參考文獻 |
Kumar, N.A., et al., Sodium ion storage in reduced graphene oxide. Electrochimica Acta, 2016. 214: p. 319-325.
2. Cao, B., et al., Mesoporous soft carbon as an anode material for sodium ion batteries with superior rate and cycling performance. Journal of Materials Chemistry A, 2016. 4(17): p. 6472-6478.
3. Lu, H.Y., et al., Exploring Sodium-Ion Storage Mechanism in Hard Carbons with Different Microstructure Prepared by Ball-Milling Method. Small, 2018. 14(39).
4. Huang, Z.D., et al., Molybdenum Phosphide: A Conversion-type Anode for Ultralong-Life Sodium-Ion Batteries. Chemistry of Materials, 2017. 29(17): p. 7313-7322.
5. Zhu, Y.H., et al., Sb nanocrystallites derived from industrial antimony white as promising alloying-type anodes for Na-ion batteries. Journal of Alloys and Compounds, 2022. 926.
6. Wang, L., et al., Promises and challenges of alloy-type and conversion-type anode materials for sodium–ion batteries. Materials today energy, 2019. 11: p. 46-60.
7. Wang, L.C., et al., Promises and challenges of alloy-type and conversion-type anode materials for sodium-ion batteries. Materials Today Energy, 2019. 11: p. 46-60.
8. Lu, Y., et al., Selenium Phosphide (Se 4 P 4) as a New and Promising Anode Material for Sodium-Ion Batteries. Advanced Energy Materials, 2017. 7(7).
9. Chen, R.S., et al., Hierarchical Cu doped SnSe nanoclusters as high-performance anode for sodium-ion batteries. Electrochimica Acta, 2018. 282: p. 973-980.
10. Liu, D., et al., Inner-conductivity optimized core-shell Ag@Fe3O4 nanospheres for high-performance lithium-/sodium-ion batteries. Journal of Alloys and Compounds, 2020. 832: p. 152824.
11. Wang, X., et al., Rational design of three-dimensional graphene encapsulated with hollow FeP@ carbon nanocomposite as outstanding anode material for lithium ion and sodium ion batteries. ACS nano, 2017. 11(11): p. 11602-11616.
12. Zhang, J., et al., Blue-AsP monolayer as a promising anode material for lithium-and sodium-ion batteries: a DFT study. Physical Chemistry Chemical Physics, 2021. 23(9): p. 5143-5151.
13. Mansouri, Z., et al., Graphene/Phosphorene nano-heterostructure as a potential anode material for (K/Na)-ion batteries: Insights from DFT and AIMD. Computational Materials Science, 2022. 202: p. 110936.
14. Wu, K.-C., C.-M. Hsieh, and B.K. Chang, First principles calculations on lithium diffusion near the surface and in the bulk of Fe-doped LiCoPO 4. Physical Chemistry Chemical Physics, 2022. 24(2): p. 1147-1155.
15. Britvin, S.N., et al., Murashkoite, FeP, a new terrestrial phosphide from pyrometamorphic rocks of the Hatrurim Formation, South Levant. Mineralogy and Petrology, 2019. 113: p. 237-248.
16. Wang, T.-W., et al., First-principles investigation of the hydrogen evolution reaction of transition metal phosphides CrP, MnP, FeP, CoP, and NiP. Physical Chemistry Chemical Physics, 2021. 23(3): p. 2305-2312.
17. Xu, X., et al., Robust spindle-structured FeP@ C for high-performance alkali-ion batteries anode. Electrochimica Acta, 2019. 312: p. 224-233.
18. Neto, A.C., et al., The electronic properties of graphene. Reviews of modern physics, 2009. 81(1): p. 109.
19. Zheng, Z., et al., Achieving fast and durable lithium storage through amorphous FeP nanoparticles encapsulated in ultrathin 3D P-doped porous carbon nanosheets. ACS nano, 2020. 14(8): p. 9545-9561.
20. Li, J., et al., Copper and carbon-incorporated yolk-shelled FeP spheres with enhanced sodium storage properties. Chemical Engineering Journal, 2021. 421: p. 127776.
21. Park, S., et al., An expanded sandwich-like heterostructure with thin FeP nanosheets@ graphene via charge-driven self-assembly as high-performance anodes for sodium ion battery. Nanoscale, 2022. 14(16): p. 6184-6194.
22. Jiang, J., et al., Controlled design for integration of FeP into 3D carbon frameworks for superior Na storage. Chemical Engineering Journal, 2022. 429: p. 132271.
23. Lin, X.C., et al., Improving the rate capacity and cycle stability of FeP anodes for lithium-ion batteries via in situ carbon encapsulation and copper doping. Journal of Colloid and Interface Science, 2023. 634: p. 346-356.
24. Yu, J., et al., In-situ rooting biconical-nanorods-like Co-doped FeP@ carbon architectures toward enhanced lithium storage performance. Chemical Engineering Journal, 2023. 477: p. 146996.
25. Fan, H., et al., Na/K diffusion in FeP as an anode material for ion batteries. The Journal of Physical Chemistry C, 2020. 124(12): p. 6495-6501.
26. Gao, D., et al., Lithiation and Magnesiation Mechanism of VOCl: First-Principles Moleculardynamics Simulation. Journal of The Electrochemical Society, 2022. 169(4): p. 040566.
27. Sholl, D.S. and J.A. Steckel, Density functional theory: a practical introduction. 2022: John Wiley & Sons.
28. Payne, M.C., et al., Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Reviews of modern physics, 1992. 64(4): p. 1045.
29. Henkelman, G., B.P. Uberuaga, and H. Jonsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths. The Journal of chemical physics, 2000. 113(22): p. 9901-9904.
30. Henkelman, G. and H. Jonsson, Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. The Journal of chemical physics, 2000. 113(22): p. 9978-9985.
31. Schlegel, H.B., Exploring potential energy surfaces for chemical reactions: an overview of some practical methods. Journal of computational chemistry, 2003. 24(12): p. 1514-1527.
32. Segall, M., et al., First-principles simulation: ideas, illustrations and the CASTEP code. Journal of physics: condensed matter, 2002. 14(11): p. 2717.
33. Li, Z.L., et al., Iron phosphide@N-doped carbon nanosheets with open-framework structure as an ultralong lifespan and outstanding rate performance electrode material for sodium-ion batteries. Journal of Power Sources, 2020. 465.
34. Shi, S., et al., Electrospun free-standing FeP@ NPC film for flexible sodium ion batteries with remarkable cycling stability. Energy Storage Materials, 2020. 29: p. 78-83.
35. Shi, S., et al., FeP quantum dots confined in carbon?nanotube?grafted P?doped carbon octahedra for high?rate sodium storage and full?cell applications. Advanced Functional Materials, 2020. 30(10): p. 1909283.
36. Wang, C., et al., A Coral?Like FeP@ NC Anode with Increasing Cycle Capacity for Sodium?Ion and Lithium?Ion Batteries Induced by Particle Refinement. Angewandte Chemie, 2021. 133(47): p. 25217-25223.
37. Guo, L., et al., The Kirkendall effect-induced formation of FeP@ C composites comprising interconnected carbon-coated hollow FeP sub-nanoparticles for efficient alkaline metal storage. Journal of Materials Chemistry A, 2021. 9(34): p. 18231-18238.
38. Yan, Z.Q., et al., Vacancy and architecture engineering of porous FeP nanorods for achieving superior Li plus storage. Chemical Engineering Journal, 2022. 429.
39. Aguilera-Granja, F., et al., TiO2 nano-clusters adsorbed on surfaces: A density-functional-theoretic study. Journal of Physics and Chemistry of Solids, 2021. 150: p. 109716.
40. Eickhoff, H., et al., On the crystal structure and conductivity of Na3P. Zeitschrift fur anorganische und allgemeine Chemie, 2021. 647(2-3): p. 28-33.
41. Meunier, M. and S. Robertson, Materials Studio 20th anniversary. Molecular Simulation, 2021. 47(7): p. 537-539.
42. Patel, H.S., V.A. Dabhi, and A.M. Vora, Adverse effect of K-Mesh shifting in several crystal Systems: An analytical study. Materials Today: Proceedings, 2022. 57: p. 275-278.
43. Kong, C.-p., et al., F-GDY and F-GDY/Graphene as anodes in lithium-ion batteries: A first-principle investigation. Applied Surface Science, 2022. 595: p. 153543.
44. Sihag, A., et al., DFT insights into comparative hydrogen adsorption and hydrogen spillover mechanisms of Pt4/graphene and Pt4/anatase (101) surfaces. The Journal of Physical Chemistry C, 2019. 123(42): p. 25618-25627.
45. Yu, M. and D.R. Trinkle, Accurate and efficient algorithm for Bader charge integration. The Journal of chemical physics, 2011. 134(6).
46. Tang, W., E. Sanville, and G. Henkelman, A grid-based Bader analysis algorithm without lattice bias. Journal of Physics: Condensed Matter, 2009. 21(8): p. 084204.
47. Sanville, E., et al., Improved grid?based algorithm for Bader charge allocation. Journal of computational chemistry, 2007. 28(5): p. 899-908.
48. Henkelman, G., A. Arnaldsson, and H. Jonsson, A fast and robust algorithm for Bader decomposition of charge density. Computational Materials Science, 2006. 36(3): p. 354-360.
49. Mansouri, Z., et al., A BC 2 N/blue phosphorene heterostructure as an anode material for high-performance sodium-ion batteries: first principles insights. Physical Chemistry Chemical Physics, 2023.
50. Shamim, S.U.D., et al., Understanding Na-ion adsorption in nitrogen doped graphene oxide anode for rechargeable sodium ion batteries. Applied Surface Science, 2022. 579: p. 152147.
51. Sharma, A., et al., Ab initio study of molybdenum sulfo-selenides alloy as a flexible anode for sodium-ion batteries. Applied Surface Science, 2021. 536: p. 147973.
52. Dobrota, A.S., et al., Altering the reactivity of pristine, N-and P-doped graphene by strain engineering: A DFT view on energy related aspects. Applied Surface Science, 2020. 514: p. 145937.
53. Sangavi, S., N. Santhanamoorthi, and S. Vijayakumar, Density functional theory study on the adsorption of alkali metal ions with pristine and defected graphene sheet. Molecular Physics, 2018. 117(4): p. 462-473.
54. Rasheev, H.G., et al., Fundamental promise of anthraquinone functionalized graphene based next generation battery electrodes: A DFT study. Journal of Materials Chemistry A, 2017. 8(28): p. 14152-14161.
55. Pa?ti, I.A., et al., Atomic adsorption on pristine graphene along the Periodic Table of Elements–From PBE to non-local functionals. Applied Surface Science, 2018. 436: p. 433-440.
56. Wu, Z., et al., Atomic layer coated Al2O3 on nitrogen doped vertical graphene nanosheets for high performance sodium ion batteries. Energy & Environmental Materials, 2022. 5(1): p. 285-294.
57. Watthaisong, P., S. Suthirakun, and P. Hirunsit, Mechanistic Study of the Effect of Epoxy Groups on Ethylene Carbonate Decomposition Reaction on Carbon Anodes of Sodium-Ion Batteries. The Journal of Physical Chemistry C, 2021. 125(15): p. 8031-8044.
58. Wasalathilake, K.C., et al., High capacity and mobility in germanium sulfide/graphene (GeS/Gr) van der Waals heterostructure as anode materials for sodium–ion batteries: a first-principles investigation. Applied Surface Science, 2021. 536: p. 147779.
59. Rajput, K., et al., Ca2C MXene monolayer as a superior anode for metal-ion batteries. 2D Materials, 2021. 8(3): p. 035015.
60. Malyi, O.I., et al., A computational study of Na behavior on graphene. Applied Surface Science, 2015. 333: p. 235-243.
61. Sun, X., Z. Wang, and Y.Q. Fu, Adsorption and diffusion of sodium on graphene with grain boundaries. Carbon, 2017. 116: p. 415-421.
62. Xu, Z., et al., A promising anode material for sodium-ion battery with high capacity and high diffusion ability: graphyne and graphdiyne. RSC advances, 2016. 6(30): p. 25594-25600.
63. Ceder, G., M. Aydinol, and A. Kohan, Application of first-principles calculations to the design of rechargeable Li-batteries. Computational materials science, 1997. 8(1-2): p. 161-169.
64. Butt, M.K., et al., Monolayer SnC as anode material for Na ion batteries. Computational Materials Science, 2021. 197: p. 110617.
65. Gao, C., et al., Two-dimensional Si 3 C: a promising high-capacity anode material for sodium-ion batteries. Theoretical Chemistry Accounts, 2020. 139: p. 1-7. |