博碩士論文 111324050 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:129 、訪客IP:18.116.51.133
姓名 洪奇敬(Qi-Jing Hong)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 一磷化鐵@石墨烯作為鈉離子電池負極材料的第一原理研究
(First-Principles Investigation of FeP@Graphene as Anode Material for Sodium-Ion Batteries)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-10-31以後開放)
摘要(中) 近年來,眾多學者致力於解決轉化型電極材料在充放電過程中的體積膨脹與電容衰減問題。然而,多數研究仍主要依賴實驗手法,對於轉化型電極材料的模擬研究相對較少。為填補此領域的空缺,本研究採用第一原理計算,探討知名電極材料之一:一磷化鐵及其改質後的電極材料。一磷化鐵以其低成本和高電容的優勢著稱,與石墨烯結合後更可有效抑制充放電過程中的體積膨脹。此外,實驗結果也證實,銅元素摻雜能顯著提升一磷化鐵的導電性與電容表現。
本研究首先根據文獻構建一磷化鐵@石墨烯的模型,並進行結構優化。在單顆鈉原子的吸附中,發現其在複合材料中的吸附效果優於單獨吸附於一磷化鐵或石墨烯的情形。隨著鈉原子濃度增加,我們觀察到原子簇體積變化與平均吸附能出現轉折點,這暗示電極材料由嵌入反應轉變為轉化反應。藉由部分態密度 (Partial Density of States) 分析,更進一步確定發生轉化反應所需要的鈉原子數為八顆。此外,我們計算了鈉原子的擴散能障、開路電壓與電容。在銅原子於一磷化鐵參雜的討論中,我們證實銅的摻雜可有效增強鈉原子在電極材料中的吸附行為。
摘要(英) In recent years, various strategies have been proposed to address the challenges of significant volume changes and capacity degradation in conversion-type electrodes. While most research has concentrated on experimental approaches, relatively few have focused on simulation studies. This study seeks to utilize density functional theory (DFT) to investigate one of the most famous conversion type electrodes, FeP and its modifications. FeP offers low cost and high theoretical capacity, and combining it with graphene (FeP@graphene) helps mitigate volume variation. Additionally, Cu doping in FeP has been shown to improve both conductivity and capacity.
We firstly constructed the model of FeP@graphene based on experimental studies, and subsequently performed geometry optimization. The single Na adsorption showed that the adsorption behavior is stronger when Na is adsorbed between composite materials compared to being solely adsorbed on FeP or graphene. Following this, the number of Na atoms in the anode was increased, and an inflection point occurred at high Na ratios, based on cluster volume and the average adsorption energy calculations. This indicated a transformation in the mechanism from intercalation to conversion. The number of Na atoms required for conversion reaction was further confirmed to be 8 through the Partial Density of States (PDOS) analyze. Additionally, the diffusion energy barrier of a Na atom, open-circuit voltage (OCV), and the anode capacity were calculated. The effect of Cu doping in FeP was also examined, and it was found that Cu enhances the adsorption of a Na atom.
關鍵字(中) ★ 第一原理計算
★ 鈉離子電池
★ 轉化型電極
★ 一磷化鐵
★ 石墨烯
關鍵字(英) ★ first-principles calculations
★ Na-ion battery
★ conversion-type electrode
★ iron phosphide
★ graphene
論文目次 摘要 ii
Abstract iii
Acknowledgment iv
Table of Content v
Chapter 1 Background 1
1-1 Introduction 1
1-2 Literature review 3
1-2-1 Commonly used anodes in SIBs 3
1-2-2 Current progress of using FeP as anode 4
1-2-3 Simulation studies of conversion-type electrodes 15
Chapter 2 Theory 19
2-1 Density functional theory 19
2-2 Hohenberg-Kohn theorem 21
2-3 Kohn-Sham equation 22
2-4 Exchange correlation energy approximation 23
2-5 Self-consistent field (SCF) 25
2-6 Basis set 26
2-7 Cutoff energy 27
2-8 Brillouin zone 27
2-9 k-point sampling 28
2-10 Pseudopotential 29
2-11 Transition state theory 30
Chapter 3 Computational Details 33
3-1 Visualizer software 33
3-2 CASTEP (Cambridge Serial Total Energy Package) 34
3-3 VMD (Visual Molecular Dynamic) 34
3-4 Model Constructure 35
3-5 Convergence testing 40
3-5-1 Grid scale & fine grid scale 40
3-5-2 Cutoff energy 42
3-5-3 k-point 45
3-6 Geometry optimization 47
3-7 TS (transition state) - search 49
Chapter 4 Results and Discussion 50
4-1 Structures of Materials 50
4-2 Single Na adsorption energy calculation 57
4-3 Intercalation-conversion mechanism 67
4-4 Na diffusion between materials 74
4-5 Electronic properties of materials 80
4-6 Energy performance of materials 87
4-7 Effect of Cu doping 89
Chapter 5 Conclusions 95
References 97
參考文獻 Kumar, N.A., et al., Sodium ion storage in reduced graphene oxide. Electrochimica Acta, 2016. 214: p. 319-325.
2. Cao, B., et al., Mesoporous soft carbon as an anode material for sodium ion batteries with superior rate and cycling performance. Journal of Materials Chemistry A, 2016. 4(17): p. 6472-6478.
3. Lu, H.Y., et al., Exploring Sodium-Ion Storage Mechanism in Hard Carbons with Different Microstructure Prepared by Ball-Milling Method. Small, 2018. 14(39).
4. Huang, Z.D., et al., Molybdenum Phosphide: A Conversion-type Anode for Ultralong-Life Sodium-Ion Batteries. Chemistry of Materials, 2017. 29(17): p. 7313-7322.
5. Zhu, Y.H., et al., Sb nanocrystallites derived from industrial antimony white as promising alloying-type anodes for Na-ion batteries. Journal of Alloys and Compounds, 2022. 926.
6. Wang, L., et al., Promises and challenges of alloy-type and conversion-type anode materials for sodium–ion batteries. Materials today energy, 2019. 11: p. 46-60.
7. Wang, L.C., et al., Promises and challenges of alloy-type and conversion-type anode materials for sodium-ion batteries. Materials Today Energy, 2019. 11: p. 46-60.
8. Lu, Y., et al., Selenium Phosphide (Se 4 P 4) as a New and Promising Anode Material for Sodium-Ion Batteries. Advanced Energy Materials, 2017. 7(7).
9. Chen, R.S., et al., Hierarchical Cu doped SnSe nanoclusters as high-performance anode for sodium-ion batteries. Electrochimica Acta, 2018. 282: p. 973-980.
10. Liu, D., et al., Inner-conductivity optimized core-shell Ag@Fe3O4 nanospheres for high-performance lithium-/sodium-ion batteries. Journal of Alloys and Compounds, 2020. 832: p. 152824.
11. Wang, X., et al., Rational design of three-dimensional graphene encapsulated with hollow FeP@ carbon nanocomposite as outstanding anode material for lithium ion and sodium ion batteries. ACS nano, 2017. 11(11): p. 11602-11616.
12. Zhang, J., et al., Blue-AsP monolayer as a promising anode material for lithium-and sodium-ion batteries: a DFT study. Physical Chemistry Chemical Physics, 2021. 23(9): p. 5143-5151.
13. Mansouri, Z., et al., Graphene/Phosphorene nano-heterostructure as a potential anode material for (K/Na)-ion batteries: Insights from DFT and AIMD. Computational Materials Science, 2022. 202: p. 110936.
14. Wu, K.-C., C.-M. Hsieh, and B.K. Chang, First principles calculations on lithium diffusion near the surface and in the bulk of Fe-doped LiCoPO 4. Physical Chemistry Chemical Physics, 2022. 24(2): p. 1147-1155.
15. Britvin, S.N., et al., Murashkoite, FeP, a new terrestrial phosphide from pyrometamorphic rocks of the Hatrurim Formation, South Levant. Mineralogy and Petrology, 2019. 113: p. 237-248.
16. Wang, T.-W., et al., First-principles investigation of the hydrogen evolution reaction of transition metal phosphides CrP, MnP, FeP, CoP, and NiP. Physical Chemistry Chemical Physics, 2021. 23(3): p. 2305-2312.
17. Xu, X., et al., Robust spindle-structured FeP@ C for high-performance alkali-ion batteries anode. Electrochimica Acta, 2019. 312: p. 224-233.
18. Neto, A.C., et al., The electronic properties of graphene. Reviews of modern physics, 2009. 81(1): p. 109.
19. Zheng, Z., et al., Achieving fast and durable lithium storage through amorphous FeP nanoparticles encapsulated in ultrathin 3D P-doped porous carbon nanosheets. ACS nano, 2020. 14(8): p. 9545-9561.
20. Li, J., et al., Copper and carbon-incorporated yolk-shelled FeP spheres with enhanced sodium storage properties. Chemical Engineering Journal, 2021. 421: p. 127776.
21. Park, S., et al., An expanded sandwich-like heterostructure with thin FeP nanosheets@ graphene via charge-driven self-assembly as high-performance anodes for sodium ion battery. Nanoscale, 2022. 14(16): p. 6184-6194.
22. Jiang, J., et al., Controlled design for integration of FeP into 3D carbon frameworks for superior Na storage. Chemical Engineering Journal, 2022. 429: p. 132271.
23. Lin, X.C., et al., Improving the rate capacity and cycle stability of FeP anodes for lithium-ion batteries via in situ carbon encapsulation and copper doping. Journal of Colloid and Interface Science, 2023. 634: p. 346-356.
24. Yu, J., et al., In-situ rooting biconical-nanorods-like Co-doped FeP@ carbon architectures toward enhanced lithium storage performance. Chemical Engineering Journal, 2023. 477: p. 146996.
25. Fan, H., et al., Na/K diffusion in FeP as an anode material for ion batteries. The Journal of Physical Chemistry C, 2020. 124(12): p. 6495-6501.
26. Gao, D., et al., Lithiation and Magnesiation Mechanism of VOCl: First-Principles Moleculardynamics Simulation. Journal of The Electrochemical Society, 2022. 169(4): p. 040566.
27. Sholl, D.S. and J.A. Steckel, Density functional theory: a practical introduction. 2022: John Wiley & Sons.
28. Payne, M.C., et al., Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Reviews of modern physics, 1992. 64(4): p. 1045.
29. Henkelman, G., B.P. Uberuaga, and H. Jonsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths. The Journal of chemical physics, 2000. 113(22): p. 9901-9904.
30. Henkelman, G. and H. Jonsson, Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. The Journal of chemical physics, 2000. 113(22): p. 9978-9985.
31. Schlegel, H.B., Exploring potential energy surfaces for chemical reactions: an overview of some practical methods. Journal of computational chemistry, 2003. 24(12): p. 1514-1527.
32. Segall, M., et al., First-principles simulation: ideas, illustrations and the CASTEP code. Journal of physics: condensed matter, 2002. 14(11): p. 2717.
33. Li, Z.L., et al., Iron phosphide@N-doped carbon nanosheets with open-framework structure as an ultralong lifespan and outstanding rate performance electrode material for sodium-ion batteries. Journal of Power Sources, 2020. 465.
34. Shi, S., et al., Electrospun free-standing FeP@ NPC film for flexible sodium ion batteries with remarkable cycling stability. Energy Storage Materials, 2020. 29: p. 78-83.
35. Shi, S., et al., FeP quantum dots confined in carbon?nanotube?grafted P?doped carbon octahedra for high?rate sodium storage and full?cell applications. Advanced Functional Materials, 2020. 30(10): p. 1909283.
36. Wang, C., et al., A Coral?Like FeP@ NC Anode with Increasing Cycle Capacity for Sodium?Ion and Lithium?Ion Batteries Induced by Particle Refinement. Angewandte Chemie, 2021. 133(47): p. 25217-25223.
37. Guo, L., et al., The Kirkendall effect-induced formation of FeP@ C composites comprising interconnected carbon-coated hollow FeP sub-nanoparticles for efficient alkaline metal storage. Journal of Materials Chemistry A, 2021. 9(34): p. 18231-18238.
38. Yan, Z.Q., et al., Vacancy and architecture engineering of porous FeP nanorods for achieving superior Li plus storage. Chemical Engineering Journal, 2022. 429.
39. Aguilera-Granja, F., et al., TiO2 nano-clusters adsorbed on surfaces: A density-functional-theoretic study. Journal of Physics and Chemistry of Solids, 2021. 150: p. 109716.
40. Eickhoff, H., et al., On the crystal structure and conductivity of Na3P. Zeitschrift fur anorganische und allgemeine Chemie, 2021. 647(2-3): p. 28-33.
41. Meunier, M. and S. Robertson, Materials Studio 20th anniversary. Molecular Simulation, 2021. 47(7): p. 537-539.
42. Patel, H.S., V.A. Dabhi, and A.M. Vora, Adverse effect of K-Mesh shifting in several crystal Systems: An analytical study. Materials Today: Proceedings, 2022. 57: p. 275-278.
43. Kong, C.-p., et al., F-GDY and F-GDY/Graphene as anodes in lithium-ion batteries: A first-principle investigation. Applied Surface Science, 2022. 595: p. 153543.
44. Sihag, A., et al., DFT insights into comparative hydrogen adsorption and hydrogen spillover mechanisms of Pt4/graphene and Pt4/anatase (101) surfaces. The Journal of Physical Chemistry C, 2019. 123(42): p. 25618-25627.
45. Yu, M. and D.R. Trinkle, Accurate and efficient algorithm for Bader charge integration. The Journal of chemical physics, 2011. 134(6).
46. Tang, W., E. Sanville, and G. Henkelman, A grid-based Bader analysis algorithm without lattice bias. Journal of Physics: Condensed Matter, 2009. 21(8): p. 084204.
47. Sanville, E., et al., Improved grid?based algorithm for Bader charge allocation. Journal of computational chemistry, 2007. 28(5): p. 899-908.
48. Henkelman, G., A. Arnaldsson, and H. Jonsson, A fast and robust algorithm for Bader decomposition of charge density. Computational Materials Science, 2006. 36(3): p. 354-360.
49. Mansouri, Z., et al., A BC 2 N/blue phosphorene heterostructure as an anode material for high-performance sodium-ion batteries: first principles insights. Physical Chemistry Chemical Physics, 2023.
50. Shamim, S.U.D., et al., Understanding Na-ion adsorption in nitrogen doped graphene oxide anode for rechargeable sodium ion batteries. Applied Surface Science, 2022. 579: p. 152147.
51. Sharma, A., et al., Ab initio study of molybdenum sulfo-selenides alloy as a flexible anode for sodium-ion batteries. Applied Surface Science, 2021. 536: p. 147973.
52. Dobrota, A.S., et al., Altering the reactivity of pristine, N-and P-doped graphene by strain engineering: A DFT view on energy related aspects. Applied Surface Science, 2020. 514: p. 145937.
53. Sangavi, S., N. Santhanamoorthi, and S. Vijayakumar, Density functional theory study on the adsorption of alkali metal ions with pristine and defected graphene sheet. Molecular Physics, 2018. 117(4): p. 462-473.
54. Rasheev, H.G., et al., Fundamental promise of anthraquinone functionalized graphene based next generation battery electrodes: A DFT study. Journal of Materials Chemistry A, 2017. 8(28): p. 14152-14161.
55. Pa?ti, I.A., et al., Atomic adsorption on pristine graphene along the Periodic Table of Elements–From PBE to non-local functionals. Applied Surface Science, 2018. 436: p. 433-440.
56. Wu, Z., et al., Atomic layer coated Al2O3 on nitrogen doped vertical graphene nanosheets for high performance sodium ion batteries. Energy & Environmental Materials, 2022. 5(1): p. 285-294.
57. Watthaisong, P., S. Suthirakun, and P. Hirunsit, Mechanistic Study of the Effect of Epoxy Groups on Ethylene Carbonate Decomposition Reaction on Carbon Anodes of Sodium-Ion Batteries. The Journal of Physical Chemistry C, 2021. 125(15): p. 8031-8044.
58. Wasalathilake, K.C., et al., High capacity and mobility in germanium sulfide/graphene (GeS/Gr) van der Waals heterostructure as anode materials for sodium–ion batteries: a first-principles investigation. Applied Surface Science, 2021. 536: p. 147779.
59. Rajput, K., et al., Ca2C MXene monolayer as a superior anode for metal-ion batteries. 2D Materials, 2021. 8(3): p. 035015.
60. Malyi, O.I., et al., A computational study of Na behavior on graphene. Applied Surface Science, 2015. 333: p. 235-243.
61. Sun, X., Z. Wang, and Y.Q. Fu, Adsorption and diffusion of sodium on graphene with grain boundaries. Carbon, 2017. 116: p. 415-421.
62. Xu, Z., et al., A promising anode material for sodium-ion battery with high capacity and high diffusion ability: graphyne and graphdiyne. RSC advances, 2016. 6(30): p. 25594-25600.
63. Ceder, G., M. Aydinol, and A. Kohan, Application of first-principles calculations to the design of rechargeable Li-batteries. Computational materials science, 1997. 8(1-2): p. 161-169.
64. Butt, M.K., et al., Monolayer SnC as anode material for Na ion batteries. Computational Materials Science, 2021. 197: p. 110617.
65. Gao, C., et al., Two-dimensional Si 3 C: a promising high-capacity anode material for sodium-ion batteries. Theoretical Chemistry Accounts, 2020. 139: p. 1-7.
指導教授 張博凱 謝介銘(Bor Kae Chang Chieh-Ming Hsieh) 審核日期 2024-10-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明