博碩士論文 111621016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:18.117.240.120
姓名 林怡萱(Yi-Hsuan Lin)  查詢紙本館藏   畢業系所 大氣科學學系
論文名稱 對流尺度資料同化系統中地面觀測同化的變分偏差修正
(Variational Bias Correction for Surface Data Assimilation in a Convective-scale Data Assimilation System)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-11-22以後開放)
摘要(中) 台灣具有高密度地面氣象站,可即時提供地面氣壓、風向、風速以及溫、濕度觀測,為同化系統中提供關於中、小尺度環流如午後熱對流、梅雨鋒面與颱風等天氣系統的重要資訊來源。然而,近地表觀測值和模式模擬值仍存在顯著偏差,是地面資料同化的主要困難之一。地面觀測資料於對流尺度預報效益,在同化期間同時進行偏差修正成為需謹慎評估之重要技術。
本研究參考衛星資料同化上已發展成熟的變分偏差修正(Variational bias correction, VarBC)方法,推廣應用到地面觀測資料同化上,並應用於台灣氣象署的對流尺度作業預報系統(CWA RWRF)。VarBC利用多變數偏差模型(multiple-predictor bias model)中觀測增量(innovation)與預測變數之間的統計關係,達成在分析循環中自適性動態修正偏差。
針對2022年6月6日到6月8日梅雨鋒面事件和2019年7月22日至23日北台灣午後熱對流個案進行同化及預報實驗,在同化地面觀測10米風與2米溫溼度時加入了CWA提出的VarBC偏差修正模型。結果顯示,VarBC可減少分析場中的觀測減背景場(OMB)平均,降低了原先的水氣正偏差及風速偏差。在溫度偏差模型中,可由熱通量項掌握日夜變化相關偏差特徵,並由觀測與模式高度差異項模擬此高度落差而導致的溫度偏差。
模式驗證結果進一步顯示,VarBC不僅改善了分析的偏差,也對後續預報產生持續的正面影響,可提升模式的穩定性。觀測驗證部分,通過對地基GPS天頂向總延遲量(ZTD)和QPESUMS累積降雨的校驗,顯示VarBC能夠降低水氣濕偏差,並且可減少預報在小雨時段高估的降雨,尤其對長時間降雨個案效果較為顯著。整體而言,VarBC在提升地面觀測資料同化效益方面具有極大潛力。
摘要(英) Significant biases exist between near-surface observations and model simulation outputs, posing a major challenge in assimilating surface data effectively. This study extends the variational bias correction (VarBC) method, widely used in satellite data assimilation, to surface data assimilation with a convective-scale data assimilation system in Taiwan (CWA RWRF). Through VarBC, adaptive bias correction is achieved during assimilation by utilizing the statistical relationship between innovations and multiple predictors in the bias model.
The impact of surface VarBC is examined with two cases: a Meiyu front event from 6 to 8 June 2022, and an afternoon thunderstorm event from 22 to 23 July 2019. The VarBC is applied to 10-meter wind, 2-meter temperature, and 2-meter humidity observations. Results indicate that the VarBC reduces mean observation-minus-background (OMB) values; particularly, it decreases positive moisture biases and wind speed biases. The bias model also captures temperature biases related to the diurnal cycle via a heat flux predictor and adjusts elevation-related temperature biases via a predictor of differences in observation and model elevation.
Model verification confirms that the VarBC improves both the analysis and forecasts, enhancing model stability. In addition, verification against Zenith Total Delay (ZTD) and QPESUMS precipitation observations shows that the VarBC reduces moisture biases and mitigates precipitation overestimation during light rainfall periods, especially effective in long duration rainfall cases. Overall, the VarBC shows potential for advancing the assimilation of surface observations in Taiwan.
關鍵字(中) ★ 變分偏差修正
★ 地面觀測
★ 資料同化
★ 偏差
★ 雷達資料同化預報系統
關鍵字(英) ★ Variational bias correction
★ Surface data
★ Data assimilation
★ bias
★ RWRF
論文目次 摘要i
Abstract ii
致謝 iii
一、緒論 1
1-1 資料同化中的偏差修正技術 1
1-2 地面觀測資料同化 4
1-3 研究動機與目的 6

二、研究方法 8
2-1 Variational Bias Correction (VarBC) 8
2-1-1 地面觀測變數的偏差模型 9
2-2 RWRF模式及對流尺度作業預報系統 10
2-3 實驗設計 11
2-4 研究個案簡介 11
2-4-1 梅雨個案 11
2-4-2 午後對流個案 13
2-5 使用資料 14

三、實驗結果與討論 15
3-1 VarBC應用在地面觀測同化整體效果 15
3-2 偏差模型中各項的貢獻 17
3-2-1 風場 17
3-2-2 水氣場 18
3-2-3 溫度場 19
3-3 對模式分析和預報表現的影響 20
3-3-1 模式分析場驗證 21
3-3-2 地基GPS天頂向總延遲量觀測驗證 23
3-3-3 QPESUMS降雨驗證 24
3-4 缺乏錨定資料之可能影響 25
3-5 前期實驗測試 26

四、結論與未來展望 29
4-1 結論 29
4-2 未來展望 30

參考文獻 32
附表 36
附圖 37
參考文獻 陳怡儒、洪景山,2017:應用decaying average方法進行地面溫度預報偏差修正之研究。大氣科學,45,25–42。
沈彥志、連國淵、羅翊銓、林怡萱、楊舒芝,2023:中央氣象局極短期劇烈天氣預報系統地面觀測資料同化方法評估。第37屆天氣分析與預報研討會,臺北市中央氣象署。
蔡雅婷、洪景山、陳依涵、方偉庭、邵彥銘、江琇瑛、馮欽賜,2019:WRF三維變分雷達資料同化個案研究。大氣科學,47,94–118。
Auligne, T., A. P. McNally, and D. P. Dee, 2007: Adaptive bias correction for satellite data in a numerical weather prediction system. Quarterly Journal of the Royal Meteorological Society, 133, 631-642, https://doi.org/10.1002/qj.56.
Chen, I.-H., J.-S. Hong, Y.-T. Tsai, and C.-T. Fong, 2020: Improving Afternoon Thunderstorm Prediction over Taiwan through 3DVar-Based Radar and Surface Data Assimilation. Weather and Forecasting, 35, 2603-2620, https://doi.org/10.1175/WAF-D-20-0037.1.
Dee, D. P., 2005: Bias and data assimilation. Quarterly Journal of the Royal Meteorological Society, 131, 3323-3343, https://doi.org/10.1256/qj.05.137.
Dee, D. P., and S. Uppala, 2009: Variational bias correction of satellite radiance data in the ERA-Interim reanalysis. Quarterly Journal of the Royal Meteorological Society, 135, 1830-1841, https://doi.org/10.1002/qj.493.
Derber, J. C., 1989: A Variational Continuous Assimilation Technique. Monthly Weather Review, 117, 2437-2446, https://doi.org/10.1175/1520-0493(1989)117<2437:AVCAT>2.0.CO;2.
Derber, J. C., and W.-S. Wu, 1998: The Use of TOVS Cloud-Cleared Radiances in the NCEP SSI Analysis System. Monthly Weather Review, 126, 2287-2299, https://doi.org/10.1175/1520-0493(1998)126<2287:TUOTCC>2.0.CO;2.
Drecourt, J.-P., H. Madsen, and D. Rosbjerg, 2006: Bias aware Kalman filters: Comparison and improvements. Advances in Water Resources, 29, 707-718, https://doi.org/10.1016/j.advwatres.2005.07.006.
Edwards, J. M., J. R. McGregor, M. R. Bush, and F. J. Bornemann, 2011: Assessment of numerical weather forecasts against observations from Cardington: seasonal diurnal cycles of screen-level and surface temperatures and surface fluxes. Quarterly Journal of the Royal Meteorological Society, 137, 656-672.
Eyre, J., 1993: Assimilation of TOVS data: problems and possibilities. Proc. of the ECMWF Seminar on developments in the use of satellite data in numerical weather prediction held during, 6-10.
Eyre, J. R., 2016: Observation bias correction schemes in data assimilation systems: a theoretical study of some of their properties. Quarterly Journal of the Royal Meteorological Society, 142, 2284-2291, https://doi.org/10.1002/qj.2819.
Francis, D. J., A. M. Fowler, A. S. Lawless, J. Eyre, and S. Migliorini, 2023: The effective use of anchor observations in variational bias correction in the presence of model bias. Quarterly Journal of the Royal Meteorological Society, 149, 1789-1809, https://doi.org/10.1002/qj.4482.
Gao, F., Z. Liu, J. Ma, N. A. Jacobs, P. P. Childs, and H. Wang, 2019: Variational Bias Correction of TAMDAR Temperature Observations in the WRF Data Assimilation System. Monthly Weather Review, 147, 1927-1945, https://doi.org/10.1175/MWR-D-18-0025.1.
Ha, S., and C. Snyder, 2014: Influence of Surface Observations in Mesoscale Data Assimilation Using an Ensemble Kalman Filter. Mon. Wea. Rev., 142, 1489–1508, https://doi.org/10.1175/MWR-D-13-00108.1.
Isaksen, L., D. Vasiljevic, D. Dee, and S. Healy, 2012: Bias correction of aircraft data implemented in November 2011. ECMWF Newsletter, No. 131, ECMWF, Reading, United Kingdom, 6–6.
Ingleby, B., 2015: Global assimilation of air temperature, humidity, wind and pressure from surface stations. Quarterly Journal of the Royal Meteorological Society, 141, 504-517.
Jimenez, P. A., and J. Dudhia, 2012: Improving the Representation of Resolved and Unresolved Topographic Effects on Surface Wind in the WRF Model. Journal of Applied Meteorology and Climatology, 51, 300-316.
Knopfmeier, K. H., and D. J. Stensrud, 2013: Influence of Mesonet Observations on the Accuracy of Surface Analyses Generated by an Ensemble Kalman Filter. Wea. Forecasting, 28, 815–841, https://doi.org/10.1175/WAF-D-12-00078.1.
Lien, G.-Y., Y.-C. Lo, Y.-C. Shen, and S.-C. Yang, 2023: Applying Variational Bias Correction for Dense Surface Data in a Convective-scale Data Assimilation System of Taiwan. 103rd AMS Annual Meeting, Denver, CO.
Lorenc, A. C., 2003: Modelling of error covariances by 4D-Var data assimilation. Quarterly Journal of the Royal Meteorological Society, 129, 3167-3182, https://doi.org/10.1256/qj.02.131.
Meier, F., D. Fenner, T. Grassmann, B. Janicke, M. Otto, and D. Scherer, 2015: Challenges and benefits from crowd sourced atmospheric data for urban climate research using Berlin, Germany, as testbed. ICUC9–9th international conference on urban climate jointly with 12th symposium on the urban environment.
Pourret, V., J.-F. Mahfouf, V. Guidard, P. Moll, A. Doerenbecher, and B. Piguet, 2021: Variational bias correction for Mode-S aircraft derived winds. Tellus A: Dynamic Meteorology and Oceanography ,73, 1–27.
Samrat, N. H., F. Smith, J. Lee, and A. Smith, 2022: Testing Variational Bias Correction of Satellite Radiance Data in the ACCESS-C: Australian Convective-Scale NWP System. Sensors, 22, 9504, https://doi.org/10.3390/s22239504.
Sgoff, C., W. Acevedo, Z. Paschalidi, S. Ulbrich, E. Bauernschubert, T. Kratzsch, and R. Potthast, 2022: Assimilation of crowd-sourced surface observations over Germany in a regional weather prediction system. Quarterly Journal of the Royal Meteorological Society, 148, 1752-1767, https://doi.org/10.1002/qj.4276.
Yang, S., Y. Chang, H. Cheng, K. Lin, Y. Tsai, J. Hong, and Y. Li, 2024: Improving Afternoon Thunderstorm Prediction over Complex Terrain with the Assimilation of Dense Ground-Based Observations: Four Cases in the Taipei Basin. Wea. Forecasting, 39, 541–561, https://doi.org/10.1175/WAF-D-23-0149.1.
Yeh, T.-K., J.-S. Hong, C.-S. Wang, C.-H. Chen, K.-H. Chen, and C.-T. Fong, 2016: Determining the precipitable water vapor with ground-based GPS and comparing its yearly variation to rainfall over Taiwan. Advances in Space Research, 57, 2496-2507, https://doi.org/10.1016/j.asr.2016.04.002.
Zhang, H., Pu, Z., & Zhang, X. (2013). Examination of Errors in Near-Surface Temperature and Wind from WRF Numerical Simulations in Regions of Complex Terrain. Weather and Forecasting, 28(3), 893-914.
Zhu, Y., J. C. Derber, R. J. Purser, B. A. Ballish, and J. Whiting, 2015: Variational Correction of Aircraft Temperature Bias in the NCEP’s GSI Analysis System. Monthly Weather Review, 143, 3774-3803, https://doi.org/10.1175/MWR-D-14-00235.1.
指導教授 楊舒芝 連國淵(Shu-Chih Yang Guo-Yuan Lien) 審核日期 2024-11-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明