摘要(英) |
This study conducts an in-depth analysis of hydrofluoric acid (HF) tanker leakage accidents during transportation in the Taoyuan area and explores corresponding response strategies. The research methods include a literature review, field investigations, and risk scenario simulations combined with local wind direction and meteorological data. The study employs the ALOHA toxic dispersion model to simulate the hazard range of a potential HF tanker accident on National Highway No. 1 and calculates overlapping hazard areas and risk values. GIS software is used to visualize population risk values for each village in graphical form, serving as a basis for emergency response and drills.
The simulation results show that under Scenario 1 (based on the 5-year average wind speed), population risk values range from 2,400 to 120,000 people/km2. Under Scenario 2 (based on the 5-year maximum wind speed), the risk values range from 2,333 to 110,000 people/km2. In Scenario 3 (with a lower leakage volume), the risk values range from 1,400 to 14,000 people/km2. Higher risk values are observed in Taoyuan, Zhongli, Luzhu , and Yangmei. The hazard range is significantly influenced by variables such as wind speed, wind direction, leakage volume, atmospheric stability, and temperature, which affect the dispersion outcomes.
The study concludes with recommendations to conduct practical drills in high-risk areas and provide chemical knowledge training to residents to enhance emergency response capabilities. Expanding the scope of the study could improve the accuracy of the results. Additionally, integrating emergency response resources is essential for enhancing disaster response speed. |
參考文獻 |
1. 毒性及關注化學物質管理法,2019年1月。
2. 毒性及關注化學物質聯防組織設立計畫作業辦法,2019年4月。
3. 行政院公報,關注化學物質公告,第027卷,第059期,2021年04月01日。
4. 王肇齡,職業性氫氟酸中毒認定參考指引,民國一百零五年十一月。
5. 李志毅、陳宏裕,環境事故簡訊電子報,第75期,2020年06月30日。
6. 洪瑋懋,環境事故簡訊電子報,第90期,2024年3月31日。
7. 陳政任「高雄市產業毒化災害防救現況與對策分析」,「城市發展」半年刊 第十一期,2011年。
8. 電子報案例事故專欄,https://www.cha.gov.tw/lp-138-1.html,2017-2024。
9. U.S.(EPA),ALOHA(5.4.7),https://www.epa.gov/cameo/aloha-software,2020年6月。
10. 災害防救法,2019年5月。
11. 毒性化學物質災害防救業務計畫,行政院臺忠字第1090184865號函核定,民國一百零九年零九月一十日。
12. 行政院環境保護署,毒性化學物質災害疏散避難作業原則,環署毒字第0950013674號函頒布,2006年。
13. 政府資料開放平臺。
14. 工業技術研究院綠能與環境研究所,ALOHA擴散模擬軟體操作說明,2019年。
15. 台北榮民總醫院職業醫學及臨床毒物部。
16. 中華民國交通部公路局
17. 交通部統計查詢網。
18. CAMEO Chemicals。
19. 大紀元,韓國南部毒氣洩漏擴散 3178人接受治療。2012年10月09日,取自https://www.epochtimes.com/b5/12/10/9/n3701663.htm。
20. 新唐人電視台韓國毒氣外洩擴大3178人接受治療。2012年10月09日,取自https://www.ntdtv.com/b5/2012/10/09/a777406.html。
21. 交通部中央氣象署。
22. 林祥安 (2011) 「毒性化學物質災害疏散避難規劃之研究以大園工業區為例」,國立中央大學碩士論文。
23. 林擁世 (2020) 「擴散軟體ALOHA對有害物質模擬危害範圍與緊急應變指南ERG2016之差異比較」,亞洲大學碩士論文。
24. 郭家宏 (2019) 「以ALOHA 及 WISER 探討化學槽車之洩漏危害模擬分析以氯乙烯為例」,嘉南藥理大學碩士論文。
25. 張擎文 (2023) 「ALOHA模擬軟體應用於毒性化學物質洩漏時之警戒區劃設及避難疏散研究-以桃園市新屋區為例」,健行科技大學碩士論文。
26. 黃智鴻 (2021) 「毒性化學物質ALOHA模擬分析應用於疏散避難之研究 -以新竹工業區為例」,國立交通大學碩士論文。
27. 溫為淵 (2015) 「利用ALOH結合GIS研究有害化學品的災害潛勢及規劃緊急疏散方針」,國立交通大學碩士論文。
28. 溫明謙 (2012) 「化學液槽車灌裝風險及最佳化對策研究-以半導體廠例」,國立交通大學碩士論文。
29. 楊家洲 (2013) 「土城工業區毒性化學物質潛勢分析及疏散避難之規劃」,台北科技大學碩士論文。
30. 楊豐瑞 (2022) 「應用 ALOHA 模擬軟體輔助丙烯?槽車洩漏應變情境與需求之分析」,中央警察大學碩士論文。
31. 劉俊彬 (2018) 「氫氟酸洩漏後果分析以-大園區為案例」,國立交通大學碩士論文。
32. Crowl, D. A., & Louvar, J. F. (2002). Chemical process safety: Fundamentals with applications (2nd ed.). Prentice Hall.
33. Carter, D. A., Hirst, I. L., Maddison, T. E., & Porter, S. R. (2003). Appropriate risk assessment methods for major accident establishments. Process Safety and Environmental Protection, 81(1), 12-18.
34. Hille, R. (2002). Assessment of conventional and radiological risks for the handling of hazardous substances in a research centre. Process Safety and Environmental Protection, 80(6), 298-304.
35. Lee, K., Kwon, H.-M., Cho, S., Kim, J., & Moon, I. (2016). Improvements of safety management system in Korean chemical industry after a large chemical accident. Journal of Loss Prevention in the Process Industries, 42, 6-13.
36. Lee, H. E., Sohn, J. R., Byeon, S. H., Yoon, S. J., & Moon, K. W. (2018). Alternative risk assessment for dangerous chemicals in South Korea regulation: Comparing three modeling programs. International Journal of Environmental Research and Public Health, 15(8), Article 18. https://doi.org/10.3390/ijerph15081718
37. Mastellone, M. L., Ponte, M., & Arena, U. (2003). Design of mitigation systems for indoor and outdoor ammonia releases. Journal of Loss Prevention in the Process Industries, 16(2), 93-101.
38. Ramli, A., Abdul Ghani, N., Abdul Hamid, N., & Mat Desa, M. S. Z. (2018). Consequence modelling for estimating the toxic material dispersion using ALOHA: Case studies at two different chemical plants. Proceedings of the 2nd International Conference on Industrial, Mechanical, Electrical, and Chemical Engineering, 2(20), Article 1268. https://www.mdpi.com/2504-3900/2/20/1268
39. Tseng, J. M., Su, T. S., & Kuo, C. Y. (2012). Consequence evaluation of toxic chemical releases by ALOHA. Procedia Engineering, 45, 384-389. https://doi.org/10.1016/j.proeng.2012.08.175
40. Vilchez, J. A., Sevilla, S., Montiel, H., & Casal, J. (1995). Historical analysis of accidents in chemical plants and in the transportation of hazardous materials. Journal of Loss Prevention in the Process Industries, 8(2), 87-92.
41. Yoo, B., & Moon, M. (2017). Development of emergency response plan for chemical accident using ALOHA program: Focusing on evacuation plan. Korean Society of Hazard Mitigation, 18(3), 311-319. https://tinyurl.com/2h8ndpjf |