planning and Management 146(6):04020031. https://doi.org/10.1061/ (ASCE)WR.1943-5452.0001223
56.Wu ZY, Arniella EF, Gianella E (2004) Darwin calibrator-improving project productivity and model quality for large water systems. Journal-American Water Works Association 146(10):27–34. https:// doi.org/10.1002/j.1551-8833.2004.tb10715.x
57.Zanfei A, Menapace A, Santopietro S, et al (2020) Calibration procedure for water distribution systems: comparison among hydraulic models. Water 12(5):1421. https://doi.org/10.3390/w12051421
58.Qingzhou Zhang, Feifei Zheng, Huan-Feng Duan, Yueyi Jia, Tuqiao Zhang, and Xinlei Guo (2018) Efficient numerical approach for simultaneous calibration of pipe roughness coefficients and nodal demands for water distribution systems. Journal of Water Resources Planning and Management 144(10):04018063. https://doi.org/10.1061/ (ASCE)WR.1943-5452.0000986
59.Zhou X, Tang Z, Xu W, et al (2019) Deep learning identifies accu- rate burst locations in water distribution networks. Water Research 166:115058. https://doi.org/10.1016/j.watres.2019.115058
60.Zhao Q, Wu W, Simpson AR, et al (2022) Simpler is better—calibration of pipe roughness in water distribution systems. Water 14(20):3276. https://doi.org/doi.org/10.3390/w14203276
|