博碩士論文 111324013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:127 、訪客IP:18.116.51.133
姓名 蔡智鈞(Tsai Chih-Chun)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 層狀奈米材料之介面開發應用於奈米發電機設計
(Interfacial Development of Layered Nanomaterials for Advanced Nanogenerator Design)
相關論文
★ 錫碲擴散偶之擴散阻障層界面反應★ 熱電材料與擴散阻障層在電流影響下的界面反應研究
★ 無鉛銲料與無電鍍鈷基板於多次迴焊之界面反應與可靠度測試★ 無電鍍鎳磷層應用於熱電材料與無鉛銲料之界面研究
★ 高可靠度車用印刷電路板之表面處理層開發★ 共濺鍍銅鈦薄膜之相分離演化機制與其對機械性質於3DIC接合的影響
★ 添加微量錫銀銅合金之銅薄膜與銅基板之接合研究★ 新式低溫合金焊料之開發與界面反應探討及可靠度分析
★ 電遷移對純錫導線晶粒旋轉之研究★ 以同步輻射臨場量測電遷移對純錫導線應力分佈之研究
★ 鋁鍺薄膜封裝研究★ 無鉛銲料錫銀鉍銦與銅電極之電遷移研究
★ 以表面處理及塗佈奈米粒子抑制錫晶鬚生長★ 鋁鍺雙層薄膜之擴散行為與金屬誘發結晶現象研究
★ 鋁(銅)與鎳混合導線於矽通孔製程之電遷移現象研究★ 無鉛銲料與碲化鉍基材之界面反應研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-11-18以後開放)
摘要(中) 奈米材料之介面設計可創造優異的電荷轉移途徑和高效的電荷分離效應,已廣泛應用於光催化、有機染料吸附、超級電容器和太陽能電池等各個研究領域。然而,在摩擦起電領域中的應用則尚未被有效探索。在此工作中,我們成功以低維度奈米材料為基礎進行新穎介面設計,並藉由原子力顯微鏡技術來探索其介面特性。後續我們也實際將此結構導入製作成摩擦起電元件。由結果發現,以新穎介面進行設計之起電元件,可輸出電壓、電流、電荷分別為 140 V、1750 nA、38 nC,相較於未加入之系統,表現增強了四倍之多,說明了此介面設計應用於摩擦起電方面的極大潛力。
摘要(英) Interfacial design of nanomaterials has been renowned for their excellent charge transfer pathways and efficient charge separation, leading to widespread applications in fields such as photocatalysis, organic dye adsorption, supercapacitors, and solar cells. However, their applications in the field of triboelectricity have yet to be effectively explored. In this work, we successfully designed a new interface based on low dimensional nanomaterials and investigated their properties using atomic force microscopy. Subsequently, we incorporated this structure into a triboelectric device. The results revealed that the device designed with this new interface can achieve output values of 140 V for voltage, 1750 nA for current, and 38 nC for charge, representing a fourfold increase compared to the control group. This demonstrates the significant potential of this interfacial design in triboelectric applications.
關鍵字(中) ★ 層狀奈米材料 關鍵字(英) ★ Nanomaterials
論文目次 摘要 i
Abstract ii
目錄 iii
圖目錄 vi
表目錄 viii
第一章 緒論 1
第二章 文獻回顧與探討 2
2-1 摩擦起電現象 2
2-1-1 摩擦起電效應 3
2-2 摩擦起電效應的量化 4
2-2-1 結合原子力顯微鏡和掃描凱文探針顯微鏡量化摩擦起電 5
2-3 摩擦起電材料序列 6
2-4 范德格拉夫發電機 (Van de Graff generator) 7
2-5 摩擦起電奈米發電機介紹 8
2-5-1 工作模式 8
2-5-2 TENG的位移電流 10
2-6 發展領域 11
2-7 摩擦起電奈米發電機基本結構設計 12
2-7-1 間隔結構 12
2-7-2 拱型結構 13
2-7-3 三明治結構 13
2-7-4 多層集結結構 14
2-7-5 可拉伸性結構 14
2-8 奈米材料在摩擦起電奈米發電機所扮演的角色 15
2-8-1 奈米材料在摩擦起電奈米發電機的應用 16
2-8-2 奈米材料介面設計 18
2-9 新穎結構設計之摩擦起電奈米發電機 19
2-10 多功能摩擦起電奈米發電機設計 19
2-10-1 防水織物摩擦起電奈米發電機 20
2-10-2 具有氣體感測功能之摩擦起電奈米發電機 21
第三章 實驗方法 22
3-1製程方法選擇 22
3-2 材料合成與摩擦起電奈米發電機製作 22
3-3 材料鑑定儀器 24
3-3-1 X光繞射儀 24
3-3-2 拉曼光譜 25
3-3-3 掃描式電子顯微鏡 26
3-3-4 X射線光電子能譜學分析 29
3-3-5 紫外光電子能譜學分析 30
第四章 結果與討論 31
4-1 材料分析鑑定 31
4-1-1 X光繞射分析 (XRD) 31
4-1-2 拉曼光譜鑑定 (Raman) 32
4-1-3 掃描式電子顯微鏡 (SEM) 33
4-1-4 能量色散X色線譜分析 (EDS) 34
4-1-5 X射線光電子能譜學分析 (XPS) 35
4-1-6 紫外光電子能譜學分析 (UPS) 37
4-2 表面電位 39
4-3 介電量測 40
4-4電性量測 41
第五章 結論與未來展望 44
參考文獻 [1] Z. L. Wang and W. Wu, "Nanotechnology?enabled energy harvesting for self?powered micro?/nanosystems," Angewandte Chemie International Edition, vol. 51, no. 47, pp. 11700-11721, 2012.
[2] J. Henniker, "Triboelectricity in polymers," Nature, vol. 196, no. 4853, p. 474, 1962.
[3] D. Davies, "Charge generation on dielectric surfaces," Journal of Physics D: Applied Physics, vol. 2, no. 11, p. 1533, 1969.
[4] C. Xu et al., "On the electron?transfer mechanism in the contact?electrification effect," Advanced materials, vol. 30, no. 15, p. 1706790, 2018.
[5] R. Elsdon and F. Mitchell, "Contact electrification of polymers," Journal of Physics D: Applied Physics, vol. 9, no. 10, p. 1445, 1976.
[6] L. S. McCarty and G. M. Whitesides, "Electrostatic charging due to separation of ions at interfaces: contact electrification of ionic electrets," Angewandte Chemie International Edition, vol. 47, no. 12, pp. 2188-2207, 2008.
[7] J. J. Cole, C. R. Barry, R. J. Knuesel, X. Wang, and H. O. Jacobs, "Nanocontact electrification: patterned surface charges affecting adhesion, transfer, and printing," Langmuir, vol. 27, no. 11, pp. 7321-7329, 2011.
[8] H. T. Baytekin, B. Baytekin, S. Soh, and B. A. Grzybowski, "Is water necessary for contact electrification?," Angewandte Chemie (International Edition), vol. 50, no. 30, 2011.
[9] H. Baytekin, A. Patashinski, M. Branicki, B. Baytekin, S. Soh, and B. A. Grzybowski, "The mosaic of surface charge in contact electrification," Science, vol. 333, no. 6040, pp. 308-312, 2011.
[10] Y. S. Zhou et al., "In situ quantitative study of nanoscale triboelectrification and patterning," Nano letters, vol. 13, no. 6, pp. 2771-2776, 2013.
[11] F. A. Furfari, "A history of the Van de Graaff generator," IEEE Industry Applications Magazine, vol. 11, no. 1, pp. 10-14, 2005.
[12] F.-R. Fan, Z.-Q. Tian, and Z. L. Wang, "Flexible triboelectric generator," Nano energy, vol. 1, no. 2, pp. 328-334, 2012.
[13] Z. L. Wang, "Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors," ACS nano, vol. 7, no. 11, pp. 9533-9557, 2013.
[14] Z. L. Wang, J. Chen, and L. Lin, "Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors," Energy & Environmental Science, vol. 8, no. 8, pp. 2250-2282, 2015.
[15] W.-G. Kim, D.-W. Kim, I.-W. Tcho, J.-K. Kim, M.-S. Kim, and Y.-K. Choi, "Triboelectric nanogenerator: Structure, mechanism, and applications," ACS nano, vol. 15, no. 1, pp. 258-287, 2021.
[16] Z. L. Wang, "On the first principle theory of nanogenerators from Maxwell′s equations," Nano Energy, vol. 68, p. 104272, 2020.
[17] R. Zhang and H. Olin, "Material choices for triboelectric nanogenerators: A critical review," EcoMat, vol. 2, no. 4, p. e12062, 2020.
[18] J. Luo and Z. L. Wang, "Recent progress of triboelectric nanogenerators: From fundamental theory to practical applications," EcoMat, vol. 2, no. 4, p. e12059, 2020.
[19] G. Zhu et al., "Triboelectric-generator-driven pulse electrodeposition for micropatterning," Nano letters, vol. 12, no. 9, pp. 4960-4965, 2012.
[20] S. Wang, L. Lin, and Z. L. Wang, "Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics," Nano letters, vol. 12, no. 12, pp. 6339-6346, 2012.
[21] X.-S. Zhang et al., "Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems," Nano letters, vol. 13, no. 3, pp. 1168-1172, 2013.
[22] P. Bai et al., "Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motions," ACS nano, vol. 7, no. 4, pp. 3713-3719, 2013.
[23] Y. Liu et al., "Thin, skin?integrated, stretchable triboelectric nanogenerators for tactile sensing," Advanced Electronic Materials, vol. 6, no. 1, p. 1901174, 2020.
[24] Y. Liu, J. Ping, and Y. Ying, "Recent progress in 2D?nanomaterial?based triboelectric nanogenerators," Advanced Functional Materials, vol. 31, no. 17, p. 2009994, 2021.
[25] T. Chekke, R. Narzary, S. Ngadong, B. Satpati, S. Bayan, and U. Das, "2D WS2-based single-electrode triboelectric nanogenerator for power generation and motion sensing," Journal of Electronic Materials, vol. 52, no. 4, pp. 2685-2694, 2023.
[26] J. Chen et al., "Fabrication of layered SnS2 as co-triboelectric layers for high performance PDMS-based triboelectric nanogenerators," Materials Letters, vol. 372, p. 137003, 2024.
[27] H. Kim et al., "A molybdenum-disulfide nanocomposite film-based stretchable triboelectric nanogenerator for wearable biomechanical energy harvesting and self-powered human motion monitoring," Chemical Engineering Journal, vol. 491, p. 151980, 2024.
[28] P. Liu and B. Xiang, "2D hetero-structures based on transition metal dichalcogenides: fabrication, properties and applications," Science bulletin, vol. 62, no. 16, pp. 1148-1161, 2017.
[29] G. Ma, Z. Pan, Y. Liu, Y. Lu, and Y. Tao, "Hydrothermal synthesis of MoS2/SnS2 photocatalysts with heterogeneous structures enhances photocatalytic activity," Materials, vol. 16, no. 12, p. 4436, 2023.
[30] Y. Li et al., "Electron transfer mechanism of graphene/Cu heterostructure for improving the stability of triboelectric nanogenerators," Nano Energy, vol. 70, p. 104540, 2020.
[31] Y. Qian and D. J. Kang, "Poly (dimethylsiloxane)/ZnO nanoflakes/three-dimensional graphene heterostructures for high-performance flexible energy harvesters with simultaneous piezoelectric and triboelectric generation," ACS applied materials & interfaces, vol. 10, no. 38, pp. 32281-32288, 2018.
[32] V. A. Sharov, P. A. Alekseev, B. R. Borodin, M. S. Dunaevskiy, R. R. Reznik, and G. E. Cirlin, "InP/Si heterostructure for high-current hybrid triboelectric/photovoltaic generation," ACS Applied Energy Materials, vol. 2, no. 6, pp. 4395-4401, 2019.
[33] H. Yang et al., "Highly Sensitive Self-Powered Humidity Sensor Based on a TaS2/Cu2S Heterostructure Driven by a Triboelectric Nanogenerator," ACS Applied Materials & Interfaces, vol. 15, no. 27, pp. 33077-33086, 2023.
[34] Y. C. Lai, Y. C. Hsiao, H. M. Wu, and Z. L. Wang, "Waterproof fabric?based multifunctional triboelectric nanogenerator for universally harvesting energy from raindrops, wind, and human motions and as self?powered sensors," Advanced Science, vol. 6, no. 5, p. 1801883, 2019.
[35] X. Zhang et al., "Flexible H2S sensors: Fabricated by growing NO2-UiO-66 on electrospun nanofibers for detecting ultralow concentration H2S," Applied Surface Science, vol. 573, p. 151446, 2022.
[36] J. Epp, "X-ray diffraction (XRD) techniques for materials characterization," in Materials characterization using nondestructive evaluation (NDE) methods: Elsevier, 2016, pp. 81-124.
[37] C. V. Raman and K. S. Krishnan, "A new type of secondary radiation," Nature, vol. 121, no. 3048, pp. 501-502, 1928.
[38] R. S. Das and Y. Agrawal, "Raman spectroscopy: Recent advancements, techniques and applications," Vibrational spectroscopy, vol. 57, no. 2, pp. 163-176, 2011.
[39] O. C. Wells and D. C. Joy, "The early history and future of the SEM," Surface and Interface Analysis: An International Journal devoted to the development and application of techniques for the analysis of surfaces, interfaces and thin films, vol. 38, no. 12?13, pp. 1738-1742, 2006.
[40] W. Zhou, R. Apkarian, Z. L. Wang, and D. Joy, "Fundamentals of scanning electron microscopy (SEM)," Scanning microscopy for nanotechnology: techniques and applications, pp. 1-40, 2007.
[41] J. D. Andrade, "X-ray photoelectron spectroscopy (XPS)," Surface and Interfacial Aspects of Biomedical Polymers: Volume 1 Surface Chemistry and Physics, pp. 105-195, 1985.
[42] A. D. Baker and D. Betteridge, Photoelectron spectroscopy: chemical and analytical aspects. Elsevier, 2013.
[43] X. Fan, M. Tebyetekerwa, Y. Wu, R. R. Gaddam, and X. S. Zhao, "Magnesium/lithium hybrid batteries based on SnS2-MoS2 with reversible conversion reactions," Energy Material Advances, 2022.
[44] T. Sriv, K. Kim, and H. Cheong, "Low-frequency Raman spectroscopy of few-layer 2H-SnS2," Scientific reports, vol. 8, no. 1, p. 10194, 2018.
[45] A. Jena et al., "Defect Mediated Improvements in the Photoelectrochemical Activity of MoS2/SnS2 Ultrathin Sheets on Si Photocathode for Hydrogen Evolution," ACS Applied Materials & Interfaces, vol. 14, no. 35, pp. 39896-39906, 2022.
[46] X. Xiao, Y. Wang, X. Xu, T. Yang, and D. Zhang, "Preparation of the flower-like MoS2/SnS2 heterojunction as an efficient electrocatalyst for hydrogen evolution reaction," Molecular Catalysis, vol. 487, p. 110890, 2020.
[47] Y. Wang, Q. Liu, Y. Liu, and L. Shuying, "Facile synthesis of MoS2/SnS2/NC heterojunction nanosphere composite as high-performance anode material for sodium-ion batteries," Journal of Alloys and Compounds, vol. 967, p. 171562, 2023.
[48] B. Wang et al., "2D/2D SnS2/MoS2 layered heterojunction for enhanced supercapacitor performance," Journal of the American Ceramic Society, vol. 103, no. 2, pp. 1088-1096, 2020.
[49] L. Hu et al., "MoS2 nanoparticles coupled to SnS2 nanosheets: The structural and electronic modulation for synergetic electrocatalytic hydrogen evolution," Journal of Catalysis, vol. 366, pp. 8-15, 2018.
[50] H.-H. Dai et al., "Ion-Electron Transduction Layer of the SnS2-MoS2 Heterojunction to Elevate Superior Interface Stability for All-Solid Sodium-Ion Selective Electrode," ACS sensors, vol. 9, no. 1, pp. 415-423, 2023.
[51] D. Li et al., "Electron-transfer mechanisms for confirmation of contact-electrification in ZnO/polyimide-based triboelectric nanogenerators," Nano Energy, vol. 75, p. 104818, 2020.
[52] S. S. Rana et al., "Cobalt?nanoporous carbon functionalized nanocomposite?based triboelectric nanogenerator for contactless and sustainable self?powered sensor systems," Advanced Functional Materials, vol. 31, no. 52, p. 2105110, 2021.
[53] B. Du, H. Liang, and J. Li, "Simulation on the Surface Charge Behaviors of Epoxy Insulator by Corona Discharge," in Atmospheric Pressure Plasma-from Diagnostics to Applications: IntechOpen, 2018.
[54] B. Du, R. Chang, W. Zhu, J. Li, and J. Jiang, "Temperature?dependent surface charge and discharge behaviour of converter transformer oil–paper insulation under DC voltage," IET Science, Measurement & Technology, vol. 13, no. 1, pp. 29-34, 2019.
指導教授 吳子嘉(Albert T. Wu) 審核日期 2024-11-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明