參考文獻 |
Aiello, M., Vezzoli, R., & Gianinetto, M., 2019. Object-based image analysis approach for vessel detection on optical and radar images. Journal of Applied Remote Sensing, Vol. 13, Issue 1, 014502.
Alain, H.,& Djemel, Z., 2010. Image quality metrics: PSNR vs. SSIM. 2010 20th International Conference on Pattern Recognition., Istanbul, Turkey., Page(s):2366 – 2369.
Boain, R. J., 2004. A-B-Cs of Sun-Synchronous Orbit Mission Design. AAS/AIAA Space Flight Mechanics Conference Proceedings, AAS04-108, Hawaii, USA, 8-12 February, 2004.
Dong, C., Loy, C. C., He, K., & Tang, X., 2015. Image super-resolution using deep convolutional networks. IEEE transactions on pattern analysis and machine intelligence, 38(2), 295-307.
Feng, F., Hu, Y., Li, W., & Yang, F., 2024. Improved YOLOv8 algorithms for small object detection in aerial imagery. Journal of King Saud University-Computer and Information Sciences, 36(6), 102113.
Girshick, R., 2015. Fast r-cnn. In Proceedings of the IEEE international conference on computer vision (pp. 1440-1448).
Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y., 2014. Generative Adversarial Nets. NeurIPS 2014, 3. doi:10.1145/3422622.
Jia, Xu., Chen, S., Xu, C., Liu, J., Tian, Q., Han, Z., Dai, Z., & Ren, X., 2020. Unsupervised image super-resolution with an indirect supervised path. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops (pp. 468-469).
Jocher, G. “YOLOv8 by Ultralytics”, https://github.com/ultralytics/ultralytics, 2023. Accessed: June 8, 2023.
Khaledyan, D., Amirany, A., Jafari, K., Moaiyeri, M. H., Khuzani, A. Z., & Mashhadi, N., 2020. Low-cost implementation of bilinear and bicubic image interpolation for real-time image super-resolution. In 2020 IEEE Global Humanitarian Technology Conference (GHTC) (pp. 1-5). IEEE.
Kim, J., Lee, J.K., & Lee, K.M., 2016. Accurate image super resolution using very deep convolutional networks. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR),2016, pp. 1646-1654.
Lam, D., Kuzma, R., McGee, K., Dooley, S., Laielli, M., Klaric, M., Bulatov, Y. & McCord, B., 2018. xview: Objects in context in overhead imagery. arXiv preprint arXiv:1802.07856.
Ledig, C., Theis, L., Huszar, F., Caballero, J., Cunningham, A., Acosta, A., Aitken, A., Tejani, A., Totz, J., Wang, Z., & Shi, W., 2017. Photo-Realistic Single Image Super resolution Using a Generative Adversarial Network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017, pp. 105–114.
Li, Y., Zhang, K., Liang, J., Cao, J., Liu, C., Gong, R., Zhang, Y., Tang., H, Liu., Y, Demandolx., D, Ranjan, R., Timofte, R, & Van Gool, L., 2023. Lsdir: A large scale dataset for image restoration. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 1775-1787).
Liang, J., Cao, J., Sun, G., Zhang, K., Van Gool, L., & Timofte, R., 2021. Swinir: Image restoration using swin transformer. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 1833-1844).
Lin, T. Y., Dollar, P., Girshick, R., He, K., Hariharan, B., & Belongie, S., 2017. Feature pyramid networks for object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2117-2125).
Liu, S., Qi, L., Qin, H., Shi, J., & Jia, J., 2018. Path aggregation network for instance segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 8759-8768).
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., & Berg, A. C., 2016. Ssd: Single shot multibox detector. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part I 14 (pp. 21-37). Springer International Publishing.
Lim, B., Son, S., Kim, H., Nah, S., & Lee, K., 2017. Enhanced Deep Residual Networks for Single Image Super resolution. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops,2017, pp136-144.
Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., & Guo, B.,2021. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 10012-10022).
Lu, Z., Li, J., Liu, H., Huang, C., Zhang, L., & Zeng, T., 2022. Transformer for single image super-resolution. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 457-466).
Redmon, J., Divvala, S., Girshick, R., & Farhadi, A., 2016. You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 779-788).
Ren, S., He, K., Girshick, R., & Sun, J., 2016. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE transactions on pattern analysis and machine intelligence, 39(6), 1137-1149.
Rukundo, O., & Cao, H., 2012. Nearest neighbor value interpolation. arXiv preprint arXiv:1211.1768.
Shang, T., Dai, Q., Zhu, S., Yang, T., & Guo, Y., 2020. Perceptual extreme super-resolution network with receptive field block. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops (pp. 440-441).
Shermeyer, J., & Van Etten, A., 2019. The effects of super-resolution on object detection performance in satellite imagery. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (pp. 0-0).
Su, X., Zhang, J., Ma, Z., Dong, Y., Zi, J., Xu, N., Zhang, H., Xu, F., & Chen, F., 2024. Identification of Rare Wildlife in the Field Environment Based on the Improved YOLOv5 Model. Remote Sensing, 16(9), 1535.
Tang, C., Feng, Y., Yang, X., Zheng, C., & Zhou, Y., 2017. The object detection based on deep learning. In 2017 4th international conference on information science and control engineering (ICISCE) (pp. 723-728). IEEE.
Terven, J., Cordova-Esparza, D. M., & Romero-Gonzalez, J. A., 2023. A comprehensive review of yolo architectures in computer vision: From yolov1 to yolov8 and yolo-nas. Machine Learning and Knowledge Extraction, 5(4), 1680-1716.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L. and Polosukhin, I., 2017. Attention is all you need. In Proceedings of the 31st International Conference on Neural Information Processing Systems, pp. 6000–6010, 2017.
Wang, X., & Song, J., 2021. ICIoU: Improved loss based on complete intersection over union for bounding box regression. IEEE Access, 9, 105686-105695.
Wang, X., Yu, K., Wu, S., Gu, J., Liu, Y., Dong, C., Loy, C.C., Q, Y., & Tang, X., 2018. ESRGAN: enhanced super resolution generative adversarial networks. European Conference on Computer Vision.,2018, pp 63-79.
Wang, X., Xie, L., Dong, C., & Shan, Y., 2021. Real-ESRGAN: Training Real-World Blind Super resolution with Pure Synthetic Data. Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops, 2021, pp. 1905-1914.
Wang, X., Yu, K., Dong, C., & Loy, C. C., 2018. Recovering realistic texture in image super-resolution by deep spatial feature transform. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 606-615).
Zhang, J., Lei, J., Xie, W., Fang, Z., Li, Y., & Du, Q., 2023. SuperYOLO: Super resolution assisted object detection in multimodal remote sensing imagery. IEEE Transactions on Geoscience and Remote Sensing, 61, 1-15.
Zhang, Y., Guo, Z., Wu, J., Tian, Y., Tang, H., & Guo, X., 2022. Real-time vehicle detection based on improved yolo v5. Sustainability, 14(19), 12274.
陳芷家(2023)。基於間隔密集連接策略的Swin Transformer 影像超解析度處理及其應用。淡江大學電機工程學系系 碩 士 論 文 , 新北市 。 取 自https://hdl.handle.net/11296/8f2u92 |